gfx/skia/trunk/src/pathops/SkPathOpsCubic.cpp

Sat, 03 Jan 2015 20:18:00 +0100

author
Michael Schloh von Bennewitz <michael@schloh.com>
date
Sat, 03 Jan 2015 20:18:00 +0100
branch
TOR_BUG_3246
changeset 7
129ffea94266
permissions
-rw-r--r--

Conditionally enable double key logic according to:
private browsing mode or privacy.thirdparty.isolate preference and
implement in GetCookieStringCommon and FindCookie where it counts...
With some reservations of how to convince FindCookie users to test
condition and pass a nullptr when disabling double key logic.

michael@0 1 /*
michael@0 2 * Copyright 2012 Google Inc.
michael@0 3 *
michael@0 4 * Use of this source code is governed by a BSD-style license that can be
michael@0 5 * found in the LICENSE file.
michael@0 6 */
michael@0 7 #include "SkLineParameters.h"
michael@0 8 #include "SkPathOpsCubic.h"
michael@0 9 #include "SkPathOpsLine.h"
michael@0 10 #include "SkPathOpsQuad.h"
michael@0 11 #include "SkPathOpsRect.h"
michael@0 12
michael@0 13 const int SkDCubic::gPrecisionUnit = 256; // FIXME: test different values in test framework
michael@0 14
michael@0 15 // FIXME: cache keep the bounds and/or precision with the caller?
michael@0 16 double SkDCubic::calcPrecision() const {
michael@0 17 SkDRect dRect;
michael@0 18 dRect.setBounds(*this); // OPTIMIZATION: just use setRawBounds ?
michael@0 19 double width = dRect.fRight - dRect.fLeft;
michael@0 20 double height = dRect.fBottom - dRect.fTop;
michael@0 21 return (width > height ? width : height) / gPrecisionUnit;
michael@0 22 }
michael@0 23
michael@0 24 bool SkDCubic::clockwise() const {
michael@0 25 double sum = (fPts[0].fX - fPts[3].fX) * (fPts[0].fY + fPts[3].fY);
michael@0 26 for (int idx = 0; idx < 3; ++idx) {
michael@0 27 sum += (fPts[idx + 1].fX - fPts[idx].fX) * (fPts[idx + 1].fY + fPts[idx].fY);
michael@0 28 }
michael@0 29 return sum <= 0;
michael@0 30 }
michael@0 31
michael@0 32 void SkDCubic::Coefficients(const double* src, double* A, double* B, double* C, double* D) {
michael@0 33 *A = src[6]; // d
michael@0 34 *B = src[4] * 3; // 3*c
michael@0 35 *C = src[2] * 3; // 3*b
michael@0 36 *D = src[0]; // a
michael@0 37 *A -= *D - *C + *B; // A = -a + 3*b - 3*c + d
michael@0 38 *B += 3 * *D - 2 * *C; // B = 3*a - 6*b + 3*c
michael@0 39 *C -= 3 * *D; // C = -3*a + 3*b
michael@0 40 }
michael@0 41
michael@0 42 bool SkDCubic::controlsContainedByEnds() const {
michael@0 43 SkDVector startTan = fPts[1] - fPts[0];
michael@0 44 if (startTan.fX == 0 && startTan.fY == 0) {
michael@0 45 startTan = fPts[2] - fPts[0];
michael@0 46 }
michael@0 47 SkDVector endTan = fPts[2] - fPts[3];
michael@0 48 if (endTan.fX == 0 && endTan.fY == 0) {
michael@0 49 endTan = fPts[1] - fPts[3];
michael@0 50 }
michael@0 51 if (startTan.dot(endTan) >= 0) {
michael@0 52 return false;
michael@0 53 }
michael@0 54 SkDLine startEdge = {{fPts[0], fPts[0]}};
michael@0 55 startEdge[1].fX -= startTan.fY;
michael@0 56 startEdge[1].fY += startTan.fX;
michael@0 57 SkDLine endEdge = {{fPts[3], fPts[3]}};
