security/nss/lib/freebl/mpi/mp_gf2m.c

changeset 0
6474c204b198
     1.1 --- /dev/null	Thu Jan 01 00:00:00 1970 +0000
     1.2 +++ b/security/nss/lib/freebl/mpi/mp_gf2m.c	Wed Dec 31 06:09:35 2014 +0100
     1.3 @@ -0,0 +1,579 @@
     1.4 +/* This Source Code Form is subject to the terms of the Mozilla Public
     1.5 + * License, v. 2.0. If a copy of the MPL was not distributed with this
     1.6 + * file, You can obtain one at http://mozilla.org/MPL/2.0/. */
     1.7 +
     1.8 +#include "mp_gf2m.h"
     1.9 +#include "mp_gf2m-priv.h"
    1.10 +#include "mplogic.h"
    1.11 +#include "mpi-priv.h"
    1.12 +
    1.13 +const mp_digit mp_gf2m_sqr_tb[16] =
    1.14 +{
    1.15 +      0,     1,     4,     5,    16,    17,    20,    21,
    1.16 +     64,    65,    68,    69,    80,    81,    84,    85
    1.17 +};
    1.18 +
    1.19 +/* Multiply two binary polynomials mp_digits a, b.
    1.20 + * Result is a polynomial with degree < 2 * MP_DIGIT_BITS - 1.
    1.21 + * Output in two mp_digits rh, rl.
    1.22 + */
    1.23 +#if MP_DIGIT_BITS == 32
    1.24 +void 
    1.25 +s_bmul_1x1(mp_digit *rh, mp_digit *rl, const mp_digit a, const mp_digit b)
    1.26 +{
    1.27 +    register mp_digit h, l, s;
    1.28 +    mp_digit tab[8], top2b = a >> 30; 
    1.29 +    register mp_digit a1, a2, a4;
    1.30 +
    1.31 +    a1 = a & (0x3FFFFFFF); a2 = a1 << 1; a4 = a2 << 1;
    1.32 +
    1.33 +    tab[0] =  0; tab[1] = a1;    tab[2] = a2;    tab[3] = a1^a2;
    1.34 +    tab[4] = a4; tab[5] = a1^a4; tab[6] = a2^a4; tab[7] = a1^a2^a4;
    1.35 +
    1.36 +    s = tab[b       & 0x7]; l  = s;
    1.37 +    s = tab[b >>  3 & 0x7]; l ^= s <<  3; h  = s >> 29;
    1.38 +    s = tab[b >>  6 & 0x7]; l ^= s <<  6; h ^= s >> 26;
    1.39 +    s = tab[b >>  9 & 0x7]; l ^= s <<  9; h ^= s >> 23;
    1.40 +    s = tab[b >> 12 & 0x7]; l ^= s << 12; h ^= s >> 20;
    1.41 +    s = tab[b >> 15 & 0x7]; l ^= s << 15; h ^= s >> 17;
    1.42 +    s = tab[b >> 18 & 0x7]; l ^= s << 18; h ^= s >> 14;
    1.43 +    s = tab[b >> 21 & 0x7]; l ^= s << 21; h ^= s >> 11;
    1.44 +    s = tab[b >> 24 & 0x7]; l ^= s << 24; h ^= s >>  8;
    1.45 +    s = tab[b >> 27 & 0x7]; l ^= s << 27; h ^= s >>  5;
    1.46 +    s = tab[b >> 30      ]; l ^= s << 30; h ^= s >>  2;
    1.47 +
    1.48 +    /* compensate for the top two bits of a */
    1.49 +
    1.50 +    if (top2b & 01) { l ^= b << 30; h ^= b >> 2; } 
    1.51 +    if (top2b & 02) { l ^= b << 31; h ^= b >> 1; } 
