security/nss/lib/freebl/mpi/mp_gf2m.c

Wed, 31 Dec 2014 06:09:35 +0100

author
Michael Schloh von Bennewitz <michael@schloh.com>
date
Wed, 31 Dec 2014 06:09:35 +0100
changeset 0
6474c204b198
permissions
-rw-r--r--

Cloned upstream origin tor-browser at tor-browser-31.3.0esr-4.5-1-build1
revision ID fc1c9ff7c1b2defdbc039f12214767608f46423f for hacking purpose.

     1 /* This Source Code Form is subject to the terms of the Mozilla Public
     2  * License, v. 2.0. If a copy of the MPL was not distributed with this
     3  * file, You can obtain one at http://mozilla.org/MPL/2.0/. */
     5 #include "mp_gf2m.h"
     6 #include "mp_gf2m-priv.h"
     7 #include "mplogic.h"
     8 #include "mpi-priv.h"
    10 const mp_digit mp_gf2m_sqr_tb[16] =
    11 {
    12       0,     1,     4,     5,    16,    17,    20,    21,
    13      64,    65,    68,    69,    80,    81,    84,    85
    14 };
    16 /* Multiply two binary polynomials mp_digits a, b.
    17  * Result is a polynomial with degree < 2 * MP_DIGIT_BITS - 1.
    18  * Output in two mp_digits rh, rl.
    19  */
    20 #if MP_DIGIT_BITS == 32
    21 void 
    22 s_bmul_1x1(mp_digit *rh, mp_digit *rl, const mp_digit a, const mp_digit b)
    23 {
    24     register mp_digit h, l, s;
    25     mp_digit tab[8], top2b = a >> 30; 
    26     register mp_digit a1, a2, a4;
    28     a1 = a & (0x3FFFFFFF); a2 = a1 << 1; a4 = a2 << 1;
    30     tab[0] =  0; tab[1] = a1;    tab[2] = a2;    tab[3] = a1^a2;
    31     tab[4] = a4; tab[5] = a1^a4; tab[6] = a2^a4; tab[7] = a1^a2^a4;
    33     s = tab[b       & 0x7]; l  = s;
    34     s = tab[b >>  3 & 0x7]; l ^= s <<  3; h  = s >> 29;
    35     s = tab[b >>  6 & 0x7]; l ^= s <<  6; h ^= s >> 26;
    36     s = tab[b >>  9 & 0x7]; l ^= s <<  9; h ^= s >> 23;
    37     s = tab[b >> 12 & 0x7]; l ^= s << 12; h ^= s >> 20;
    38     s = tab[b >> 15 & 0x7]; l ^= s << 15; h ^= s >> 17;
    39     s = tab[b >> 18 & 0x7]; l ^= s << 18; h ^= s >> 14;
    40     s = tab[b >> 21 & 0x7]; l ^= s << 21; h ^= s >> 11;
    41     s = tab[b >> 24 & 0x7]; l ^= s << 24; h ^= s >>  8;
    42     s = tab[b >> 27 & 0x7]; l ^= s << 27; h ^= s >>  5;
    43     s = tab[b >> 30      ]; l ^= s << 30; h ^= s >>  2;
    45     /* compensate for the top two bits of a */
    47     if (top2b & 01) { l ^= b << 30; h ^= b >> 2; } 
    48     if (top2b & 02) { l ^= b << 31; h ^= b >> 1; } 
    50     *rh = h; *rl = l;
    51 } 
    52 #else
    53 void 
    54 s_bmul_1x1(mp_digit *rh, mp_digit *rl, const mp_digit a, const mp_digit b)
    55 {
    56     register mp_digit h, l, s;
    57     mp_digit tab[16], top3b = a >> 61;
    58     register mp_digit a1, a2, a4, a8;
    60     a1 = a & (0x1FFFFFFFFFFFFFFFULL); a2 = a1 << 1; 
    61     a4 = a2 << 1; a8 = a4 << 1;
    62     tab[ 0] = 0;     tab[ 1] = a1;       tab[ 2] = a2;       tab[ 3] = a1^a2;
    63     tab[ 4] = a4;    tab[ 5] = a1^a4;    tab[ 6] = a2^a4;    tab[ 7] = a1^a2^a4;
    64     tab[ 8] = a8;    tab[ 9] = a1^a8;    tab[10] = a2^a8;    tab[11] = a1^a2^a8;
    65     tab[12] = a4^a8; tab[13] = a1^a4^a8; tab[14] = a2^a4^a8; tab[15] = a1^a2^a4^a8;
