gfx/skia/trunk/src/pathops/SkPathOpsCubic.cpp

Sat, 03 Jan 2015 20:18:00 +0100

author
Michael Schloh von Bennewitz <michael@schloh.com>
date
Sat, 03 Jan 2015 20:18:00 +0100
branch
TOR_BUG_3246
changeset 7
129ffea94266
permissions
-rw-r--r--

Conditionally enable double key logic according to:
private browsing mode or privacy.thirdparty.isolate preference and
implement in GetCookieStringCommon and FindCookie where it counts...
With some reservations of how to convince FindCookie users to test
condition and pass a nullptr when disabling double key logic.

     1 /*
     2  * Copyright 2012 Google Inc.
     3  *
     4  * Use of this source code is governed by a BSD-style license that can be
     5  * found in the LICENSE file.
     6  */
     7 #include "SkLineParameters.h"
     8 #include "SkPathOpsCubic.h"
     9 #include "SkPathOpsLine.h"
    10 #include "SkPathOpsQuad.h"
    11 #include "SkPathOpsRect.h"
    13 const int SkDCubic::gPrecisionUnit = 256;  // FIXME: test different values in test framework
    15 // FIXME: cache keep the bounds and/or precision with the caller?
    16 double SkDCubic::calcPrecision() const {
    17     SkDRect dRect;
    18     dRect.setBounds(*this);  // OPTIMIZATION: just use setRawBounds ?
    19     double width = dRect.fRight - dRect.fLeft;
    20     double height = dRect.fBottom - dRect.fTop;
    21     return (width > height ? width : height) / gPrecisionUnit;
    22 }
    24 bool SkDCubic::clockwise() const {
    25     double sum = (fPts[0].fX - fPts[3].fX) * (fPts[0].fY + fPts[3].fY);
    26     for (int idx = 0; idx < 3; ++idx) {
    27         sum += (fPts[idx + 1].fX - fPts[idx].fX) * (fPts[idx + 1].fY + fPts[idx].fY);
    28     }
    29     return sum <= 0;
    30 }
    32 void SkDCubic::Coefficients(const double* src, double* A, double* B, double* C, double* D) {
    33     *A = src[6];  // d
    34     *B = src[4] * 3;  // 3*c
    35     *C = src[2] * 3;  // 3*b
    36     *D = src[0];  // a
    37     *A -= *D - *C + *B;     // A =   -a + 3*b - 3*c + d
    38     *B += 3 * *D - 2 * *C;  // B =  3*a - 6*b + 3*c
    39     *C -= 3 * *D;           // C = -3*a + 3*b
    40 }
    42 bool SkDCubic::controlsContainedByEnds() const {
    43     SkDVector startTan = fPts[1] - fPts[0];
    44     if (startTan.fX == 0 && startTan.fY == 0) {
    45         startTan = fPts[2] - fPts[0];
    46     }
    47     SkDVector endTan = fPts[2] - fPts[3];
    48     if (endTan.fX == 0 && endTan.fY == 0) {
    49         endTan = fPts[1] - fPts[3];
    50     }
    51     if (startTan.dot(endTan) >= 0) {
    52         return false;
    53     }
    54     SkDLine startEdge = {{fPts[0], fPts[0]}};
    55     startEdge[1].fX -= startTan.fY;
    56     startEdge[1].fY += startTan.fX;
    57     SkDLine endEdge = {{fPts[3], fPts[3]}};
    58     endEdge[1].fX -= endTan.fY;
    59     endEdge[1].fY += endTan.fX;
    60     double leftStart1 = startEdge.isLeft(fPts[1]);
    61     if (leftStart1 * startEdge.isLeft(fPts[2]) < 0) {
    62         return false;
    63     }
    64     double leftEnd1 = endEdge.isLeft(fPts[1]);
    65     if (leftEnd1 * endEdge.isLeft(fPts[2]) < 0) {
    66         return false;
    67     }
    68     return leftStart1 * leftEnd1 >= 0;
    69 }
