1.1 --- /dev/null Thu Jan 01 00:00:00 1970 +0000 1.2 +++ b/media/libvpx/vp8/decoder/error_concealment.c Wed Dec 31 06:09:35 2014 +0100 1.3 @@ -0,0 +1,598 @@ 1.4 +/* 1.5 + * Copyright (c) 2011 The WebM project authors. All Rights Reserved. 1.6 + * 1.7 + * Use of this source code is governed by a BSD-style license 1.8 + * that can be found in the LICENSE file in the root of the source 1.9 + * tree. An additional intellectual property rights grant can be found 1.10 + * in the file PATENTS. All contributing project authors may 1.11 + * be found in the AUTHORS file in the root of the source tree. 1.12 + */ 1.13 + 1.14 +#include <assert.h> 1.15 + 1.16 +#include "error_concealment.h" 1.17 +#include "onyxd_int.h" 1.18 +#include "decodemv.h" 1.19 +#include "vpx_mem/vpx_mem.h" 1.20 +#include "vp8/common/findnearmv.h" 1.21 + 1.22 +#define MIN(x,y) (((x)<(y))?(x):(y)) 1.23 +#define MAX(x,y) (((x)>(y))?(x):(y)) 1.24 + 1.25 +#define FLOOR(x,q) ((x) & -(1 << (q))) 1.26 + 1.27 +#define NUM_NEIGHBORS 20 1.28 + 1.29 +typedef struct ec_position 1.30 +{ 1.31 + int row; 1.32 + int col; 1.33 +} EC_POS; 1.34 + 1.35 +/* 1.36 + * Regenerate the table in Matlab with: 1.37 + * x = meshgrid((1:4), (1:4)); 1.38 + * y = meshgrid((1:4), (1:4))'; 1.39 + * W = round((1./(sqrt(x.^2 + y.^2))*2^7)); 1.40 + * W(1,1) = 0; 1.41 + */ 1.42 +static const int weights_q7[5][5] = { 1.43 + { 0, 128, 64, 43, 32 }, 1.44 + {128, 91, 57, 40, 31 }, 1.45 + { 64, 57, 45, 36, 29 }, 1.46 + { 43, 40, 36, 30, 26 }, 1.47 + { 32, 31, 29, 26, 23 } 1.48 +}; 1.49 + 1.50 +int vp8_alloc_overlap_lists(VP8D_COMP *pbi) 1.51 +{ 1.52 + if (pbi->overlaps != NULL) 1.53 + { 1.54 + vpx_free(pbi->overlaps); 1.55 + pbi->overlaps = NULL; 1.56 + } 1.57 + 1.58 + pbi->overlaps = vpx_calloc(pbi->common.mb_rows * pbi->common.mb_cols, 1.59 + sizeof(MB_OVERLAP)); 1.60 + 1.61 + if (pbi->overlaps == NULL) 1.62 + return -1; 1.63 + 1.64 + return 0; 1.65 +} 1.66 + 1.67 +void vp8_de_alloc_overlap_lists(VP8D_COMP *pbi) 1.68 +{ 1.69 + vpx_free(pbi->overlaps); 1.70 + pbi->overlaps = NULL; 1.71 +} 1.72 + 1.73 +/* Inserts a new overlap area value to the list of overlaps of a block */ 1.74 +static void assign_overlap(OVERLAP_NODE* overlaps, 1.75 + union b_mode_info *bmi, 1.76 + int overlap) 1.77 +{ 1.78 + int i; 1.79 + if (overlap <= 0) 1.80 + return; 1.81 + /* Find and assign to the next empty overlap node in the list of overlaps. 1.82 + * Empty is defined as bmi == NULL */ 1.83 + for (i = 0; i < MAX_OVERLAPS; i++) 1.84 + { 1.85 + if (overlaps[i].bmi == NULL) 1.86 + { 1.87 + overlaps[i].bmi = bmi; 1.88 + overlaps[i].overlap = overlap; 1.89 + break; 1.90 + } 1.91 + } 1.92 +} 1.93 + 1.94 +/* Calculates the overlap area between two 4x4 squares, where the first 1.95 + * square has its upper-left corner at (b1_row, b1_col) and the second 1.96 + * square has its upper-left corner at (b2_row, b2_col). Doesn't 1.97 + * properly handle squares which do not overlap. 