michael@0 58 endEdge[1].fX -= endTan.fY;
michael@0 59 endEdge[1].fY += endTan.fX;
michael@0 60 double leftStart1 = startEdge.isLeft(fPts[1]);
michael@0 61 if (leftStart1 * startEdge.isLeft(fPts[2]) < 0) {
michael@0 62 return false;
michael@0 63 }
michael@0 64 double leftEnd1 = endEdge.isLeft(fPts[1]);
michael@0 65 if (leftEnd1 * endEdge.isLeft(fPts[2]) < 0) {
michael@0 66 return false;
michael@0 67 }
michael@0 68 return leftStart1 * leftEnd1 >= 0;
michael@0 69 }
michael@0 70
michael@0 71 bool SkDCubic::endsAreExtremaInXOrY() const {
michael@0 72 return (between(fPts[0].fX, fPts[1].fX, fPts[3].fX)
michael@0 73 && between(fPts[0].fX, fPts[2].fX, fPts[3].fX))
michael@0 74 || (between(fPts[0].fY, fPts[1].fY, fPts[3].fY)
michael@0 75 && between(fPts[0].fY, fPts[2].fY, fPts[3].fY));
michael@0 76 }
michael@0 77
michael@0 78 bool SkDCubic::isLinear(int startIndex, int endIndex) const {
michael@0 79 SkLineParameters lineParameters;
michael@0 80 lineParameters.cubicEndPoints(*this, startIndex, endIndex);
michael@0 81 // FIXME: maybe it's possible to avoid this and compare non-normalized
michael@0 82 lineParameters.normalize();
michael@0 83 double distance = lineParameters.controlPtDistance(*this, 1);
michael@0 84 if (!approximately_zero(distance)) {
michael@0 85 return false;
michael@0 86 }
michael@0 87 distance = lineParameters.controlPtDistance(*this, 2);
michael@0 88 return approximately_zero(distance);
michael@0 89 }
michael@0 90
michael@0 91 bool SkDCubic::monotonicInY() const {
michael@0 92 return between(fPts[0].fY, fPts[1].fY, fPts[3].fY)
michael@0 93 && between(fPts[0].fY, fPts[2].fY, fPts[3].fY);
michael@0 94 }
michael@0 95
michael@0 96 bool SkDCubic::serpentine() const {
michael@0 97 if (!controlsContainedByEnds()) {
michael@0 98 return false;
michael@0 99 }
michael@0 100 double wiggle = (fPts[0].fX - fPts[2].fX) * (fPts[0].fY + fPts[2].fY);
michael@0 101 for (int idx = 0; idx < 2; ++idx) {
michael@0 102 wiggle += (fPts[idx + 1].fX - fPts[idx].fX) * (fPts[idx + 1].fY + fPts[idx].fY);
michael@0 103 }
michael@0 104 double waggle = (fPts[1].fX - fPts[3].fX) * (fPts[1].fY + fPts[3].fY);
michael@0 105 for (int idx = 1; idx < 3; ++idx) {
michael@0 106 waggle += (fPts[idx + 1].fX - fPts[idx].fX) * (fPts[idx + 1].fY + fPts[idx].fY);
michael@0 107 }
michael@0 108 return wiggle * waggle < 0;
michael@0 109 }
michael@0 110
michael@0 111 // cubic roots
michael@0 112
michael@0 113 static const double PI = 3.141592653589793;
michael@0 114
michael@0 115 // from SkGeometry.cpp (and Numeric Solutions, 5.6)
michael@0 116 int SkDCubic::RootsValidT(double A, double B, double C, double D, double t[3]) {
michael@0 117 double s[3];
michael@0 118 int realRoots = RootsReal(A, B, C, D, s);
michael@0 119 int foundRoots = SkDQuad::AddValidTs(s, realRoots, t);
michael@0 120 return foundRoots;
michael@0 121 }
michael@0 122
michael@0 123 int SkDCubic::RootsReal(double A, double B, double C, double D, double s[3]) {
michael@0 124 #ifdef SK_DEBUG
michael@0 125 // create a string mathematica understands