    71 bool SkDCubic::endsAreExtremaInXOrY() const {
    72     return (between(fPts[0].fX, fPts[1].fX, fPts[3].fX)
    73             && between(fPts[0].fX, fPts[2].fX, fPts[3].fX))
    74             || (between(fPts[0].fY, fPts[1].fY, fPts[3].fY)
    75             && between(fPts[0].fY, fPts[2].fY, fPts[3].fY));
    76 }
    78 bool SkDCubic::isLinear(int startIndex, int endIndex) const {
    79     SkLineParameters lineParameters;
    80     lineParameters.cubicEndPoints(*this, startIndex, endIndex);
    81     // FIXME: maybe it's possible to avoid this and compare non-normalized
    82     lineParameters.normalize();
    83     double distance = lineParameters.controlPtDistance(*this, 1);
    84     if (!approximately_zero(distance)) {
    85         return false;
    86     }
    87     distance = lineParameters.controlPtDistance(*this, 2);
    88     return approximately_zero(distance);
    89 }
    91 bool SkDCubic::monotonicInY() const {
    92     return between(fPts[0].fY, fPts[1].fY, fPts[3].fY)
    93             && between(fPts[0].fY, fPts[2].fY, fPts[3].fY);
    94 }
    96 bool SkDCubic::serpentine() const {
    97     if (!controlsContainedByEnds()) {
    98         return false;
    99     }
   100     double wiggle = (fPts[0].fX - fPts[2].fX) * (fPts[0].fY + fPts[2].fY);
   101     for (int idx = 0; idx < 2; ++idx) {
   102         wiggle += (fPts[idx + 1].fX - fPts[idx].fX) * (fPts[idx + 1].fY + fPts[idx].fY);
   103     }
   104     double waggle = (fPts[1].fX - fPts[3].fX) * (fPts[1].fY + fPts[3].fY);
   105     for (int idx = 1; idx < 3; ++idx) {
   106         waggle += (fPts[idx + 1].fX - fPts[idx].fX) * (fPts[idx + 1].fY + fPts[idx].fY);
   107     }
   108     return wiggle * waggle < 0;
   109 }
   111 // cubic roots
   113 static const double PI = 3.141592653589793;
   115 // from SkGeometry.cpp (and Numeric Solutions, 5.6)
   116 int SkDCubic::RootsValidT(double A, double B, double C, double D, double t[3]) {
   117     double s[3];
   118     int realRoots = RootsReal(A, B, C, D, s);
   119     int foundRoots = SkDQuad::AddValidTs(s, realRoots, t);
   120     return foundRoots;
   121 }
   123 int SkDCubic::RootsReal(double A, double B, double C, double D, double s[3]) {
   124 #ifdef SK_DEBUG
   125     // create a string mathematica understands
   126     // GDB set print repe 15 # if repeated digits is a bother
   127     //     set print elements 400 # if line doesn't fit
   128     char str[1024];
   129     sk_bzero(str, sizeof(str));
   130     SK_SNPRINTF(str, sizeof(str), "Solve[%1.19g x^3 + %1.19g x^2 + %1.19g x + %1.19g == 0, x]",
   131             A, B, C, D);
   132     SkPathOpsDebug::MathematicaIze(str, sizeof(str));
   133 #if ONE_OFF_DEBUG && ONE_OFF_DEBUG_MATHEMATICA
   134     SkDebugf("%s\n", str);
   135 #endif
   136 #endif
   137     if (approximately_zero(A)
   138             && approximately_zero_when_compared_to(A, B)
   139             && approximately_zero_when_compared_to(A, C)
   140             && approximately_zero_when_compared_to(A, D)) {  // we're just a quadratic
   141         return SkDQuad::RootsReal(B, C, D, s);
   142     }
   143     if (approximately_zero_when_compared_to(D, A)
   144             && approximately_zero_when_compared_to(D, B)