1.98 + */ 1.99 +static int block_overlap(int b1_row, int b1_col, int b2_row, int b2_col) 1.100 +{ 1.101 + const int int_top = MAX(b1_row, b2_row); // top 1.102 + const int int_left = MAX(b1_col, b2_col); // left 1.103 + /* Since each block is 4x4 pixels, adding 4 (Q3) to the left/top edge 1.104 + * gives us the right/bottom edge. 1.105 + */ 1.106 + const int int_right = MIN(b1_col + (4<<3), b2_col + (4<<3)); // right 1.107 + const int int_bottom = MIN(b1_row + (4<<3), b2_row + (4<<3)); // bottom 1.108 + return (int_bottom - int_top) * (int_right - int_left); 1.109 +} 1.110 + 1.111 +/* Calculates the overlap area for all blocks in a macroblock at position 1.112 + * (mb_row, mb_col) in macroblocks, which are being overlapped by a given 1.113 + * overlapping block at position (new_row, new_col) (in pixels, Q3). The 1.114 + * first block being overlapped in the macroblock has position (first_blk_row, 1.115 + * first_blk_col) in blocks relative the upper-left corner of the image. 1.116 + */ 1.117 +static void calculate_overlaps_mb(B_OVERLAP *b_overlaps, union b_mode_info *bmi, 1.118 + int new_row, int new_col, 1.119 + int mb_row, int mb_col, 1.120 + int first_blk_row, int first_blk_col) 1.121 +{ 1.122 + /* Find the blocks within this MB (defined by mb_row, mb_col) which are 1.123 + * overlapped by bmi and calculate and assign overlap for each of those 1.124 + * blocks. */ 1.125 + 1.126 + /* Block coordinates relative the upper-left block */ 1.127 + const int rel_ol_blk_row = first_blk_row - mb_row * 4; 1.128 + const int rel_ol_blk_col = first_blk_col - mb_col * 4; 1.129 + /* If the block partly overlaps any previous MB, these coordinates 1.130 + * can be < 0. We don't want to access blocks in previous MBs. 1.131 + */ 1.132 + const int blk_idx = MAX(rel_ol_blk_row,0) * 4 + MAX(rel_ol_blk_col,0); 1.133 + /* Upper left overlapping block */ 1.134 + B_OVERLAP *b_ol_ul = &(b_overlaps[blk_idx]); 1.135 + 1.136 + /* Calculate and assign overlaps for all blocks in this MB 1.137 + * which the motion compensated block overlaps 1.138 + */ 1.139 + /* Avoid calculating overlaps for blocks in later MBs */ 1.140 + int end_row = MIN(4 + mb_row * 4 - first_blk_row, 2); 1.141 + int end_col = MIN(4 + mb_col * 4 - first_blk_col, 2); 1.142 + int row, col; 1.143 + 1.144 + /* Check if new_row and new_col are evenly divisible by 4 (Q3), 1.145 + * and if so we shouldn't check neighboring blocks 1.146 + */ 1.147 + if (new_row >= 0 && (new_row & 0x1F) == 0) 1.148 + end_row = 1; 1.149 + if (new_col >= 0 && (new_col & 0x1F) == 0) 1.150 + end_col = 1; 1.151 + 1.152 + /* Check if the overlapping block partly overlaps a previous MB 1.153 + * and if so, we're overlapping fewer blocks in this MB. 1.154 + */ 1.155 + if (new_row < (mb_row*16)<<3) 1.156 + end_row = 1; 1.157 + if (new_col < (mb_col*16)<<3) 1.158 + end_col = 1; 1.159 + 1.160 + for (row = 0; row < end_row; ++row) 1.161 + { 1.162 + for (col = 0; col < end_col; ++col) 1.163 + { 1.164 + /* input