michael@0 126 // GDB set print repe 15 # if repeated digits is a bother
michael@0 127 // set print elements 400 # if line doesn't fit
michael@0 128 char str[1024];
michael@0 129 sk_bzero(str, sizeof(str));
michael@0 130 SK_SNPRINTF(str, sizeof(str), "Solve[%1.19g x^3 + %1.19g x^2 + %1.19g x + %1.19g == 0, x]",
michael@0 131 A, B, C, D);
michael@0 132 SkPathOpsDebug::MathematicaIze(str, sizeof(str));
michael@0 133 #if ONE_OFF_DEBUG && ONE_OFF_DEBUG_MATHEMATICA
michael@0 134 SkDebugf("%s\n", str);
michael@0 135 #endif
michael@0 136 #endif
michael@0 137 if (approximately_zero(A)
michael@0 138 && approximately_zero_when_compared_to(A, B)
michael@0 139 && approximately_zero_when_compared_to(A, C)
michael@0 140 && approximately_zero_when_compared_to(A, D)) { // we're just a quadratic
michael@0 141 return SkDQuad::RootsReal(B, C, D, s);
michael@0 142 }
michael@0 143 if (approximately_zero_when_compared_to(D, A)
michael@0 144 && approximately_zero_when_compared_to(D, B)
michael@0 145 && approximately_zero_when_compared_to(D, C)) { // 0 is one root
michael@0 146 int num = SkDQuad::RootsReal(A, B, C, s);
michael@0 147 for (int i = 0; i < num; ++i) {
michael@0 148 if (approximately_zero(s[i])) {
michael@0 149 return num;
michael@0 150 }
michael@0 151 }
michael@0 152 s[num++] = 0;
michael@0 153 return num;
michael@0 154 }
michael@0 155 if (approximately_zero(A + B + C + D)) { // 1 is one root
michael@0 156 int num = SkDQuad::RootsReal(A, A + B, -D, s);
michael@0 157 for (int i = 0; i < num; ++i) {
michael@0 158 if (AlmostDequalUlps(s[i], 1)) {
michael@0 159 return num;
michael@0 160 }
michael@0 161 }
michael@0 162 s[num++] = 1;
michael@0 163 return num;
michael@0 164 }
michael@0 165 double a, b, c;
michael@0 166 {
michael@0 167 double invA = 1 / A;
michael@0 168 a = B * invA;
michael@0 169 b = C * invA;
michael@0 170 c = D * invA;
michael@0 171 }
michael@0 172 double a2 = a * a;
michael@0 173 double Q = (a2 - b * 3) / 9;
michael@0 174 double R = (2 * a2 * a - 9 * a * b + 27 * c) / 54;
michael@0 175 double R2 = R * R;
michael@0 176 double Q3 = Q * Q * Q;
michael@0 177 double R2MinusQ3 = R2 - Q3;
michael@0 178 double adiv3 = a / 3;
michael@0 179 double r;
michael@0 180 double* roots = s;
michael@0 181 if (R2MinusQ3 < 0) { // we have 3 real roots
michael@0 182 double theta = acos(R / sqrt(Q3));
michael@0 183 double neg2RootQ = -2 * sqrt(Q);
michael@0 184
michael@0 185 r = neg2RootQ * cos(theta / 3) - adiv3;
michael@0 186 *roots++ = r;
michael@0 187
michael@0 188 r = neg2RootQ * cos((theta + 2 * PI) / 3) - adiv3;
michael@0 189 if (!AlmostDequalUlps(s[0], r)) {
michael@0 190 *roots++ = r;
michael@0 191 }
michael@0 192 r = neg2RootQ * cos((theta - 2 * PI) / 3) - adiv3;
michael@0 193 if (!AlmostDequalUlps(s[0], r) && (roots - s == 1 || !AlmostDequalUlps(s[1], r))) {
michael@0 194 *roots++ = r;
michael@0 195 }
michael@0 196 } else { // we have 1 real root
michael@0 197 double sqrtR2MinusQ3 = sqrt(R2MinusQ3);
michael@0 198 double A = fabs(R) + sqrtR2MinusQ3;
michael@0 199 A = SkDCubeRoot(A);
michael@0 200 if (R > 0) {