   145             && approximately_zero_when_compared_to(D, C)) {  // 0 is one root
   146         int num = SkDQuad::RootsReal(A, B, C, s);
   147         for (int i = 0; i < num; ++i) {
   148             if (approximately_zero(s[i])) {
   149                 return num;
   150             }
   151         }
   152         s[num++] = 0;
   153         return num;
   154     }
   155     if (approximately_zero(A + B + C + D)) {  // 1 is one root
   156         int num = SkDQuad::RootsReal(A, A + B, -D, s);
   157         for (int i = 0; i < num; ++i) {
   158             if (AlmostDequalUlps(s[i], 1)) {
   159                 return num;
   160             }
   161         }
   162         s[num++] = 1;
   163         return num;
   164     }
   165     double a, b, c;
   166     {
   167         double invA = 1 / A;
   168         a = B * invA;
   169         b = C * invA;
   170         c = D * invA;
   171     }
   172     double a2 = a * a;
   173     double Q = (a2 - b * 3) / 9;
   174     double R = (2 * a2 * a - 9 * a * b + 27 * c) / 54;
   175     double R2 = R * R;
   176     double Q3 = Q * Q * Q;
   177     double R2MinusQ3 = R2 - Q3;
   178     double adiv3 = a / 3;
   179     double r;
   180     double* roots = s;
   181     if (R2MinusQ3 < 0) {   // we have 3 real roots
   182         double theta = acos(R / sqrt(Q3));
   183         double neg2RootQ = -2 * sqrt(Q);
   185         r = neg2RootQ * cos(theta / 3) - adiv3;
   186         *roots++ = r;
   188         r = neg2RootQ * cos((theta + 2 * PI) / 3) - adiv3;
   189         if (!AlmostDequalUlps(s[0], r)) {
   190             *roots++ = r;
   191         }
   192         r = neg2RootQ * cos((theta - 2 * PI) / 3) - adiv3;
   193         if (!AlmostDequalUlps(s[0], r) && (roots - s == 1 || !AlmostDequalUlps(s[1], r))) {
   194             *roots++ = r;
   195         }
   196     } else {  // we have 1 real root
   197         double sqrtR2MinusQ3 = sqrt(R2MinusQ3);
   198         double A = fabs(R) + sqrtR2MinusQ3;
   199         A = SkDCubeRoot(A);
   200         if (R > 0) {
   201             A = -A;
   202         }
   203         if (A != 0) {
   204             A += Q / A;
   205         }
   206         r = A - adiv3;
   207         *roots++ = r;
   208         if (AlmostDequalUlps(R2, Q3)) {
   209             r = -A / 2 - adiv3;
   210             if (!AlmostDequalUlps(s[0], r)) {
   211                 *roots++ = r;
   212             }
   213         }
   214     }
   215     return static_cast<int>(roots - s);
   216 }
   218 // from http://www.cs.sunysb.edu/~qin/courses/geometry/4.pdf
   219 // c(t)  = a(1-t)^3 + 3bt(1-t)^2 + 3c(1-t)t^2 + dt^3
   220 // c'(t) = -3a(1-t)^2 + 3b((1-t)^2 - 2t(1-t)) + 3c(2t(1-t) - t^2) + 3dt^2
   221 //       = 3(b-a)(1-t)^2 + 6(c-b)t(1-t) + 3(d-c)t^2
   222 static double derivative_at_t(const double* src, double t) {
   223     double one_t = 1 - t;
   224     double a = src[0];
   225     double b = src[2];
   226     double c = src[4];
   227     double d = src[6];
   228     return 3 * ((b - a) * one_t * one_t + 2 * (c - b) * t * one_t + (d - c) * t * t);
   229 }
   231 // OPTIMIZE? compute t^2, t(1-t), and (1-t)^2 and pass them to another version of derivative at t?