    1.52 +
    1.53 +    *rh = h; *rl = l;
    1.54 +} 
    1.55 +#else
    1.56 +void 
    1.57 +s_bmul_1x1(mp_digit *rh, mp_digit *rl, const mp_digit a, const mp_digit b)
    1.58 +{
    1.59 +    register mp_digit h, l, s;
    1.60 +    mp_digit tab[16], top3b = a >> 61;
    1.61 +    register mp_digit a1, a2, a4, a8;
    1.62 +
    1.63 +    a1 = a & (0x1FFFFFFFFFFFFFFFULL); a2 = a1 << 1; 
    1.64 +    a4 = a2 << 1; a8 = a4 << 1;
    1.65 +    tab[ 0] = 0;     tab[ 1] = a1;       tab[ 2] = a2;       tab[ 3] = a1^a2;
    1.66 +    tab[ 4] = a4;    tab[ 5] = a1^a4;    tab[ 6] = a2^a4;    tab[ 7] = a1^a2^a4;
    1.67 +    tab[ 8] = a8;    tab[ 9] = a1^a8;    tab[10] = a2^a8;    tab[11] = a1^a2^a8;
    1.68 +    tab[12] = a4^a8; tab[13] = a1^a4^a8; tab[14] = a2^a4^a8; tab[15] = a1^a2^a4^a8;
    1.69 +
    1.70 +    s = tab[b       & 0xF]; l  = s;
    1.71 +    s = tab[b >>  4 & 0xF]; l ^= s <<  4; h  = s >> 60;
    1.72 +    s = tab[b >>  8 & 0xF]; l ^= s <<  8; h ^= s >> 56;
    1.73 +    s = tab[b >> 12 & 0xF]; l ^= s << 12; h ^= s >> 52;
    1.74 +    s = tab[b >> 16 & 0xF]; l ^= s << 16; h ^= s >> 48;
    1.75 +    s = tab[b >> 20 & 0xF]; l ^= s << 20; h ^= s >> 44;
    1.76 +    s = tab[b >> 24 & 0xF]; l ^= s << 24; h ^= s >> 40;
    1.77 +    s = tab[b >> 28 & 0xF]; l ^= s << 28; h ^= s >> 36;
    1.78 +    s = tab[b >> 32 & 0xF]; l ^= s << 32; h ^= s >> 32;
    1.79 +    s = tab[b >> 36 & 0xF]; l ^= s << 36; h ^= s >> 28;
    1.80 +    s = tab[b >> 40 & 0xF]; l ^= s << 40; h ^= s >> 24;
    1.81 +    s = tab[b >> 44 & 0xF]; l ^= s << 44; h ^= s >> 20;
    1.82 +    s = tab[b >> 48 & 0xF]; l ^= s << 48; h ^= s >> 16;
    1.83 +    s = tab[b >> 52 & 0xF]; l ^= s << 52; h ^= s >> 12;
    1.84 +    s = tab[b >> 56 & 0xF]; l ^= s << 56; h ^= s >>  8;
    1.85 +    s = tab[b >> 60      ]; l ^= s << 60; h ^= s >>  4;
    1.86 +
    1.87 +    /* compensate for the top three bits of a */
    1.88 +
    1.89 +    if (top3b & 01) { l ^= b << 61; h ^= b >> 3; } 
    1.90 +    if (top3b & 02) { l ^= b << 62; h ^= b >> 2; } 
    1.91 +    if (top3b & 04) { l ^= b << 63; h ^= b >> 1; } 
    1.92 +
    1.93 +    *rh = h; *rl = l;
    1.94 +} 
    1.95 +#endif
    1.96 +
    1.97 +/* Compute xor-multiply of two binary polynomials  (a1, a0) x (b1, b0)  
    1.98 + * result is a binary polynomial in 4 mp_digits r[4].
    1.99 + * The caller MUST ensure that r has the right amount of space allocated.