michael@0 201 A = -A;
michael@0 202 }
michael@0 203 if (A != 0) {
michael@0 204 A += Q / A;
michael@0 205 }
michael@0 206 r = A - adiv3;
michael@0 207 *roots++ = r;
michael@0 208 if (AlmostDequalUlps(R2, Q3)) {
michael@0 209 r = -A / 2 - adiv3;
michael@0 210 if (!AlmostDequalUlps(s[0], r)) {
michael@0 211 *roots++ = r;
michael@0 212 }
michael@0 213 }
michael@0 214 }
michael@0 215 return static_cast<int>(roots - s);
michael@0 216 }
michael@0 217
michael@0 218 // from http://www.cs.sunysb.edu/~qin/courses/geometry/4.pdf
michael@0 219 // c(t) = a(1-t)^3 + 3bt(1-t)^2 + 3c(1-t)t^2 + dt^3
michael@0 220 // c'(t) = -3a(1-t)^2 + 3b((1-t)^2 - 2t(1-t)) + 3c(2t(1-t) - t^2) + 3dt^2
michael@0 221 // = 3(b-a)(1-t)^2 + 6(c-b)t(1-t) + 3(d-c)t^2
michael@0 222 static double derivative_at_t(const double* src, double t) {
michael@0 223 double one_t = 1 - t;
michael@0 224 double a = src[0];
michael@0 225 double b = src[2];
michael@0 226 double c = src[4];
michael@0 227 double d = src[6];
michael@0 228 return 3 * ((b - a) * one_t * one_t + 2 * (c - b) * t * one_t + (d - c) * t * t);
michael@0 229 }
michael@0 230
michael@0 231 // OPTIMIZE? compute t^2, t(1-t), and (1-t)^2 and pass them to another version of derivative at t?
michael@0 232 SkDVector SkDCubic::dxdyAtT(double t) const {
michael@0 233 SkDVector result = { derivative_at_t(&fPts[0].fX, t), derivative_at_t(&fPts[0].fY, t) };
michael@0 234 return result;
michael@0 235 }
michael@0 236
michael@0 237 // OPTIMIZE? share code with formulate_F1DotF2
michael@0 238 int SkDCubic::findInflections(double tValues[]) const {
michael@0 239 double Ax = fPts[1].fX - fPts[0].fX;
michael@0 240 double Ay = fPts[1].fY - fPts[0].fY;
michael@0 241 double Bx = fPts[2].fX - 2 * fPts[1].fX + fPts[0].fX;
michael@0 242 double By = fPts[2].fY - 2 * fPts[1].fY + fPts[0].fY;
michael@0 243 double Cx = fPts[3].fX + 3 * (fPts[1].fX - fPts[2].fX) - fPts[0].fX;
michael@0 244 double Cy = fPts[3].fY + 3 * (fPts[1].fY - fPts[2].fY) - fPts[0].fY;
michael@0 245 return SkDQuad::RootsValidT(Bx * Cy - By * Cx, Ax * Cy - Ay * Cx, Ax * By - Ay * Bx, tValues);
michael@0 246 }
michael@0 247
michael@0 248 static void formulate_F1DotF2(const double src[], double coeff[4]) {
michael@0 249 double a = src[2] - src[0];
michael@0 250 double b = src[4] - 2 * src[2] + src[0];
michael@0 251 double c = src[6] + 3 * (src[2] - src[4]) - src[0];
michael@0 252 coeff[0] = c * c;
michael@0 253 coeff[1] = 3 * b * c;
michael@0 254 coeff[2] = 2 * b * b + c * a;
michael@0 255 coeff[3] = a * b;
michael@0 256 }
michael@0 257
michael@0 258 /** SkDCubic'(t) = At^2 + Bt + C, where
michael@0 259 A = 3(-a + 3(b - c) + d)
michael@0 260 B = 6(a - 2b + c)
michael@0 261 C = 3(b - a)
michael@0 262 Solve for t, keeping only those that fit between 0 < t < 1
michael@0 263 */
michael@0 264 int SkDCubic::FindExtrema(double a, double b, double c, double d, double tValues[2]) {
michael@0 265 // we divide A,B,C by 3 to simplify
michael@0 266 double A = d - a + 3*(b - c);
michael@0 267 double B = 2*(a - b - b + c);