   232 SkDVector SkDCubic::dxdyAtT(double t) const {
   233     SkDVector result = { derivative_at_t(&fPts[0].fX, t), derivative_at_t(&fPts[0].fY, t) };
   234     return result;
   235 }
   237 // OPTIMIZE? share code with formulate_F1DotF2
   238 int SkDCubic::findInflections(double tValues[]) const {
   239     double Ax = fPts[1].fX - fPts[0].fX;
   240     double Ay = fPts[1].fY - fPts[0].fY;
   241     double Bx = fPts[2].fX - 2 * fPts[1].fX + fPts[0].fX;
   242     double By = fPts[2].fY - 2 * fPts[1].fY + fPts[0].fY;
   243     double Cx = fPts[3].fX + 3 * (fPts[1].fX - fPts[2].fX) - fPts[0].fX;
   244     double Cy = fPts[3].fY + 3 * (fPts[1].fY - fPts[2].fY) - fPts[0].fY;
   245     return SkDQuad::RootsValidT(Bx * Cy - By * Cx, Ax * Cy - Ay * Cx, Ax * By - Ay * Bx, tValues);
   246 }
   248 static void formulate_F1DotF2(const double src[], double coeff[4]) {
   249     double a = src[2] - src[0];
   250     double b = src[4] - 2 * src[2] + src[0];
   251     double c = src[6] + 3 * (src[2] - src[4]) - src[0];
   252     coeff[0] = c * c;
   253     coeff[1] = 3 * b * c;
   254     coeff[2] = 2 * b * b + c * a;
   255     coeff[3] = a * b;
   256 }
   258 /** SkDCubic'(t) = At^2 + Bt + C, where
   259     A = 3(-a + 3(b - c) + d)
   260     B = 6(a - 2b + c)
   261     C = 3(b - a)
   262     Solve for t, keeping only those that fit between 0 < t < 1
   263 */
   264 int SkDCubic::FindExtrema(double a, double b, double c, double d, double tValues[2]) {
   265     // we divide A,B,C by 3 to simplify
   266     double A = d - a + 3*(b - c);
   267     double B = 2*(a - b - b + c);
   268     double C = b - a;
   270     return SkDQuad::RootsValidT(A, B, C, tValues);
   271 }
   273 /*  from SkGeometry.cpp
   274     Looking for F' dot F'' == 0
   276     A = b - a
   277     B = c - 2b + a
   278     C = d - 3c + 3b - a
   280     F' = 3Ct^2 + 6Bt + 3A
   281     F'' = 6Ct + 6B
   283     F' dot F'' -> CCt^3 + 3BCt^2 + (2BB + CA)t + AB
   284 */
   285 int SkDCubic::findMaxCurvature(double tValues[]) const {
   286     double coeffX[4], coeffY[4];
   287     int i;
   288     formulate_F1DotF2(&fPts[0].fX, coeffX);
   289     formulate_F1DotF2(&fPts[0].fY, coeffY);
   290     for (i = 0; i < 4; i++) {
   291         coeffX[i] = coeffX[i] + coeffY[i];
   292     }
   293     return RootsValidT(coeffX[0], coeffX[1], coeffX[2], coeffX[3], tValues);
   294 }
   296 SkDPoint SkDCubic::top(double startT, double endT) const {
   297     SkDCubic sub = subDivide(startT, endT);
   298     SkDPoint topPt = sub[0];
   299     if (topPt.fY > sub[3].fY || (topPt.fY == sub[3].fY && topPt.fX > sub[3].fX)) {
   300         topPt = sub[3];
   301     }
   302     double extremeTs[2];
   303     if (!sub.monotonicInY()) {
   304         int roots = FindExtrema(sub[0].fY, sub[1].fY, sub[2].fY, sub[3].fY, extremeTs);
   305         for (int index = 0; index < roots; ++index) {
   306             double t = startT + (endT - startT) * extremeTs[index];
   307             SkDPoint mid = ptAtT(t);
   308             if (topPt.fY > mid.fY || (topPt.fY == mid.fY && topPt.fX > mid.fX)) {
   309                 topPt = mid;
   310             }
   311         }
   312     }
   313     return topPt;
   314 }
   316 SkDPoint SkDCubic::ptAtT(double t) const {
   317     if (0 == t) {
   318         return fPts[0];
   319     }
   320     if (1 == t) {
   321         return fPts[3];
   322     }
   323     double one_t = 1 - t;
   324     double one_t2 = one_t * one_t;
   325     double a = one_t2 * one_t;
   326     double b = 3 * one_t2 * t;
   327     double t2 = t * t;
   328     double c = 3 * one_t * t2;
   329     double d = t2 * t;
   330     SkDPoint result = {a * fPts[0].fX + b * fPts[1].fX + c * fPts[2].fX + d * fPts[3].fX,
   331             a * fPts[0].fY + b * fPts[1].fY + c * fPts[2].fY + d * fPts[3].fY};
   332     return result;