   1.100 + */
   1.101 +void 
   1.102 +s_bmul_2x2(mp_digit *r, const mp_digit a1, const mp_digit a0, const mp_digit b1,
   1.103 +           const mp_digit b0)
   1.104 +{
   1.105 +    mp_digit m1, m0;
   1.106 +    /* r[3] = h1, r[2] = h0; r[1] = l1; r[0] = l0 */
   1.107 +    s_bmul_1x1(r+3, r+2, a1, b1);
   1.108 +    s_bmul_1x1(r+1, r, a0, b0);
   1.109 +    s_bmul_1x1(&m1, &m0, a0 ^ a1, b0 ^ b1);
   1.110 +    /* Correction on m1 ^= l1 ^ h1; m0 ^= l0 ^ h0; */
   1.111 +    r[2] ^= m1 ^ r[1] ^ r[3];  /* h0 ^= m1 ^ l1 ^ h1; */
   1.112 +    r[1]  = r[3] ^ r[2] ^ r[0] ^ m1 ^ m0;  /* l1 ^= l0 ^ h0 ^ m0; */
   1.113 +}
   1.114 +
   1.115 +/* Compute xor-multiply of two binary polynomials  (a2, a1, a0) x (b2, b1, b0)  
   1.116 + * result is a binary polynomial in 6 mp_digits r[6].
   1.117 + * The caller MUST ensure that r has the right amount of space allocated.
   1.118 + */
   1.119 +void 
   1.120 +s_bmul_3x3(mp_digit *r, const mp_digit a2, const mp_digit a1, const mp_digit a0, 
   1.121 +	const mp_digit b2, const mp_digit b1, const mp_digit b0)
   1.122 +{
   1.123 +	mp_digit zm[4];
   1.124 +
   1.125 +	s_bmul_1x1(r+5, r+4, a2, b2);         /* fill top 2 words */
   1.126 +	s_bmul_2x2(zm, a1, a2^a0, b1, b2^b0); /* fill middle 4 words */
   1.127 +	s_bmul_2x2(r, a1, a0, b1, b0);        /* fill bottom 4 words */
   1.128 +
   1.129 +	zm[3] ^= r[3];
   1.130 +	zm[2] ^= r[2]; 
   1.131 +	zm[1] ^= r[1] ^ r[5];
   1.132 +	zm[0] ^= r[0] ^ r[4];
   1.133 +
   1.134 +	r[5]  ^= zm[3];
   1.135 +	r[4]  ^= zm[2];
   1.136 +	r[3]  ^= zm[1];
   1.137 +	r[2]  ^= zm[0];
   1.138 +}
   1.139 +
   1.140 +/* Compute xor-multiply of two binary polynomials  (a3, a2, a1, a0) x (b3, b2, b1, b0)  
   1.141 + * result is a binary polynomial in 8 mp_digits r[8].
   1.142 + * The caller MUST ensure that r has the right amount of space allocated.
   1.143 + */
   1.144 +void s_bmul_4x4(mp_digit *r, const mp_digit a3, const mp_digit a2, const mp_digit a1, 
   1.145 +	const mp_digit a0, const mp_digit b3, const mp_digit b2, const mp_digit b1, 
   1.146 +	const mp_digit b0)
   1.147 +{
   1.148 +	mp_digit zm[4];
   1.149 +
   1.150 +	s_bmul_2x2(r+4, a3, a2, b3, b2);            /* fill top 4 words */
   1.151 +	s_bmul_2x2(zm, a3^a1, a2^a0, b3^b1, b2^b0); /* fill middle 4 words */
   1.152 +	s_bmul_2x2(r, a1, a0, b1, b0);              /* fill bottom 4 words */
   1.153 +
   1.154 +	zm[3] ^= r[3] ^ r[7]; 
   1.155 +	zm[2] ^= r[2] ^ r[6]; 
   1.156 +	zm[1] ^= r[1] ^ r[5]; 
   1.157 +	zm[0] ^= r[0] ^ r[4]; 
   1.158 +
   1.159 +	r[5]  ^= zm[3];    
   1.160 +	r[4]  ^= zm[2];
   1.161 +	r[3]  ^= zm[1];    
   1.162 +	r[2]  ^= zm[0];
   1.163 +}
   1.164 +
   1.165 +/* Compute addition of two binary polynomials a and b,
   1.166 + * store result in c; c could be a or b, a and b could be equal; 
   1.167 + * c is the bitwise XOR of a and b.