in Q3, result in Q6 */ 1.165 + const int overlap = block_overlap(new_row, new_col, 1.166 + (((first_blk_row + row) * 1.167 + 4) << 3), 1.168 + (((first_blk_col + col) * 1.169 + 4) << 3)); 1.170 + assign_overlap(b_ol_ul[row * 4 + col].overlaps, bmi, overlap); 1.171 + } 1.172 + } 1.173 +} 1.174 + 1.175 +void vp8_calculate_overlaps(MB_OVERLAP *overlap_ul, 1.176 + int mb_rows, int mb_cols, 1.177 + union b_mode_info *bmi, 1.178 + int b_row, int b_col) 1.179 +{ 1.180 + MB_OVERLAP *mb_overlap; 1.181 + int row, col, rel_row, rel_col; 1.182 + int new_row, new_col; 1.183 + int end_row, end_col; 1.184 + int overlap_b_row, overlap_b_col; 1.185 + int overlap_mb_row, overlap_mb_col; 1.186 + 1.187 + /* mb subpixel position */ 1.188 + row = (4 * b_row) << 3; /* Q3 */ 1.189 + col = (4 * b_col) << 3; /* Q3 */ 1.190 + 1.191 + /* reverse compensate for motion */ 1.192 + new_row = row - bmi->mv.as_mv.row; 1.193 + new_col = col - bmi->mv.as_mv.col; 1.194 + 1.195 + if (new_row >= ((16*mb_rows) << 3) || new_col >= ((16*mb_cols) << 3)) 1.196 + { 1.197 + /* the new block ended up outside the frame */ 1.198 + return; 1.199 + } 1.200 + 1.201 + if (new_row <= (-4 << 3) || new_col <= (-4 << 3)) 1.202 + { 1.203 + /* outside the frame */ 1.204 + return; 1.205 + } 1.206 + /* overlapping block's position in blocks */ 1.207 + overlap_b_row = FLOOR(new_row / 4, 3) >> 3; 1.208 + overlap_b_col = FLOOR(new_col / 4, 3) >> 3; 1.209 + 1.210 + /* overlapping block's MB position in MBs 1.211 + * operations are done in Q3 1.212 + */ 1.213 + overlap_mb_row = FLOOR((overlap_b_row << 3) / 4, 3) >> 3; 1.214 + overlap_mb_col = FLOOR((overlap_b_col << 3) / 4, 3) >> 3; 1.215 + 1.216 + end_row = MIN(mb_rows - overlap_mb_row, 2); 1.217 + end_col = MIN(mb_cols - overlap_mb_col, 2); 1.218 + 1.219 + /* Don't calculate overlap for MBs we don't overlap */ 1.220 + /* Check if the new block row starts at the last block row of the MB */ 1.221 + if (abs(new_row - ((16*overlap_mb_row) << 3)) < ((3*4) << 3)) 1.222 + end_row = 1; 1.223 + /* Check if the new block col starts at the last block col of the MB */ 1.224 + if (abs(new_col - ((16*overlap_mb_col) << 3)) < ((3*4) << 3)) 1.225 + end_col = 1; 1.226 + 1.227 + /* find the MB(s) this block is overlapping */ 1.228 + for (rel_row = 0; rel_row < end_row; ++rel_row) 1.229 + { 1.230 + for (rel_col = 0; rel_col < end_col; ++rel_col) 1.231 + { 1.232 + if (overlap_mb_row + rel_row < 0 || 1.233 + overlap_mb_col + rel_col < 0) 1.234 + continue; 1.235 + mb_overlap = overlap_ul + (overlap_mb_row + rel_row) * mb_cols + 1.236 + overlap_mb_col + rel_col; 1.237 + 1.238 + calculate_overlaps_mb(mb_overlap->overlaps, bmi, 1.239 + new_row, new_col, 1.240 + overlap_mb_row + rel_row, 1.241 + overlap_mb_col + rel_col, 1.242 + overlap_b_row + rel_row, 1.243 + overlap_b_col + rel_col); 1.244 + } 1.245 + } 1.246 +} 1.247 + 1.248 +/* Estimates a motion vector given the overlapping blocks' motion vectors. 