    67     s = tab[b       & 0xF]; l  = s;
    68     s = tab[b >>  4 & 0xF]; l ^= s <<  4; h  = s >> 60;
    69     s = tab[b >>  8 & 0xF]; l ^= s <<  8; h ^= s >> 56;
    70     s = tab[b >> 12 & 0xF]; l ^= s << 12; h ^= s >> 52;
    71     s = tab[b >> 16 & 0xF]; l ^= s << 16; h ^= s >> 48;
    72     s = tab[b >> 20 & 0xF]; l ^= s << 20; h ^= s >> 44;
    73     s = tab[b >> 24 & 0xF]; l ^= s << 24; h ^= s >> 40;
    74     s = tab[b >> 28 & 0xF]; l ^= s << 28; h ^= s >> 36;
    75     s = tab[b >> 32 & 0xF]; l ^= s << 32; h ^= s >> 32;
    76     s = tab[b >> 36 & 0xF]; l ^= s << 36; h ^= s >> 28;
    77     s = tab[b >> 40 & 0xF]; l ^= s << 40; h ^= s >> 24;
    78     s = tab[b >> 44 & 0xF]; l ^= s << 44; h ^= s >> 20;
    79     s = tab[b >> 48 & 0xF]; l ^= s << 48; h ^= s >> 16;
    80     s = tab[b >> 52 & 0xF]; l ^= s << 52; h ^= s >> 12;
    81     s = tab[b >> 56 & 0xF]; l ^= s << 56; h ^= s >>  8;
    82     s = tab[b >> 60      ]; l ^= s << 60; h ^= s >>  4;
    84     /* compensate for the top three bits of a */
    86     if (top3b & 01) { l ^= b << 61; h ^= b >> 3; } 
    87     if (top3b & 02) { l ^= b << 62; h ^= b >> 2; } 
    88     if (top3b & 04) { l ^= b << 63; h ^= b >> 1; } 
    90     *rh = h; *rl = l;
    91 } 
    92 #endif
    94 /* Compute xor-multiply of two binary polynomials  (a1, a0) x (b1, b0)  
    95  * result is a binary polynomial in 4 mp_digits r[4].
    96  * The caller MUST ensure that r has the right amount of space allocated.
    97  */
    98 void 
    99 s_bmul_2x2(mp_digit *r, const mp_digit a1, const mp_digit a0, const mp_digit b1,
   100            const mp_digit b0)
   101 {
   102     mp_digit m1, m0;
   103     /* r[3] = h1, r[2] = h0; r[1] = l1; r[0] = l0 */
   104     s_bmul_1x1(r+3, r+2, a1, b1);
   105     s_bmul_1x1(r+1, r, a0, b0);
   106     s_bmul_1x1(&m1, &m0, a0 ^ a1, b0 ^ b1);
   107     /* Correction on m1 ^= l1 ^ h1; m0 ^= l0 ^ h0; */
   108     r[2] ^= m1 ^ r[1] ^ r[3];  /* h0 ^= m1 ^ l1 ^ h1; */
   109     r[1]  = r[3] ^ r[2] ^ r[0] ^ m1 ^ m0;  /* l1 ^= l0 ^ h0 ^ m0; */
   110 }
   112 /* Compute xor-multiply of two binary polynomials  (a2, a1, a0) x (b2, b1, b0)  
   113  * result is a binary polynomial in 6 mp_digits r[6].
   114  * The caller MUST ensure that r has the right amount of space allocated.
   115  */
   116 void 
   117 s_bmul_3x3(mp_digit *r, const mp_digit a2, const mp_digit a1, const mp_digit a0, 
   118 	const mp_digit b2, const mp_digit b1, const mp_digit b0)
   119 {
   120 	mp_digit zm[4];
   122 	s_bmul_1x1(r+5, r+4, a2, b2);         /* fill top 2 words */
   123 	s_bmul_2x2(zm, a1, a2^a0, b1, b2^b0); /* fill middle 4 words */
   124 	s_bmul_2x2(r, a1, a0, b1, b0);        /* fill bottom 4 words */
   126 	zm[3] ^= r[3];
   127 	zm[2] ^= r[2]; 
   128 	zm[1] ^= r[1] ^ r[5];
   129 	zm[0] ^= r[0] ^ r[4];
   131 	r[5]  ^= zm[3];
   132 	r[4]  ^= zm[2];
   133 	r[3]  ^= zm[1];
   134 	r[2]  ^= zm[0];
   135 }
   137 /* Compute xor-multiply of two binary polynomials  (a3, a2, a1, a0) x (b3, b2, b1, b0)  
   138  * result is a binary polynomial in 8 mp_digits r[8].