   1.168 + */
   1.169 +mp_err
   1.170 +mp_badd(const mp_int *a, const mp_int *b, mp_int *c)
   1.171 +{
   1.172 +    mp_digit *pa, *pb, *pc;
   1.173 +    mp_size ix;
   1.174 +    mp_size used_pa, used_pb;
   1.175 +    mp_err res = MP_OKAY;
   1.176 +
   1.177 +    /* Add all digits up to the precision of b.  If b had more
   1.178 +     * precision than a initially, swap a, b first
   1.179 +     */
   1.180 +    if (MP_USED(a) >= MP_USED(b)) {
   1.181 +        pa = MP_DIGITS(a);
   1.182 +        pb = MP_DIGITS(b);
   1.183 +        used_pa = MP_USED(a);
   1.184 +        used_pb = MP_USED(b);
   1.185 +    } else {
   1.186 +        pa = MP_DIGITS(b);
   1.187 +        pb = MP_DIGITS(a);
   1.188 +        used_pa = MP_USED(b);
   1.189 +        used_pb = MP_USED(a);
   1.190 +    }
   1.191 +
   1.192 +    /* Make sure c has enough precision for the output value */
   1.193 +    MP_CHECKOK( s_mp_pad(c, used_pa) );
   1.194 +
   1.195 +    /* Do word-by-word xor */
   1.196 +    pc = MP_DIGITS(c);
   1.197 +    for (ix = 0; ix < used_pb; ix++) {
   1.198 +        (*pc++) = (*pa++) ^ (*pb++);
   1.199 +    }
   1.200 +
   1.201 +    /* Finish the rest of digits until we're actually done */
   1.202 +    for (; ix < used_pa; ++ix) {
   1.203 +        *pc++ = *pa++;
   1.204 +    }
   1.205 +
   1.206 +    MP_USED(c) = used_pa;
   1.207 +    MP_SIGN(c) = ZPOS;
   1.208 +    s_mp_clamp(c);
   1.209 +
   1.210 +CLEANUP:
   1.211 +    return res;
   1.212 +} 
   1.213 +
   1.214 +#define s_mp_div2(a) MP_CHECKOK( mpl_rsh((a), (a), 1) );
   1.215 +
   1.216 +/* Compute binary polynomial multiply d = a * b */
   1.217 +static void 
   1.218 +s_bmul_d(const mp_digit *a, mp_size a_len, mp_digit b, mp_digit *d)
   1.219 +{
   1.220 +    mp_digit a_i, a0b0, a1b1, carry = 0;
   1.221 +    while (a_len--) {
   1.222 +        a_i = *a++;
   1.223 +        s_bmul_1x1(&a1b1, &a0b0, a_i, b);
   1.224 +        *d++ = a0b0 ^ carry;
   1.225 +        carry = a1b1;
   1.226 +    }
   1.227 +    *d = carry;
   1.228 +}
   1.229 +
   1.230 +/* Compute binary polynomial xor multiply accumulate d ^= a * b */
   1.231 +static void 
   1.232 +s_bmul_d_add(const mp_digit *a, mp_size a_len, mp_digit b, mp_digit *d)
   1.233 +{
   1.234 +    mp_digit a_i, a0b0, a1b1, carry = 0;
   1.235 +    while (a_len--) {
   1.236 +        a_i = *a++;
   1.237 +        s_bmul_1x1(&a1b1, &a0b0, a_i, b);
   1.238 +        *d++ ^= a0b0 ^ carry;
   1.239 +        carry = a1b1;
   1.240 +    }
   1.241 +    *d ^= carry;
   1.242 +}
   1.243 +
   1.244 +/* Compute binary polynomial xor multiply c = a * b.  
   1.245 + * All parameters may be identical.