michael@0 268 double C = b - a;
michael@0 269
michael@0 270 return SkDQuad::RootsValidT(A, B, C, tValues);
michael@0 271 }
michael@0 272
michael@0 273 /* from SkGeometry.cpp
michael@0 274 Looking for F' dot F'' == 0
michael@0 275
michael@0 276 A = b - a
michael@0 277 B = c - 2b + a
michael@0 278 C = d - 3c + 3b - a
michael@0 279
michael@0 280 F' = 3Ct^2 + 6Bt + 3A
michael@0 281 F'' = 6Ct + 6B
michael@0 282
michael@0 283 F' dot F'' -> CCt^3 + 3BCt^2 + (2BB + CA)t + AB
michael@0 284 */
michael@0 285 int SkDCubic::findMaxCurvature(double tValues[]) const {
michael@0 286 double coeffX[4], coeffY[4];
michael@0 287 int i;
michael@0 288 formulate_F1DotF2(&fPts[0].fX, coeffX);
michael@0 289 formulate_F1DotF2(&fPts[0].fY, coeffY);
michael@0 290 for (i = 0; i < 4; i++) {
michael@0 291 coeffX[i] = coeffX[i] + coeffY[i];
michael@0 292 }
michael@0 293 return RootsValidT(coeffX[0], coeffX[1], coeffX[2], coeffX[3], tValues);
michael@0 294 }
michael@0 295
michael@0 296 SkDPoint SkDCubic::top(double startT, double endT) const {
michael@0 297 SkDCubic sub = subDivide(startT, endT);
michael@0 298 SkDPoint topPt = sub[0];
michael@0 299 if (topPt.fY > sub[3].fY || (topPt.fY == sub[3].fY && topPt.fX > sub[3].fX)) {
michael@0 300 topPt = sub[3];
michael@0 301 }
michael@0 302 double extremeTs[2];
michael@0 303 if (!sub.monotonicInY()) {
michael@0 304 int roots = FindExtrema(sub[0].fY, sub[1].fY, sub[2].fY, sub[3].fY, extremeTs);
michael@0 305 for (int index = 0; index < roots; ++index) {
michael@0 306 double t = startT + (endT - startT) * extremeTs[index];
michael@0 307 SkDPoint mid = ptAtT(t);
michael@0 308 if (topPt.fY > mid.fY || (topPt.fY == mid.fY && topPt.fX > mid.fX)) {
michael@0 309 topPt = mid;
michael@0 310 }
michael@0 311 }
michael@0 312 }
michael@0 313 return topPt;
michael@0 314 }
michael@0 315
michael@0 316 SkDPoint SkDCubic::ptAtT(double t) const {
michael@0 317 if (0 == t) {
michael@0 318 return fPts[0];
michael@0 319 }
michael@0 320 if (1 == t) {
michael@0 321 return fPts[3];
michael@0 322 }
michael@0 323 double one_t = 1 - t;
michael@0 324 double one_t2 = one_t * one_t;
michael@0 325 double a = one_t2 * one_t;
michael@0 326 double b = 3 * one_t2 * t;
michael@0 327 double t2 = t * t;
michael@0 328 double c = 3 * one_t * t2;
michael@0 329 double d = t2 * t;
michael@0 330 SkDPoint result = {a * fPts[0].fX + b * fPts[1].fX + c * fPts[2].fX + d * fPts[3].fX,
michael@0 331 a * fPts[0].fY + b * fPts[1].fY + c * fPts[2].fY + d * fPts[3].fY};
michael@0 332 return result;
michael@0 333 }
michael@0 334
michael@0 335 /*
michael@0 336 Given a cubic c, t1, and t2, find a small cubic segment.
michael@0 337
michael@0 338 The new cubic is defined as points A, B, C, and D, where
michael@0 339 s1 = 1 - t1
michael@0 340 s2 = 1 - t2
michael@0 341 A = c[0]*s1*s1*s1 + 3*c[1]*s1*s1*t1 + 3*c[2]*s1*t1*t1 + c[3]*t1*t1*t1
michael@0 342 D = c[0]*s2*s2*s2 + 3*c[1]*s2*s2*t2 + 3*c[2]*s2*t2*t2 + c[3]*t2*t2*t2
michael@0 343
michael@0 344 We don't have B or C. So We define two equations to isolate them.