   333 }
   335 /*
   336  Given a cubic c, t1, and t2, find a small cubic segment.
   338  The new cubic is defined as points A, B, C, and D, where
   339  s1 = 1 - t1
   340  s2 = 1 - t2
   341  A = c[0]*s1*s1*s1 + 3*c[1]*s1*s1*t1 + 3*c[2]*s1*t1*t1 + c[3]*t1*t1*t1
   342  D = c[0]*s2*s2*s2 + 3*c[1]*s2*s2*t2 + 3*c[2]*s2*t2*t2 + c[3]*t2*t2*t2
   344  We don't have B or C. So We define two equations to isolate them.
   345  First, compute two reference T values 1/3 and 2/3 from t1 to t2:
   347  c(at (2*t1 + t2)/3) == E
   348  c(at (t1 + 2*t2)/3) == F
   350  Next, compute where those values must be if we know the values of B and C:
   352  _12   =  A*2/3 + B*1/3
   353  12_   =  A*1/3 + B*2/3
   354  _23   =  B*2/3 + C*1/3
   355  23_   =  B*1/3 + C*2/3
   356  _34   =  C*2/3 + D*1/3
   357  34_   =  C*1/3 + D*2/3
   358  _123  = (A*2/3 + B*1/3)*2/3 + (B*2/3 + C*1/3)*1/3 = A*4/9 + B*4/9 + C*1/9
   359  123_  = (A*1/3 + B*2/3)*1/3 + (B*1/3 + C*2/3)*2/3 = A*1/9 + B*4/9 + C*4/9
   360  _234  = (B*2/3 + C*1/3)*2/3 + (C*2/3 + D*1/3)*1/3 = B*4/9 + C*4/9 + D*1/9
   361  234_  = (B*1/3 + C*2/3)*1/3 + (C*1/3 + D*2/3)*2/3 = B*1/9 + C*4/9 + D*4/9
   362  _1234 = (A*4/9 + B*4/9 + C*1/9)*2/3 + (B*4/9 + C*4/9 + D*1/9)*1/3
   363        =  A*8/27 + B*12/27 + C*6/27 + D*1/27
   364        =  E
   365  1234_ = (A*1/9 + B*4/9 + C*4/9)*1/3 + (B*1/9 + C*4/9 + D*4/9)*2/3
   366        =  A*1/27 + B*6/27 + C*12/27 + D*8/27
   367        =  F
   368  E*27  =  A*8    + B*12   + C*6     + D
   369  F*27  =  A      + B*6    + C*12    + D*8
   371 Group the known values on one side:
   373  M       = E*27 - A*8 - D     = B*12 + C* 6
   374  N       = F*27 - A   - D*8   = B* 6 + C*12
   375  M*2 - N = B*18
   376  N*2 - M = C*18
   377  B       = (M*2 - N)/18
   378  C       = (N*2 - M)/18
   379  */
   381 static double interp_cubic_coords(const double* src, double t) {
   382     double ab = SkDInterp(src[0], src[2], t);
   383     double bc = SkDInterp(src[2], src[4], t);
   384     double cd = SkDInterp(src[4], src[6], t);
   385     double abc = SkDInterp(ab, bc, t);
   386     double bcd = SkDInterp(bc, cd, t);
   387     double abcd = SkDInterp(abc, bcd, t);
   388     return abcd;
   389 }
   391 SkDCubic SkDCubic::subDivide(double t1, double t2) const {
   392     if (t1 == 0 || t2 == 1) {
   393         if (t1 == 0 && t2 == 1) {
   394             return *this;
   395         }
   396         SkDCubicPair pair = chopAt(t1 == 0 ? t2 : t1);
   397         SkDCubic dst = t1 == 0 ? pair.first() : pair.second();
   398         return dst;
   399     }
   400     SkDCubic dst;