   139  * The caller MUST ensure that r has the right amount of space allocated.
   140  */
   141 void s_bmul_4x4(mp_digit *r, const mp_digit a3, const mp_digit a2, const mp_digit a1, 
   142 	const mp_digit a0, const mp_digit b3, const mp_digit b2, const mp_digit b1, 
   143 	const mp_digit b0)
   144 {
   145 	mp_digit zm[4];
   147 	s_bmul_2x2(r+4, a3, a2, b3, b2);            /* fill top 4 words */
   148 	s_bmul_2x2(zm, a3^a1, a2^a0, b3^b1, b2^b0); /* fill middle 4 words */
   149 	s_bmul_2x2(r, a1, a0, b1, b0);              /* fill bottom 4 words */
   151 	zm[3] ^= r[3] ^ r[7]; 
   152 	zm[2] ^= r[2] ^ r[6]; 
   153 	zm[1] ^= r[1] ^ r[5]; 
   154 	zm[0] ^= r[0] ^ r[4]; 
   156 	r[5]  ^= zm[3];    
   157 	r[4]  ^= zm[2];
   158 	r[3]  ^= zm[1];    
   159 	r[2]  ^= zm[0];
   160 }
   162 /* Compute addition of two binary polynomials a and b,
   163  * store result in c; c could be a or b, a and b could be equal; 
   164  * c is the bitwise XOR of a and b.
   165  */
   166 mp_err
   167 mp_badd(const mp_int *a, const mp_int *b, mp_int *c)
   168 {
   169     mp_digit *pa, *pb, *pc;
   170     mp_size ix;
   171     mp_size used_pa, used_pb;
   172     mp_err res = MP_OKAY;
   174     /* Add all digits up to the precision of b.  If b had more
   175      * precision than a initially, swap a, b first
   176      */
   177     if (MP_USED(a) >= MP_USED(b)) {
   178         pa = MP_DIGITS(a);
   179         pb = MP_DIGITS(b);
   180         used_pa = MP_USED(a);
   181         used_pb = MP_USED(b);
   182     } else {
   183         pa = MP_DIGITS(b);
   184         pb = MP_DIGITS(a);
   185         used_pa = MP_USED(b);
   186         used_pb = MP_USED(a);
   187     }
   189     /* Make sure c has enough precision for the output value */
   190     MP_CHECKOK( s_mp_pad(c, used_pa) );
   192     /* Do word-by-word xor */
   193     pc = MP_DIGITS(c);
   194     for (ix = 0; ix < used_pb; ix++) {
   195         (*pc++) = (*pa++) ^ (*pb++);
   196     }
   198     /* Finish the rest of digits until we're actually done */
   199     for (; ix < used_pa; ++ix) {
   200         *pc++ = *pa++;
   201     }
   203     MP_USED(c) = used_pa;
   204     MP_SIGN(c) = ZPOS;
   205     s_mp_clamp(c);
   207 CLEANUP:
   208     return res;
   209 } 
   211 #define s_mp_div2(a) MP_CHECKOK( mpl_rsh((a), (a), 1) );
   213 /* Compute binary polynomial multiply d = a * b */
   214 static void 
   215 s_bmul_d(const mp_digit *a, mp_size a_len, mp_digit b, mp_digit *d)
   216 {
   217     mp_digit a_i, a0b0, a1b1, carry = 0;
   218     while (a_len--) {
   219         a_i = *a++;
   220         s_bmul_1x1(&a1b1, &a0b0, a_i, b);
   221         *d++ = a0b0 ^ carry;
   222         carry = a1b1;
   223     }
   224     *d = carry;
   225 }
   227 /* Compute binary polynomial xor multiply accumulate d ^= a * b */
   228 static void 
   229 s_bmul_d_add(const mp_digit *a, mp_size a_len, mp_digit b, mp_digit *d)
   230 {
   231     mp_digit a_i, a0b0, a1b1, carry = 0;
   232     while (a_len--) {
   233         a_i = *a++;
   234         s_bmul_1x1(&a1b1, &a0b0, a_i, b);
   235         *d++ ^= a0b0 ^ carry;
   236         carry = a1b1;
   237     }
   238     *d ^= carry;
   239 }
   241 /* Compute binary polynomial xor multiply c = a * b.  