michael@0 345 First, compute two reference T values 1/3 and 2/3 from t1 to t2:
michael@0 346
michael@0 347 c(at (2*t1 + t2)/3) == E
michael@0 348 c(at (t1 + 2*t2)/3) == F
michael@0 349
michael@0 350 Next, compute where those values must be if we know the values of B and C:
michael@0 351
michael@0 352 _12 = A*2/3 + B*1/3
michael@0 353 12_ = A*1/3 + B*2/3
michael@0 354 _23 = B*2/3 + C*1/3
michael@0 355 23_ = B*1/3 + C*2/3
michael@0 356 _34 = C*2/3 + D*1/3
michael@0 357 34_ = C*1/3 + D*2/3
michael@0 358 _123 = (A*2/3 + B*1/3)*2/3 + (B*2/3 + C*1/3)*1/3 = A*4/9 + B*4/9 + C*1/9
michael@0 359 123_ = (A*1/3 + B*2/3)*1/3 + (B*1/3 + C*2/3)*2/3 = A*1/9 + B*4/9 + C*4/9
michael@0 360 _234 = (B*2/3 + C*1/3)*2/3 + (C*2/3 + D*1/3)*1/3 = B*4/9 + C*4/9 + D*1/9
michael@0 361 234_ = (B*1/3 + C*2/3)*1/3 + (C*1/3 + D*2/3)*2/3 = B*1/9 + C*4/9 + D*4/9
michael@0 362 _1234 = (A*4/9 + B*4/9 + C*1/9)*2/3 + (B*4/9 + C*4/9 + D*1/9)*1/3
michael@0 363 = A*8/27 + B*12/27 + C*6/27 + D*1/27
michael@0 364 = E
michael@0 365 1234_ = (A*1/9 + B*4/9 + C*4/9)*1/3 + (B*1/9 + C*4/9 + D*4/9)*2/3
michael@0 366 = A*1/27 + B*6/27 + C*12/27 + D*8/27
michael@0 367 = F
michael@0 368 E*27 = A*8 + B*12 + C*6 + D
michael@0 369 F*27 = A + B*6 + C*12 + D*8
michael@0 370
michael@0 371 Group the known values on one side:
michael@0 372
michael@0 373 M = E*27 - A*8 - D = B*12 + C* 6
michael@0 374 N = F*27 - A - D*8 = B* 6 + C*12
michael@0 375 M*2 - N = B*18
michael@0 376 N*2 - M = C*18
michael@0 377 B = (M*2 - N)/18
michael@0 378 C = (N*2 - M)/18
michael@0 379 */
michael@0 380
michael@0 381 static double interp_cubic_coords(const double* src, double t) {
michael@0 382 double ab = SkDInterp(src[0], src[2], t);
michael@0 383 double bc = SkDInterp(src[2], src[4], t);
michael@0 384 double cd = SkDInterp(src[4], src[6], t);
michael@0 385 double abc = SkDInterp(ab, bc, t);
michael@0 386 double bcd = SkDInterp(bc, cd, t);
michael@0 387 double abcd = SkDInterp(abc, bcd, t);
michael@0 388 return abcd;
michael@0 389 }
michael@0 390
michael@0 391 SkDCubic SkDCubic::subDivide(double t1, double t2) const {
michael@0 392 if (t1 == 0 || t2 == 1) {
michael@0 393 if (t1 == 0 && t2 == 1) {
michael@0 394 return *this;
michael@0 395 }
michael@0 396 SkDCubicPair pair = chopAt(t1 == 0 ? t2 : t1);
michael@0 397 SkDCubic dst = t1 == 0 ? pair.first() : pair.second();
michael@0 398 return dst;
michael@0 399 }
michael@0 400 SkDCubic dst;
michael@0 401 double ax = dst[0].fX = interp_cubic_coords(&fPts[0].fX, t1);
michael@0 402 double ay = dst[0].fY = interp_cubic_coords(&fPts[0].fY, t1);
michael@0 403 double ex = interp_cubic_coords(&fPts[0].fX, (t1*2+t2)/3);
michael@0 404 double ey = interp_cubic_coords(&fPts[0].fY, (t1*2+t2)/3);