   401     double ax = dst[0].fX = interp_cubic_coords(&fPts[0].fX, t1);
   402     double ay = dst[0].fY = interp_cubic_coords(&fPts[0].fY, t1);
   403     double ex = interp_cubic_coords(&fPts[0].fX, (t1*2+t2)/3);
   404     double ey = interp_cubic_coords(&fPts[0].fY, (t1*2+t2)/3);
   405     double fx = interp_cubic_coords(&fPts[0].fX, (t1+t2*2)/3);
   406     double fy = interp_cubic_coords(&fPts[0].fY, (t1+t2*2)/3);
   407     double dx = dst[3].fX = interp_cubic_coords(&fPts[0].fX, t2);
   408     double dy = dst[3].fY = interp_cubic_coords(&fPts[0].fY, t2);
   409     double mx = ex * 27 - ax * 8 - dx;
   410     double my = ey * 27 - ay * 8 - dy;
   411     double nx = fx * 27 - ax - dx * 8;
   412     double ny = fy * 27 - ay - dy * 8;
   413     /* bx = */ dst[1].fX = (mx * 2 - nx) / 18;
   414     /* by = */ dst[1].fY = (my * 2 - ny) / 18;
   415     /* cx = */ dst[2].fX = (nx * 2 - mx) / 18;
   416     /* cy = */ dst[2].fY = (ny * 2 - my) / 18;
   417     // FIXME: call align() ?
   418     return dst;
   419 }
   421 void SkDCubic::align(int endIndex, int ctrlIndex, SkDPoint* dstPt) const {
   422     if (fPts[endIndex].fX == fPts[ctrlIndex].fX) {
   423         dstPt->fX = fPts[endIndex].fX;
   424     }
   425     if (fPts[endIndex].fY == fPts[ctrlIndex].fY) {
   426         dstPt->fY = fPts[endIndex].fY;
   427     }
   428 }
   430 void SkDCubic::subDivide(const SkDPoint& a, const SkDPoint& d,
   431                          double t1, double t2, SkDPoint dst[2]) const {
   432     SkASSERT(t1 != t2);
   433 #if 0
   434     double ex = interp_cubic_coords(&fPts[0].fX, (t1 * 2 + t2) / 3);
   435     double ey = interp_cubic_coords(&fPts[0].fY, (t1 * 2 + t2) / 3);
   436     double fx = interp_cubic_coords(&fPts[0].fX, (t1 + t2 * 2) / 3);
   437     double fy = interp_cubic_coords(&fPts[0].fY, (t1 + t2 * 2) / 3);
   438     double mx = ex * 27 - a.fX * 8 - d.fX;
   439     double my = ey * 27 - a.fY * 8 - d.fY;
   440     double nx = fx * 27 - a.fX - d.fX * 8;
   441     double ny = fy * 27 - a.fY - d.fY * 8;
   442     /* bx = */ dst[0].fX = (mx * 2 - nx) / 18;
   443     /* by = */ dst[0].fY = (my * 2 - ny) / 18;
   444     /* cx = */ dst[1].fX = (nx * 2 - mx) / 18;
   445     /* cy = */ dst[1].fY = (ny * 2 - my) / 18;
   446 #else
   447     // this approach assumes that the control points computed directly are accurate enough
   448     SkDCubic sub = subDivide(t1, t2);
   449     dst[0] = sub[1] + (a - sub[0]);
   450     dst[1] = sub[2] + (d - sub[3]);
   451 #endif
   452     if (t1 == 0 || t2 == 0) {
   453         align(0, 1, t1 == 0 ? &dst[0] : &dst[1]);