   242  * All parameters may be identical.
   243  */
   244 mp_err 
   245 mp_bmul(const mp_int *a, const mp_int *b, mp_int *c)
   246 {
   247     mp_digit *pb, b_i;
   248     mp_int tmp;
   249     mp_size ib, a_used, b_used;
   250     mp_err res = MP_OKAY;
   252     MP_DIGITS(&tmp) = 0;
   254     ARGCHK(a != NULL && b != NULL && c != NULL, MP_BADARG);
   256     if (a == c) {
   257         MP_CHECKOK( mp_init_copy(&tmp, a) );
   258         if (a == b)
   259             b = &tmp;
   260         a = &tmp;
   261     } else if (b == c) {
   262         MP_CHECKOK( mp_init_copy(&tmp, b) );
   263         b = &tmp;
   264     }
   266     if (MP_USED(a) < MP_USED(b)) {
   267         const mp_int *xch = b;      /* switch a and b if b longer */
   268         b = a;
   269         a = xch;
   270     }
   272     MP_USED(c) = 1; MP_DIGIT(c, 0) = 0;
   273     MP_CHECKOK( s_mp_pad(c, USED(a) + USED(b)) );
   275     pb = MP_DIGITS(b);
   276     s_bmul_d(MP_DIGITS(a), MP_USED(a), *pb++, MP_DIGITS(c));
   278     /* Outer loop:  Digits of b */
   279     a_used = MP_USED(a);
   280     b_used = MP_USED(b);
   281 	MP_USED(c) = a_used + b_used;
   282     for (ib = 1; ib < b_used; ib++) {
   283         b_i = *pb++;
   285         /* Inner product:  Digits of a */
   286         if (b_i)
   287             s_bmul_d_add(MP_DIGITS(a), a_used, b_i, MP_DIGITS(c) + ib);
   288         else
   289             MP_DIGIT(c, ib + a_used) = b_i;
   290     }
   292     s_mp_clamp(c);
   294     SIGN(c) = ZPOS;
   296 CLEANUP:
   297     mp_clear(&tmp);
   298     return res;
   299 }
   302 /* Compute modular reduction of a and store result in r.  
   303  * r could be a. 
   304  * For modular arithmetic, the irreducible polynomial f(t) is represented 
   305  * as an array of int[], where f(t) is of the form: 
   306  *     f(t) = t^p[0] + t^p[1] + ... + t^p[k]
   307  * where m = p[0] > p[1] > ... > p[k] = 0.
   308  */
   309 mp_err
   310 mp_bmod(const mp_int *a, const unsigned int p[], mp_int *r)
   311 {
   312     int j, k;
   313     int n, dN, d0, d1;
   314     mp_digit zz, *z, tmp;
   315     mp_size used;
   316     mp_err res = MP_OKAY;
   318     /* The algorithm does the reduction in place in r, 
   319      * if a != r, copy a into r first so reduction can be done in r
   320      */
   321     if (a != r) {
   322         MP_CHECKOK( mp_copy(a, r) );
   323     }
   324     z = MP_DIGITS(r);
   326     /* start reduction */
   327     /*dN = p[0] / MP_DIGIT_BITS; */
   328     dN = p[0] >> MP_DIGIT_BITS_LOG_2;
   329     used = MP_USED(r);
   331     for (j = used - 1; j > dN;) {
   333         zz = z[j];
   334         if (zz == 0) {
   335             j--; continue;
   336         }
   337         z[j] = 0;
   339         for (k = 1; p[k] > 0; k++) {
   340             /* reducing component t^p[k] */
   341             n = p[0] - p[k];
   342             /*d0 = n % MP_DIGIT_BITS;   */
   343             d0 = n & MP_DIGIT_BITS_MASK;
   344             d1 = MP_DIGIT_BITS - d0;
   345             /*n /= MP_DIGIT_BITS; */
   346             n >>= MP_DIGIT_BITS_LOG_2;
   347             z[j-n] ^= (zz>>d0);
   348             if (d0) 
   349                 z[j-n-1] ^= (zz<<d1);
   350         }