michael@0 405 double fx = interp_cubic_coords(&fPts[0].fX, (t1+t2*2)/3);
michael@0 406 double fy = interp_cubic_coords(&fPts[0].fY, (t1+t2*2)/3);
michael@0 407 double dx = dst[3].fX = interp_cubic_coords(&fPts[0].fX, t2);
michael@0 408 double dy = dst[3].fY = interp_cubic_coords(&fPts[0].fY, t2);
michael@0 409 double mx = ex * 27 - ax * 8 - dx;
michael@0 410 double my = ey * 27 - ay * 8 - dy;
michael@0 411 double nx = fx * 27 - ax - dx * 8;
michael@0 412 double ny = fy * 27 - ay - dy * 8;
michael@0 413 /* bx = */ dst[1].fX = (mx * 2 - nx) / 18;
michael@0 414 /* by = */ dst[1].fY = (my * 2 - ny) / 18;
michael@0 415 /* cx = */ dst[2].fX = (nx * 2 - mx) / 18;
michael@0 416 /* cy = */ dst[2].fY = (ny * 2 - my) / 18;
michael@0 417 // FIXME: call align() ?
michael@0 418 return dst;
michael@0 419 }
michael@0 420
michael@0 421 void SkDCubic::align(int endIndex, int ctrlIndex, SkDPoint* dstPt) const {
michael@0 422 if (fPts[endIndex].fX == fPts[ctrlIndex].fX) {
michael@0 423 dstPt->fX = fPts[endIndex].fX;
michael@0 424 }
michael@0 425 if (fPts[endIndex].fY == fPts[ctrlIndex].fY) {
michael@0 426 dstPt->fY = fPts[endIndex].fY;
michael@0 427 }
michael@0 428 }
michael@0 429
michael@0 430 void SkDCubic::subDivide(const SkDPoint& a, const SkDPoint& d,
michael@0 431 double t1, double t2, SkDPoint dst[2]) const {
michael@0 432 SkASSERT(t1 != t2);
michael@0 433 #if 0
michael@0 434 double ex = interp_cubic_coords(&fPts[0].fX, (t1 * 2 + t2) / 3);
michael@0 435 double ey = interp_cubic_coords(&fPts[0].fY, (t1 * 2 + t2) / 3);
michael@0 436 double fx = interp_cubic_coords(&fPts[0].fX, (t1 + t2 * 2) / 3);
michael@0 437 double fy = interp_cubic_coords(&fPts[0].fY, (t1 + t2 * 2) / 3);
michael@0 438 double mx = ex * 27 - a.fX * 8 - d.fX;
michael@0 439 double my = ey * 27 - a.fY * 8 - d.fY;
michael@0 440 double nx = fx * 27 - a.fX - d.fX * 8;
michael@0 441 double ny = fy * 27 - a.fY - d.fY * 8;
michael@0 442 /* bx = */ dst[0].fX = (mx * 2 - nx) / 18;
michael@0 443 /* by = */ dst[0].fY = (my * 2 - ny) / 18;
michael@0 444 /* cx = */ dst[1].fX = (nx * 2 - mx) / 18;
michael@0 445 /* cy = */ dst[1].fY = (ny * 2 - my) / 18;
michael@0 446 #else
michael@0 447 // this approach assumes that the control points computed directly are accurate enough
michael@0 448 SkDCubic sub = subDivide(t1, t2);
michael@0 449 dst[0] = sub[1] + (a - sub[0]);
michael@0 450 dst[1] = sub[2] + (d - sub[3]);
michael@0 451 #endif
michael@0 452 if (t1 == 0 || t2 == 0) {
michael@0 453 align(0, 1, t1 == 0 ? &dst[0] : &dst[1]);
michael@0 454 }
michael@0 455 if (t1 == 1 || t2 == 1) {
michael@0 456 align(3, 2, t1 == 1 ? &dst[0] : &dst[1]);
michael@0 457 }