1.249 + * Filters out all overlapping blocks which do not refer to the correct 1.250 + * reference frame type. 1.251 + */ 1.252 +static void estimate_mv(const OVERLAP_NODE *overlaps, union b_mode_info *bmi) 1.253 +{ 1.254 + int i; 1.255 + int overlap_sum = 0; 1.256 + int row_acc = 0; 1.257 + int col_acc = 0; 1.258 + 1.259 + bmi->mv.as_int = 0; 1.260 + for (i=0; i < MAX_OVERLAPS; ++i) 1.261 + { 1.262 + if (overlaps[i].bmi == NULL) 1.263 + break; 1.264 + col_acc += overlaps[i].overlap * overlaps[i].bmi->mv.as_mv.col; 1.265 + row_acc += overlaps[i].overlap * overlaps[i].bmi->mv.as_mv.row; 1.266 + overlap_sum += overlaps[i].overlap; 1.267 + } 1.268 + if (overlap_sum > 0) 1.269 + { 1.270 + /* Q9 / Q6 = Q3 */ 1.271 + bmi->mv.as_mv.col = col_acc / overlap_sum; 1.272 + bmi->mv.as_mv.row = row_acc / overlap_sum; 1.273 + } 1.274 + else 1.275 + { 1.276 + bmi->mv.as_mv.col = 0; 1.277 + bmi->mv.as_mv.row = 0; 1.278 + } 1.279 +} 1.280 + 1.281 +/* Estimates all motion vectors for a macroblock given the lists of 1.282 + * overlaps for each block. Decides whether or not the MVs must be clamped. 1.283 + */ 1.284 +static void estimate_mb_mvs(const B_OVERLAP *block_overlaps, 1.285 + MODE_INFO *mi, 1.286 + int mb_to_left_edge, 1.287 + int mb_to_right_edge, 1.288 + int mb_to_top_edge, 1.289 + int mb_to_bottom_edge) 1.290 +{ 1.291 + int row, col; 1.292 + int non_zero_count = 0; 1.293 + MV * const filtered_mv = &(mi->mbmi.mv.as_mv); 1.294 + union b_mode_info * const bmi = mi->bmi; 1.295 + filtered_mv->col = 0; 1.296 + filtered_mv->row = 0; 1.297 + mi->mbmi.need_to_clamp_mvs = 0; 1.298 + for (row = 0; row < 4; ++row) 1.299 + { 1.300 + int this_b_to_top_edge = mb_to_top_edge + ((row*4)<<3); 1.301 + int this_b_to_bottom_edge = mb_to_bottom_edge - ((row*4)<<3); 1.302 + for (col = 0; col < 4; ++col) 1.303 + { 1.304 + int i = row * 4 + col; 1.305 + int this_b_to_left_edge = mb_to_left_edge + ((col*4)<<3); 1.306 + int this_b_to_right_edge = mb_to_right_edge - ((col*4)<<3); 1.307 + /* Estimate vectors for all blocks which are overlapped by this */ 1.308 + /* type. Interpolate/extrapolate the rest of the block's MVs */ 1.309 + estimate_mv(block_overlaps[i].overlaps, &(bmi[i])); 1.310 + mi->mbmi.need_to_clamp_mvs |= vp8_check_mv_bounds( 1.311 + &bmi[i].mv, 1.312 + this_b_to_left_edge, 1.313 + this_b_to_right_edge, 1.314 + this_b_to_top_edge, 1.315 + this_b_to_bottom_edge); 1.316 + if (bmi[i].mv.as_int != 0) 1.317 + { 1.318 + ++non_zero_count; 1.319 + filtered_mv->col += bmi[i].mv.as_mv.col; 1.320 + filtered_mv->row += bmi[i].mv.as_mv.row; 1.321 + } 1.322 + } 1.323 + } 1.324 + if (non_zero_count > 0) 1.325 + { 1.326 + filtered_mv->col /= non_zero_count; 1.327 + filtered_mv->row /= non_zero_count; 1.328 + } 1.329 +} 1.330 + 1.331 +static void calc_prev_mb_overlaps(MB_OVERLAP *overlaps, MODE_INFO *prev_mi, 1.332 + int mb_row, int mb_col, 1.333 + int mb_rows, int mb_cols) 1.334 +{ 1.335 + int sub_row; 1.336 + int sub_col; 1.337 + for (sub_row = 0; sub_row < 4; ++sub_row) 1.338 + { 1.339 + for (sub_col = 0; sub_col < 4; ++sub_col) 1.340 + { 1.341 + vp8_calculate_overlaps( 1.342 + overlaps, mb_rows, mb_cols, 1.343 + &(prev_mi->bmi[sub_row * 4 + sub_col]), 1.344 + 4 * mb_row + sub_row, 1.345 + 4 * mb_col + sub_col); 1.346 + } 1.347 + } 1.348 +} 1.349 + 1.350 +/* Estimate all missing motion vectors. This function does the same as the one 1.351 + * above, but has different input arguments. */ 1.352 +static void estimate_missing_mvs(MB_OVERLAP *overlaps, 1.353 + MODE_INFO *mi, MODE_INFO *prev_mi, 1.354 + int mb_rows, int mb_cols, 1.355 + unsigned int first_corrupt) 1.356 +{ 1.357 + int mb_row, mb_col; 1.358 + vpx_memset(overlaps, 0, sizeof(MB_OVERLAP) * mb_rows * mb_cols); 1.359 + /* First calculate the overlaps for all blocks */ 1.360 + for (mb_row = 0; mb_row < mb_rows; ++mb_row) 1.361 + { 1.362 + for (mb_col = 0; mb_col < mb_cols; ++mb_col) 1.363 + { 1.364 + /* We're only able to use blocks referring to the last frame 1.365 + * when extrapolating new vectors. 1.366 + */ 1.367 + if (prev_mi->mbmi.ref_frame == LAST_FRAME) 1.368 + { 1.369 + calc_prev_mb_overlaps(overlaps, prev_mi, 1.370 + mb_row, mb_col, 1.371 + mb_rows, mb_cols); 1.372 + } 1.373 + ++prev_mi; 1.374 + } 1.375 + ++prev_mi; 1.376 + } 1.377 + 1.378 + mb_row = first_corrupt / mb_cols; 1.379 + mb_col = first_corrupt - mb_row * mb_cols; 1.380 + mi += mb_row*(mb_cols + 1) + mb_col; 1.381 + /* Go through all macroblocks in the current image with missing MVs 1.382 + * and calculate new MVs using the overlaps. 1.383 + */ 1.384 + for (; mb_row < mb_rows; ++mb_row) 1.385 + { 1.386 + int mb_to_top_edge = -((mb_row * 16)) << 3; 1.387 + int mb_to_bottom_edge = ((mb_rows - 1 - mb_row) * 16) << 3; 1.388 + for (; mb_col < mb_cols; ++mb_col) 1.389 + { 1.390 + int mb_to_left_edge = -((mb_col * 16) << 3); 1.391 + int mb_to_right_edge = ((mb_cols - 1 - mb_col) * 16) << 3; 1.392 + const B_OVERLAP *block_overlaps = 1.393 + overlaps[mb_row*mb_cols + mb_col].overlaps; 1.394 + mi->mbmi.ref_frame = LAST_FRAME; 1.395 + mi->mbmi.mode = SPLITMV; 1.396 + mi->mbmi.uv_mode = DC_PRED; 1.397 + mi->mbmi.partitioning = 3; 1.398 + mi->mbmi.segment_id = 0; 1.399 + estimate_mb_mvs(block_overlaps, 1.400 + mi, 1.401 + mb_to_left_edge, 1.402 + mb_to_right_edge, 1.403 + mb_to_top_edge, 1.404 + mb_to_bottom_edge); 1.405 + ++mi; 1.406 + } 1.407 + mb_col = 0; 1.408 + ++mi; 1.409 + } 1.410 +} 1.411 + 1.412 +void vp8_estimate_missing_mvs(VP8D_COMP *pbi) 1.413 +{ 1.414 + VP8_COMMON * const pc = &pbi->common; 1.415 + estimate_missing_mvs(pbi->overlaps, 1.416 + pc->mi, pc->prev_mi, 1.417 + pc->mb_rows, pc->mb_cols, 1.418 + pbi->mvs_corrupt_from_mb); 1.419 +} 1.420 + 1.421 +static void assign_neighbor(EC_BLOCK *neighbor, MODE_INFO *mi, int block_idx) 1.422 +{ 1.423 + assert(mi->mbmi.ref_frame < MAX_REF_FRAMES); 1.424 + neighbor->ref_frame = mi->mbmi.ref_frame; 1.425 + neighbor->mv = mi->bmi[block_idx].mv.as_mv; 1.426 +} 1.427 + 1.428 +/* Finds the neighboring blocks of a macroblocks. In the general case 1.429 + * 20 blocks are found. If a fewer number of blocks are found due to 1.430 + * image boundaries, those positions in the EC_BLOCK array are left "empty". 