   352         /* reducing component t^0 */
   353         n = dN;  
   354         /*d0 = p[0] % MP_DIGIT_BITS;*/
   355         d0 = p[0] & MP_DIGIT_BITS_MASK;
   356         d1 = MP_DIGIT_BITS - d0;
   357         z[j-n] ^= (zz >> d0);
   358         if (d0) 
   359             z[j-n-1] ^= (zz << d1);
   361     }
   363     /* final round of reduction */
   364     while (j == dN) {
   366         /* d0 = p[0] % MP_DIGIT_BITS; */
   367         d0 = p[0] & MP_DIGIT_BITS_MASK;
   368         zz = z[dN] >> d0;  
   369         if (zz == 0) break;
   370         d1 = MP_DIGIT_BITS - d0;
   372         /* clear up the top d1 bits */
   373         if (d0) {
   374 	    z[dN] = (z[dN] << d1) >> d1; 
   375 	} else {
   376 	    z[dN] = 0;
   377 	}
   378         *z ^= zz; /* reduction t^0 component */
   380         for (k = 1; p[k] > 0; k++) {
   381             /* reducing component t^p[k]*/
   382             /* n = p[k] / MP_DIGIT_BITS; */
   383             n = p[k] >> MP_DIGIT_BITS_LOG_2;
   384             /* d0 = p[k] % MP_DIGIT_BITS; */
   385             d0 = p[k] & MP_DIGIT_BITS_MASK;
   386             d1 = MP_DIGIT_BITS - d0;
   387             z[n] ^= (zz << d0);
   388             tmp = zz >> d1;
   389             if (d0 && tmp)
   390                 z[n+1] ^= tmp;
   391         }
   392     }
   394     s_mp_clamp(r);
   395 CLEANUP:
   396     return res;
   397 }
   399 /* Compute the product of two polynomials a and b, reduce modulo p, 
   400  * Store the result in r.  r could be a or b; a could be b.
   401  */
   402 mp_err 
   403 mp_bmulmod(const mp_int *a, const mp_int *b, const unsigned int p[], mp_int *r)
   404 {
   405     mp_err res;
   407     if (a == b) return mp_bsqrmod(a, p, r);
   408     if ((res = mp_bmul(a, b, r) ) != MP_OKAY)
   409 	return res;
   410     return mp_bmod(r, p, r);
   411 }
   413 /* Compute binary polynomial squaring c = a*a mod p .  
   414  * Parameter r and a can be identical.
   415  */
   417 mp_err 
   418 mp_bsqrmod(const mp_int *a, const unsigned int p[], mp_int *r)
   419 {
   420     mp_digit *pa, *pr, a_i;
   421     mp_int tmp;
   422     mp_size ia, a_used;
   423     mp_err res;
   425     ARGCHK(a != NULL && r != NULL, MP_BADARG);
   426     MP_DIGITS(&tmp) = 0;
   428     if (a == r) {
   429         MP_CHECKOK( mp_init_copy(&tmp, a) );
   430         a = &tmp;
   431     }
   433     MP_USED(r) = 1; MP_DIGIT(r, 0) = 0;
   434     MP_CHECKOK( s_mp_pad(r, 2*USED(a)) );
   436     pa = MP_DIGITS(a);
   437     pr = MP_DIGITS(r);
   438     a_used = MP_USED(a);
   439 	MP_USED(r) = 2 * a_used;
   441     for (ia = 0; ia < a_used; ia++) {
   442         a_i = *pa++;
   443         *pr++ = gf2m_SQR0(a_i);
   444         *pr++ = gf2m_SQR1(a_i);
   445     }
   447     MP_CHECKOK( mp_bmod(r, p, r) );
   448     s_mp_clamp(r);
   449     SIGN(r) = ZPOS;
   451 CLEANUP:
   452     mp_clear(&tmp);
   453     return res;
   454 }
   456 /* Compute binary polynomial y/x mod p, y divided by x, reduce modulo p.
   457  * Store the result in r. r could be x or y, and x could equal y.
   458  * Uses algorithm Modular_Division_GF(2^m) from 
   459  *     Chang-Shantz, S.  "From Euclid's GCD to Montgomery Multiplication to 
   460  *     the Great Divide".