   1.246 + */
   1.247 +mp_err 
   1.248 +mp_bmul(const mp_int *a, const mp_int *b, mp_int *c)
   1.249 +{
   1.250 +    mp_digit *pb, b_i;
   1.251 +    mp_int tmp;
   1.252 +    mp_size ib, a_used, b_used;
   1.253 +    mp_err res = MP_OKAY;
   1.254 +
   1.255 +    MP_DIGITS(&tmp) = 0;
   1.256 +
   1.257 +    ARGCHK(a != NULL && b != NULL && c != NULL, MP_BADARG);
   1.258 +
   1.259 +    if (a == c) {
   1.260 +        MP_CHECKOK( mp_init_copy(&tmp, a) );
   1.261 +        if (a == b)
   1.262 +            b = &tmp;
   1.263 +        a = &tmp;
   1.264 +    } else if (b == c) {
   1.265 +        MP_CHECKOK( mp_init_copy(&tmp, b) );
   1.266 +        b = &tmp;
   1.267 +    }
   1.268 +
   1.269 +    if (MP_USED(a) < MP_USED(b)) {
   1.270 +        const mp_int *xch = b;      /* switch a and b if b longer */
   1.271 +        b = a;
   1.272 +        a = xch;
   1.273 +    }
   1.274 +
   1.275 +    MP_USED(c) = 1; MP_DIGIT(c, 0) = 0;
   1.276 +    MP_CHECKOK( s_mp_pad(c, USED(a) + USED(b)) );
   1.277 +
   1.278 +    pb = MP_DIGITS(b);
   1.279 +    s_bmul_d(MP_DIGITS(a), MP_USED(a), *pb++, MP_DIGITS(c));
   1.280 +
   1.281 +    /* Outer loop:  Digits of b */
   1.282 +    a_used = MP_USED(a);
   1.283 +    b_used = MP_USED(b);
   1.284 +	MP_USED(c) = a_used + b_used;
   1.285 +    for (ib = 1; ib < b_used; ib++) {
   1.286 +        b_i = *pb++;
   1.287 +
   1.288 +        /* Inner product:  Digits of a */
   1.289 +        if (b_i)
   1.290 +            s_bmul_d_add(MP_DIGITS(a), a_used, b_i, MP_DIGITS(c) + ib);
   1.291 +        else
   1.292 +            MP_DIGIT(c, ib + a_used) = b_i;
   1.293 +    }
   1.294 +
   1.295 +    s_mp_clamp(c);
   1.296 +
   1.297 +    SIGN(c) = ZPOS;
   1.298 +
   1.299 +CLEANUP:
   1.300 +    mp_clear(&tmp);
   1.301 +    return res;
   1.302 +}
   1.303 +
   1.304 +
   1.305 +/* Compute modular reduction of a and store result in r.  
   1.306 + * r could be a. 
   1.307 + * For modular arithmetic, the irreducible polynomial f(t) is represented 
   1.308 + * as an array of int[], where f(t) is of the form: 
   1.309 + *     f(t) = t^p[0] + t^p[1] + ... + t^p[k]
   1.310 + * where m = p[0] > p[1] > ... > p[k] = 0.