1.431 + * The neighbors are enumerated with the upper-left neighbor as the first 1.432 + * element, the second element refers to the neighbor to right of the previous 1.433 + * neighbor, and so on. The last element refers to the neighbor below the first 1.434 + * neighbor. 1.435 + */ 1.436 +static void find_neighboring_blocks(MODE_INFO *mi, 1.437 + EC_BLOCK *neighbors, 1.438 + int mb_row, int mb_col, 1.439 + int mb_rows, int mb_cols, 1.440 + int mi_stride) 1.441 +{ 1.442 + int i = 0; 1.443 + int j; 1.444 + if (mb_row > 0) 1.445 + { 1.446 + /* upper left */ 1.447 + if (mb_col > 0) 1.448 + assign_neighbor(&neighbors[i], mi - mi_stride - 1, 15); 1.449 + ++i; 1.450 + /* above */ 1.451 + for (j = 12; j < 16; ++j, ++i) 1.452 + assign_neighbor(&neighbors[i], mi - mi_stride, j); 1.453 + } 1.454 + else 1.455 + i += 5; 1.456 + if (mb_col < mb_cols - 1) 1.457 + { 1.458 + /* upper right */ 1.459 + if (mb_row > 0) 1.460 + assign_neighbor(&neighbors[i], mi - mi_stride + 1, 12); 1.461 + ++i; 1.462 + /* right */ 1.463 + for (j = 0; j <= 12; j += 4, ++i) 1.464 + assign_neighbor(&neighbors[i], mi + 1, j); 1.465 + } 1.466 + else 1.467 + i += 5; 1.468 + if (mb_row < mb_rows - 1) 1.469 + { 1.470 + /* lower right */ 1.471 + if (mb_col < mb_cols - 1) 1.472 + assign_neighbor(&neighbors[i], mi + mi_stride + 1, 0); 1.473 + ++i; 1.474 + /* below */ 1.475 + for (j = 0; j < 4; ++j, ++i) 1.476 + assign_neighbor(&neighbors[i], mi + mi_stride, j); 1.477 + } 1.478 + else 1.479 + i += 5; 1.480 + if (mb_col > 0) 1.481 + { 1.482 + /* lower left */ 1.483 + if (mb_row < mb_rows - 1) 1.484 + assign_neighbor(&neighbors[i], mi + mi_stride - 1, 4); 1.485 + ++i; 1.486 + /* left */ 1.487 + for (j = 3; j < 16; j += 4, ++i) 1.488 + { 1.489 + assign_neighbor(&neighbors[i], mi - 1, j); 1.490 + } 1.491 + } 1.492 + else 1.493 + i += 5; 1.494 + assert(i == 20); 1.495 +} 1.496 + 1.497 +/* Interpolates all motion vectors for a macroblock from the neighboring blocks' 1.498 + * motion vectors. 1.499 + */ 1.500 +static void interpolate_mvs(MACROBLOCKD *mb, 1.501 + EC_BLOCK *neighbors, 1.502 + MV_REFERENCE_FRAME dom_ref_frame) 1.503 +{ 1.504 + int row, col, i; 1.505 + MODE_INFO * const mi = mb->mode_info_context; 1.506 + /* Table with the position of the neighboring blocks relative the position 1.507 + * of the upper left block of the current MB. Starting with the upper left 1.508 + * neighbor and going to the right. 