   461  */
   462 int 
   463 mp_bdivmod(const mp_int *y, const mp_int *x, const mp_int *pp, 
   464     const unsigned int p[], mp_int *r)
   465 {
   466     mp_int aa, bb, uu;
   467     mp_int *a, *b, *u, *v;
   468     mp_err res = MP_OKAY;
   470     MP_DIGITS(&aa) = 0;
   471     MP_DIGITS(&bb) = 0;
   472     MP_DIGITS(&uu) = 0;
   474     MP_CHECKOK( mp_init_copy(&aa, x) );
   475     MP_CHECKOK( mp_init_copy(&uu, y) );
   476     MP_CHECKOK( mp_init_copy(&bb, pp) );
   477     MP_CHECKOK( s_mp_pad(r, USED(pp)) );
   478     MP_USED(r) = 1; MP_DIGIT(r, 0) = 0;
   480     a = &aa; b= &bb; u=&uu; v=r;
   481     /* reduce x and y mod p */
   482     MP_CHECKOK( mp_bmod(a, p, a) );
   483     MP_CHECKOK( mp_bmod(u, p, u) );
   485     while (!mp_isodd(a)) {
   486         s_mp_div2(a);
   487         if (mp_isodd(u)) {
   488             MP_CHECKOK( mp_badd(u, pp, u) );
   489         }
   490         s_mp_div2(u);
   491     }
   493     do {
   494         if (mp_cmp_mag(b, a) > 0) {
   495             MP_CHECKOK( mp_badd(b, a, b) );
   496             MP_CHECKOK( mp_badd(v, u, v) );
   497             do {
   498                 s_mp_div2(b);
   499                 if (mp_isodd(v)) {
   500                     MP_CHECKOK( mp_badd(v, pp, v) );
   501                 }
   502                 s_mp_div2(v);
   503             } while (!mp_isodd(b));
   504         }
   505         else if ((MP_DIGIT(a,0) == 1) && (MP_USED(a) == 1))
   506             break;
   507         else {
   508             MP_CHECKOK( mp_badd(a, b, a) );
   509             MP_CHECKOK( mp_badd(u, v, u) );
   510             do {
   511                 s_mp_div2(a);
   512                 if (mp_isodd(u)) {
   513                     MP_CHECKOK( mp_badd(u, pp, u) );
   514                 }
   515                 s_mp_div2(u);
   516             } while (!mp_isodd(a));
   517         }
   518     } while (1);
   520     MP_CHECKOK( mp_copy(u, r) );
   522 CLEANUP:
   523     mp_clear(&aa);
   524     mp_clear(&bb);
   525     mp_clear(&uu);
   526     return res;
   528 }
   530 /* Convert the bit-string representation of a polynomial a into an array
   531  * of integers corresponding to the bits with non-zero coefficient.
   532  * Up to max elements of the array will be filled.  Return value is total
   533  * number of coefficients that would be extracted if array was large enough.
   534  */
   535 int
   536 mp_bpoly2arr(const mp_int *a, unsigned int p[], int max)
   537 {
   538     int i, j, k;
   539     mp_digit top_bit, mask;
   541     top_bit = 1;
   542     top_bit <<= MP_DIGIT_BIT - 1;
   544     for (k = 0; k < max; k++) p[k] = 0;
   545     k = 0;
   547     for (i = MP_USED(a) - 1; i >= 0; i--) {
   548         mask = top_bit;
   549         for (j = MP_DIGIT_BIT - 1; j >= 0; j--) {
   550             if (MP_DIGITS(a)[i] & mask) {
   551                 if (k < max) p[k] = MP_DIGIT_BIT * i + j;
   552                 k++;
   553             }
   554             mask >>= 1;
   555         }
   556     }
   558     return k;
   559 }
   561 /* Convert the coefficient array representation of a polynomial to a 
   562  * bit-string.  The array must be terminated by 0.
   563  */
   564 mp_err
   565 mp_barr2poly(const unsigned int p[], mp_int *a)
   566 {
   568     mp_err res = MP_OKAY;
   569     int i;
   571     mp_zero(a);
   572     for (i = 0; p[i] > 0; i++) {
   573 	MP_CHECKOK( mpl_set_bit(a, p[i], 1) );
   574     }
   575     MP_CHECKOK( mpl_set_bit(a, 0, 1) );
   577 CLEANUP:
   578     return res;
   579 }

mercurial