   1.311 + */
   1.312 +mp_err
   1.313 +mp_bmod(const mp_int *a, const unsigned int p[], mp_int *r)
   1.314 +{
   1.315 +    int j, k;
   1.316 +    int n, dN, d0, d1;
   1.317 +    mp_digit zz, *z, tmp;
   1.318 +    mp_size used;
   1.319 +    mp_err res = MP_OKAY;
   1.320 +
   1.321 +    /* The algorithm does the reduction in place in r, 
   1.322 +     * if a != r, copy a into r first so reduction can be done in r
   1.323 +     */
   1.324 +    if (a != r) {
   1.325 +        MP_CHECKOK( mp_copy(a, r) );
   1.326 +    }
   1.327 +    z = MP_DIGITS(r);
   1.328 +
   1.329 +    /* start reduction */
   1.330 +    /*dN = p[0] / MP_DIGIT_BITS; */
   1.331 +    dN = p[0] >> MP_DIGIT_BITS_LOG_2;
   1.332 +    used = MP_USED(r);
   1.333 +
   1.334 +    for (j = used - 1; j > dN;) {
   1.335 +
   1.336 +        zz = z[j];
   1.337 +        if (zz == 0) {
   1.338 +            j--; continue;
   1.339 +        }
   1.340 +        z[j] = 0;
   1.341 +
   1.342 +        for (k = 1; p[k] > 0; k++) {
   1.343 +            /* reducing component t^p[k] */
   1.344 +            n = p[0] - p[k];
   1.345 +            /*d0 = n % MP_DIGIT_BITS;   */
   1.346 +            d0 = n & MP_DIGIT_BITS_MASK;
   1.347 +            d1 = MP_DIGIT_BITS - d0;
   1.348 +            /*n /= MP_DIGIT_BITS; */
   1.349 +            n >>= MP_DIGIT_BITS_LOG_2;
   1.350 +            z[j-n] ^= (zz>>d0);
   1.351 +            if (d0) 
   1.352 +                z[j-n-1] ^= (zz<<d1);
   1.353 +        }
   1.354 +
   1.355 +        /* reducing component t^0 */
   1.356 +        n = dN;  
   1.357 +        /*d0 = p[0] % MP_DIGIT_BITS;*/
   1.358 +        d0 = p[0] & MP_DIGIT_BITS_MASK;
   1.359 +        d1 = MP_DIGIT_BITS - d0;
   1.360 +        z[j-n] ^= (zz >> d0);
   1.361 +        if (d0) 
   1.362 +            z[j-n-1] ^= (zz << d1);
   1.363 +
   1.364 +    }
   1.365 +
   1.366 +    /* final round of reduction */
   1.367 +    while (j == dN) {
   1.368 +
   1.369 +        /* d0 = p[0] % MP_DIGIT_BITS; */
   1.370 +        d0 = p[0] & MP_DIGIT_BITS_MASK;
   1.371 +        zz = z[dN] >> d0;  
   1.372 +        if (zz == 0) break;
   1.373 +        d1 = MP_DIGIT_BITS - d0;
   1.374 +
   1.375 +        /* clear up the top d1 bits */
   1.376 +        if (d0) {
   1.377 +	    z[dN] = (z[dN] << d1) >> d1; 
   1.378 +	} else {
   1.379 +	    z[dN] = 0;
   1.380 +	}
   1.381 +        *z ^= zz; /* reduction t^0 component */
   1.382 +
   1.383 +        for (k = 1; p[k] > 0; k++) {
   1.384 +            /* reducing component t^p[k]*/
   1.385 +            /* n = p[k] / MP_DIGIT_BITS; */
   1.386 +            n = p[k] >> MP_DIGIT_BITS_LOG_2;
   1.387 +            /* d0 = p[k] % MP_DIGIT_BITS; */
   1.388 +            d0 = p[k] & MP_DIGIT_BITS_MASK;
   1.389 +            d1 = MP_DIGIT_BITS - d0;
   1.390 +            z[n] ^= (zz << d0);
   1.391 +            tmp = zz >> d1;
   1.392 +            if (d0 && tmp)
   1.393 +                z[n+1] ^= tmp;
   1.394 +        }
   1.395 +    }
   1.396 +
   1.397 +    s_mp_clamp(r);
   1.398 +CLEANUP:
   1.399 +    return res;
   1.400 +}
   1.401 +
   1.402 +/* Compute the product of two polynomials a and b, reduce modulo p, 
   1.403 + * Store the result in r.  r could be a or b; a could be b.
   1.404 + */
   1.405 +mp_err 
   1.406 +mp_bmulmod(const mp_int *a, const mp_int *b, const unsigned int p[], mp_int *r)
   1.407 +{
   1.408 +    mp_err res;
   1.409 +    
   1.410 +    if (a == b) return mp_bsqrmod(a, p, r);
   1.411 +    if ((res = mp_bmul(a, b, r) ) != MP_OKAY)
   1.412 +	return res;
   1.413 +    return mp_bmod(r, p, r);
   1.414 +}
   1.415 +
   1.416 +/* Compute binary polynomial squaring c = a*a mod p .  