1.509 + */ 1.510 + const EC_POS neigh_pos[NUM_NEIGHBORS] = { 1.511 + {-1,-1}, {-1,0}, {-1,1}, {-1,2}, {-1,3}, 1.512 + {-1,4}, {0,4}, {1,4}, {2,4}, {3,4}, 1.513 + {4,4}, {4,3}, {4,2}, {4,1}, {4,0}, 1.514 + {4,-1}, {3,-1}, {2,-1}, {1,-1}, {0,-1} 1.515 + }; 1.516 + mi->mbmi.need_to_clamp_mvs = 0; 1.517 + for (row = 0; row < 4; ++row) 1.518 + { 1.519 + int mb_to_top_edge = mb->mb_to_top_edge + ((row*4)<<3); 1.520 + int mb_to_bottom_edge = mb->mb_to_bottom_edge - ((row*4)<<3); 1.521 + for (col = 0; col < 4; ++col) 1.522 + { 1.523 + int mb_to_left_edge = mb->mb_to_left_edge + ((col*4)<<3); 1.524 + int mb_to_right_edge = mb->mb_to_right_edge - ((col*4)<<3); 1.525 + int w_sum = 0; 1.526 + int mv_row_sum = 0; 1.527 + int mv_col_sum = 0; 1.528 + int_mv * const mv = &(mi->bmi[row*4 + col].mv); 1.529 + mv->as_int = 0; 1.530 + for (i = 0; i < NUM_NEIGHBORS; ++i) 1.531 + { 1.532 + /* Calculate the weighted sum of neighboring MVs referring 1.533 + * to the dominant frame type. 1.534 + */ 1.535 + const int w = weights_q7[abs(row - neigh_pos[i].row)] 1.536 + [abs(col - neigh_pos[i].col)]; 1.537 + if (neighbors[i].ref_frame != dom_ref_frame) 1.538 + continue; 1.539 + w_sum += w; 1.540 + /* Q7 * Q3 = Q10 */ 1.541 + mv_row_sum += w*neighbors[i].mv.row; 1.542 + mv_col_sum += w*neighbors[i].mv.col; 1.543 + } 1.544 + if (w_sum > 0) 1.545 + { 1.546 + /* Avoid division by zero. 1.547 + * Normalize with the sum of the coefficients 1.548 + * Q3 = Q10 / Q7 1.549 + */ 1.550 + mv->as_mv.row = mv_row_sum / w_sum; 1.551 + mv->as_mv.col = mv_col_sum / w_sum; 1.552 + mi->mbmi.need_to_clamp_mvs |= vp8_check_mv_bounds( 1.553 + mv, 1.554 + mb_to_left_edge, 1.555 + mb_to_right_edge, 1.556 + mb_to_top_edge, 1.557 + mb_to_bottom_edge); 1.558 + } 1.559 + } 1.560 + } 1.561 +} 1.562 + 1.563 +void vp8_interpolate_motion(MACROBLOCKD *mb, 1.564 + int mb_row, int mb_col, 1.565 + int mb_rows, int mb_cols, 1.566 + int mi_stride) 1.567 +{ 1.568 + /* Find relevant neighboring blocks */ 1.569 + EC_BLOCK neighbors[NUM_NEIGHBORS]; 1.570 + int i; 1.571 + /* Initialize the array. MAX_REF_FRAMES is interpreted as "doesn't exist" */ 1.572 + for (i = 0; i < NUM_NEIGHBORS; ++i) 1.573 + { 1.574 + neighbors[i].ref_frame = MAX_REF_FRAMES; 1.575 + neighbors[i].mv.row = neighbors[i].mv.col = 0; 1.576 + } 1.577 + find_neighboring_blocks(mb->mode_info_context, 1.578 + neighbors, 1.579 + mb_row, mb_col, 1.580 + mb_rows, mb_cols, 1.581 + mb->mode_info_stride); 1.582 + /* Interpolate MVs for the missing blocks from the surrounding 1.583 + * blocks which refer to the last frame. */ 1.584 + interpolate_mvs(mb, neighbors, LAST_FRAME); 1.585 + 1.586 + mb->mode_info_context->mbmi.ref_frame = LAST_FRAME; 1.587 + mb->mode_info_context->mbmi.mode = SPLITMV; 1.588 + mb->mode_info_context->mbmi.uv_mode = DC_PRED; 1.589 + mb->mode_info_context->mbmi.partitioning = 3; 1.590 + mb->mode_info_context->mbmi.segment_id = 0; 1.591 +} 1.592 + 1.593 +void vp8_conceal_corrupt_mb(MACROBLOCKD *xd) 1.594 +{ 1.595 + /* This macroblock has corrupt residual, use the motion compensated 1.596 + image (predictor) for concealment */ 1.597 + 1.598 + /* The build predictor functions now output directly into the dst buffer, 1.599 + * so the copies are no longer necessary */ 1.600 + 1.601 +}