   454     }
   455     if (t1 == 1 || t2 == 1) {
   456         align(3, 2, t1 == 1 ? &dst[0] : &dst[1]);
   457     }
   458     if (precisely_subdivide_equal(dst[0].fX, a.fX)) {
   459         dst[0].fX = a.fX;
   460     }
   461     if (precisely_subdivide_equal(dst[0].fY, a.fY)) {
   462         dst[0].fY = a.fY;
   463     }
   464     if (precisely_subdivide_equal(dst[1].fX, d.fX)) {
   465         dst[1].fX = d.fX;
   466     }
   467     if (precisely_subdivide_equal(dst[1].fY, d.fY)) {
   468         dst[1].fY = d.fY;
   469     }
   470 }
   472 /* classic one t subdivision */
   473 static void interp_cubic_coords(const double* src, double* dst, double t) {
   474     double ab = SkDInterp(src[0], src[2], t);
   475     double bc = SkDInterp(src[2], src[4], t);
   476     double cd = SkDInterp(src[4], src[6], t);
   477     double abc = SkDInterp(ab, bc, t);
   478     double bcd = SkDInterp(bc, cd, t);
   479     double abcd = SkDInterp(abc, bcd, t);
   481     dst[0] = src[0];
   482     dst[2] = ab;
   483     dst[4] = abc;
   484     dst[6] = abcd;
   485     dst[8] = bcd;
   486     dst[10] = cd;
   487     dst[12] = src[6];
   488 }
   490 SkDCubicPair SkDCubic::chopAt(double t) const {
   491     SkDCubicPair dst;
   492     if (t == 0.5) {
   493         dst.pts[0] = fPts[0];
   494         dst.pts[1].fX = (fPts[0].fX + fPts[1].fX) / 2;
   495         dst.pts[1].fY = (fPts[0].fY + fPts[1].fY) / 2;
   496         dst.pts[2].fX = (fPts[0].fX + 2 * fPts[1].fX + fPts[2].fX) / 4;
   497         dst.pts[2].fY = (fPts[0].fY + 2 * fPts[1].fY + fPts[2].fY) / 4;
   498         dst.pts[3].fX = (fPts[0].fX + 3 * (fPts[1].fX + fPts[2].fX) + fPts[3].fX) / 8;
   499         dst.pts[3].fY = (fPts[0].fY + 3 * (fPts[1].fY + fPts[2].fY) + fPts[3].fY) / 8;
   500         dst.pts[4].fX = (fPts[1].fX + 2 * fPts[2].fX + fPts[3].fX) / 4;
   501         dst.pts[4].fY = (fPts[1].fY + 2 * fPts[2].fY + fPts[3].fY) / 4;
   502         dst.pts[5].fX = (fPts[2].fX + fPts[3].fX) / 2;
   503         dst.pts[5].fY = (fPts[2].fY + fPts[3].fY) / 2;
   504         dst.pts[6] = fPts[3];
   505         return dst;
   506     }
   507     interp_cubic_coords(&fPts[0].fX, &dst.pts[0].fX, t);
   508     interp_cubic_coords(&fPts[0].fY, &dst.pts[0].fY, t);
   509     return dst;
   510 }
   512 #ifdef SK_DEBUG
   513 void SkDCubic::dump() {
   514     SkDebugf("{{");
   515     int index = 0;
   516     do {
   517         fPts[index].dump();
   518         SkDebugf(", ");
   519     } while (++index < 3);
   520     fPts[index].dump();
   521     SkDebugf("}}\n");
   522 }
   523 #endif

mercurial