michael@0 458 if (precisely_subdivide_equal(dst[0].fX, a.fX)) {
michael@0 459 dst[0].fX = a.fX;
michael@0 460 }
michael@0 461 if (precisely_subdivide_equal(dst[0].fY, a.fY)) {
michael@0 462 dst[0].fY = a.fY;
michael@0 463 }
michael@0 464 if (precisely_subdivide_equal(dst[1].fX, d.fX)) {
michael@0 465 dst[1].fX = d.fX;
michael@0 466 }
michael@0 467 if (precisely_subdivide_equal(dst[1].fY, d.fY)) {
michael@0 468 dst[1].fY = d.fY;
michael@0 469 }
michael@0 470 }
michael@0 471
michael@0 472 /* classic one t subdivision */
michael@0 473 static void interp_cubic_coords(const double* src, double* dst, double t) {
michael@0 474 double ab = SkDInterp(src[0], src[2], t);
michael@0 475 double bc = SkDInterp(src[2], src[4], t);
michael@0 476 double cd = SkDInterp(src[4], src[6], t);
michael@0 477 double abc = SkDInterp(ab, bc, t);
michael@0 478 double bcd = SkDInterp(bc, cd, t);
michael@0 479 double abcd = SkDInterp(abc, bcd, t);
michael@0 480
michael@0 481 dst[0] = src[0];
michael@0 482 dst[2] = ab;
michael@0 483 dst[4] = abc;
michael@0 484 dst[6] = abcd;
michael@0 485 dst[8] = bcd;
michael@0 486 dst[10] = cd;
michael@0 487 dst[12] = src[6];
michael@0 488 }
michael@0 489
michael@0 490 SkDCubicPair SkDCubic::chopAt(double t) const {
michael@0 491 SkDCubicPair dst;
michael@0 492 if (t == 0.5) {
michael@0 493 dst.pts[0] = fPts[0];
michael@0 494 dst.pts[1].fX = (fPts[0].fX + fPts[1].fX) / 2;
michael@0 495 dst.pts[1].fY = (fPts[0].fY + fPts[1].fY) / 2;
michael@0 496 dst.pts[2].fX = (fPts[0].fX + 2 * fPts[1].fX + fPts[2].fX) / 4;
michael@0 497 dst.pts[2].fY = (fPts[0].fY + 2 * fPts[1].fY + fPts[2].fY) / 4;
michael@0 498 dst.pts[3].fX = (fPts[0].fX + 3 * (fPts[1].fX + fPts[2].fX) + fPts[3].fX) / 8;
michael@0 499 dst.pts[3].fY = (fPts[0].fY + 3 * (fPts[1].fY + fPts[2].fY) + fPts[3].fY) / 8;
michael@0 500 dst.pts[4].fX = (fPts[1].fX + 2 * fPts[2].fX + fPts[3].fX) / 4;
michael@0 501 dst.pts[4].fY = (fPts[1].fY + 2 * fPts[2].fY + fPts[3].fY) / 4;
michael@0 502 dst.pts[5].fX = (fPts[2].fX + fPts[3].fX) / 2;
michael@0 503 dst.pts[5].fY = (fPts[2].fY + fPts[3].fY) / 2;
michael@0 504 dst.pts[6] = fPts[3];
michael@0 505 return dst;
michael@0 506 }
michael@0 507 interp_cubic_coords(&fPts[0].fX, &dst.pts[0].fX, t);
michael@0 508 interp_cubic_coords(&fPts[0].fY, &dst.pts[0].fY, t);
michael@0 509 return dst;
michael@0 510 }
michael@0 511
michael@0 512 #ifdef SK_DEBUG
michael@0 513 void SkDCubic::dump() {
michael@0 514 SkDebugf("{{");
michael@0 515 int index = 0;
michael@0 516 do {
michael@0 517 fPts[index].dump();
michael@0 518 SkDebugf(", ");
michael@0 519 } while (++index < 3);
michael@0 520 fPts[index].dump();
michael@0 521 SkDebugf("}}\n");
michael@0 522 }
michael@0 523 #endif

mercurial