   1.417 + * Parameter r and a can be identical.
   1.418 + */
   1.419 +
   1.420 +mp_err 
   1.421 +mp_bsqrmod(const mp_int *a, const unsigned int p[], mp_int *r)
   1.422 +{
   1.423 +    mp_digit *pa, *pr, a_i;
   1.424 +    mp_int tmp;
   1.425 +    mp_size ia, a_used;
   1.426 +    mp_err res;
   1.427 +
   1.428 +    ARGCHK(a != NULL && r != NULL, MP_BADARG);
   1.429 +    MP_DIGITS(&tmp) = 0;
   1.430 +
   1.431 +    if (a == r) {
   1.432 +        MP_CHECKOK( mp_init_copy(&tmp, a) );
   1.433 +        a = &tmp;
   1.434 +    }
   1.435 +
   1.436 +    MP_USED(r) = 1; MP_DIGIT(r, 0) = 0;
   1.437 +    MP_CHECKOK( s_mp_pad(r, 2*USED(a)) );
   1.438 +
   1.439 +    pa = MP_DIGITS(a);
   1.440 +    pr = MP_DIGITS(r);
   1.441 +    a_used = MP_USED(a);
   1.442 +	MP_USED(r) = 2 * a_used;
   1.443 +
   1.444 +    for (ia = 0; ia < a_used; ia++) {
   1.445 +        a_i = *pa++;
   1.446 +        *pr++ = gf2m_SQR0(a_i);
   1.447 +        *pr++ = gf2m_SQR1(a_i);
   1.448 +    }
   1.449 +
   1.450 +    MP_CHECKOK( mp_bmod(r, p, r) );
   1.451 +    s_mp_clamp(r);
   1.452 +    SIGN(r) = ZPOS;
   1.453 +
   1.454 +CLEANUP:
   1.455 +    mp_clear(&tmp);
   1.456 +    return res;
   1.457 +}
   1.458 +
   1.459 +/* Compute binary polynomial y/x mod p, y divided by x, reduce modulo p.
   1.460 + * Store the result in r. r could be x or y, and x could equal y.
   1.461 + * Uses algorithm Modular_Division_GF(2^m) from 
   1.462 + *     Chang-Shantz, S.  "From Euclid's GCD to Montgomery Multiplication to 
   1.463 + *     the Great Divide".
   1.464 + */
   1.465 +int 
   1.466 +mp_bdivmod(const mp_int *y, const mp_int *x, const mp_int *pp, 
   1.467 +    const unsigned int p[], mp_int *r)
   1.468 +{
   1.469 +    mp_int aa, bb, uu;
   1.470 +    mp_int *a, *b, *u, *v;
   1.471 +    mp_err res = MP_OKAY;
   1.472 +
   1.473 +    MP_DIGITS(&aa) = 0;
   1.474 +    MP_DIGITS(&bb) = 0;
   1.475 +    MP_DIGITS(&uu) = 0;
   1.476 +
   1.477 +    MP_CHECKOK( mp_init_copy(&aa, x) );
   1.478 +    MP_CHECKOK( mp_init_copy(&uu, y) );
   1.479 +    MP_CHECKOK( mp_init_copy(&bb, pp) );
   1.480 +    MP_CHECKOK( s_mp_pad(r, USED(pp)) );
   1.481 +    MP_USED(r) = 1; MP_DIGIT(r, 0) = 0;
   1.482 +
   1.483 +    a = &aa; b= &bb; u=&uu; v=r;
   1.484 +    /* reduce x and y mod p */
   1.485 +    MP_CHECKOK( mp_bmod(a, p, a) );
   1.486 +    MP_CHECKOK( mp_bmod(u, p, u) );
   1.487 +
   1.488 +    while (!mp_isodd(a)) {
   1.489 +        s_mp_div2(a);
   1.490 +        if (mp_isodd(u)) {
   1.491 +            MP_CHECKOK( mp_badd(u, pp, u) );
   1.492 +        }
   1.493 +        s_mp_div2(u);
   1.494 +    }
   1.495 +
   1.496 +    do {
   1.497 +        if (mp_cmp_mag(b, a) > 0) {
   1.498 +            MP_CHECKOK( mp_badd(b, a, b) );
   1.499 +            MP_CHECKOK( mp_badd(v, u, v) );
   1.500 +            do {
   1.501 +                s_mp_div2(b);
   1.502 +                if (mp_isodd(v)) {
   1.503 +                    MP_CHECKOK( mp_badd(v, pp, v) );
   1.504 +                }
   1.505 +                s_mp_div2(v);
   1.506 +            } while (!mp_isodd(b));
   1.507 +        }
   1.508 +        else if ((MP_DIGIT(a,0) == 1) && (MP_USED(a) == 1))
   1.509 +            break;
   1.510 +        else {
   1.511 +            MP_CHECKOK( mp_badd(a, b, a) );
   1.512 +            MP_CHECKOK( mp_badd(u, v, u) );
   1.513 +            do {
   1.514 +                s_mp_div2(a);
   1.515 +                if (mp_isodd(u)) {
   1.516 +                    MP_CHECKOK( mp_badd(u, pp, u) );
   1.517 +                }
   1.518 +                s_mp_div2(u);
   1.519 +            } while (!mp_isodd(a));
   1.520 +        }
   1.521 +    } while (1);
   1.522 +
   1.523 +    MP_CHECKOK( mp_copy(u, r) );
   1.524 +
   1.525 +CLEANUP:
   1.526 +    mp_clear(&aa);
   1.527 +    mp_clear(&bb);
   1.528 +    mp_clear(&uu);
   1.529 +    return res;
   1.530 +
   1.531 +}
   1.532 +
   1.533 +/* Convert the bit-string representation of a polynomial a into an array
   1.534 + * of integers corresponding to the bits with non-zero coefficient.
   1.535 + * Up to max elements of the array will be filled.  Return value is total
   1.536 + * number of coefficients that would be extracted if array was large enough.
   1.537 + */
   1.538 +int
   1.539 +mp_bpoly2arr(const mp_int *a, unsigned int p[], int max)
   1.540 +{
   1.541 +    int i, j, k;
   1.542 +    mp_digit top_bit, mask;
   1.543 +
   1.544 +    top_bit = 1;
   1.545 +    top_bit <<= MP_DIGIT_BIT - 1;
   1.546 +
   1.547 +    for (k = 0; k < max; k++) p[k] = 0;
   1.548 +    k = 0;
   1.549 +
   1.550 +    for (i = MP_USED(a) - 1; i >= 0; i--) {
   1.551 +        mask = top_bit;
   1.552 +        for (j = MP_DIGIT_BIT - 1; j >= 0; j--) {
   1.553 +            if (MP_DIGITS(a)[i] & mask) {
   1.554 +                if (k < max) p[k] = MP_DIGIT_BIT * i + j;
   1.555 +                k++;
   1.556 +            }
   1.557 +            mask >>= 1;
   1.558 +        }
   1.559 +    }
   1.560 +
   1.561 +    return k;
   1.562 +}
   1.563 +
   1.564 +/* Convert the coefficient array representation of a polynomial to a 
   1.565 + * bit-string.  The array must be terminated by 0.
   1.566 + */
   1.567 +mp_err
   1.568 +mp_barr2poly(const unsigned int p[], mp_int *a)
   1.569 +{
   1.570 +
   1.571 +    mp_err res = MP_OKAY;
   1.572 +    int i;
   1.573 +
   1.574 +    mp_zero(a);
   1.575 +    for (i = 0; p[i] > 0; i++) {
   1.576 +	MP_CHECKOK( mpl_set_bit(a, p[i], 1) );
   1.577 +    }
   1.578 +    MP_CHECKOK( mpl_set_bit(a, 0, 1) );
   1.579 +	
   1.580 +CLEANUP:
   1.581 +    return res;
   1.582 +}

mercurial