ipc/chromium/src/base/scoped_ptr.h

Wed, 31 Dec 2014 06:09:35 +0100

author
Michael Schloh von Bennewitz <michael@schloh.com>
date
Wed, 31 Dec 2014 06:09:35 +0100
changeset 0
6474c204b198
permissions
-rw-r--r--

Cloned upstream origin tor-browser at tor-browser-31.3.0esr-4.5-1-build1
revision ID fc1c9ff7c1b2defdbc039f12214767608f46423f for hacking purpose.

     1 // Copyright (c) 2006-2008 The Chromium Authors. All rights reserved.
     2 // Use of this source code is governed by a BSD-style license that can be
     3 // found in the LICENSE file.
     5 // Scopers help you manage ownership of a pointer, helping you easily manage the
     6 // a pointer within a scope, and automatically destroying the pointer at the
     7 // end of a scope.  There are two main classes you will use, which coorespond
     8 // to the operators new/delete and new[]/delete[].
     9 //
    10 // Example usage (scoped_ptr):
    11 //   {
    12 //     scoped_ptr<Foo> foo(new Foo("wee"));
    13 //   }  // foo goes out of scope, releasing the pointer with it.
    14 //
    15 //   {
    16 //     scoped_ptr<Foo> foo;          // No pointer managed.
    17 //     foo.reset(new Foo("wee"));    // Now a pointer is managed.
    18 //     foo.reset(new Foo("wee2"));   // Foo("wee") was destroyed.
    19 //     foo.reset(new Foo("wee3"));   // Foo("wee2") was destroyed.
    20 //     foo->Method();                // Foo::Method() called.
    21 //     foo.get()->Method();          // Foo::Method() called.
    22 //     SomeFunc(foo.Release());      // SomeFunc takes owernship, foo no longer
    23 //                                   // manages a pointer.
    24 //     foo.reset(new Foo("wee4"));   // foo manages a pointer again.
    25 //     foo.reset();                  // Foo("wee4") destroyed, foo no longer
    26 //                                   // manages a pointer.
    27 //   }  // foo wasn't managing a pointer, so nothing was destroyed.
    28 //
    29 // Example usage (scoped_array):
    30 //   {
    31 //     scoped_array<Foo> foo(new Foo[100]);
    32 //     foo.get()->Method();  // Foo::Method on the 0th element.
    33 //     foo[10].Method();     // Foo::Method on the 10th element.
    34 //   }
    36 #ifndef BASE_SCOPED_PTR_H_
    37 #define BASE_SCOPED_PTR_H_
    39 // This is an implementation designed to match the anticipated future TR2
    40 // implementation of the scoped_ptr class, and its closely-related brethren,
    41 // scoped_array, scoped_ptr_malloc.
    43 #include <assert.h>
    44 #include <stdlib.h>
    45 #include <cstddef>
    47 // A scoped_ptr<T> is like a T*, except that the destructor of scoped_ptr<T>
    48 // automatically deletes the pointer it holds (if any).
    49 // That is, scoped_ptr<T> owns the T object that it points to.
    50 // Like a T*, a scoped_ptr<T> may hold either NULL or a pointer to a T object.
    51 // Also like T*, scoped_ptr<T> is thread-compatible, and once you
    52 // dereference it, you get the threadsafety guarantees of T.
    53 //
    54 // The size of a scoped_ptr is small:
    55 // sizeof(scoped_ptr<C>) == sizeof(C*)
    56 template <class C>
    57 class scoped_ptr {
    58  public:
    60   // The element type
    61   typedef C element_type;
    63   // Constructor.  Defaults to intializing with NULL.
    64   // There is no way to create an uninitialized scoped_ptr.
    65   // The input parameter must be allocated with new.
    66   explicit scoped_ptr(C* p = NULL) : ptr_(p) { }
    68   // Destructor.  If there is a C object, delete it.
    69   // We don't need to test ptr_ == NULL because C++ does that for us.
    70   ~scoped_ptr() {
    71     enum { type_must_be_complete = sizeof(C) };
    72     delete ptr_;
    73   }
    75   // Reset.  Deletes the current owned object, if any.
    76   // Then takes ownership of a new object, if given.
    77   // this->reset(this->get()) works.
    78   void reset(C* p = NULL) {
    79     if (p != ptr_) {
    80       enum { type_must_be_complete = sizeof(C) };
    81       delete ptr_;
    82       ptr_ = p;
    83     }
    84   }
    86   // Accessors to get the owned object.
    87   // operator* and operator-> will assert() if there is no current object.
    88   C& operator*() const {
    89     assert(ptr_ != NULL);
    90     return *ptr_;
    91   }
    92   C* operator->() const  {
    93     assert(ptr_ != NULL);
    94     return ptr_;
    95   }
    96   C* get() const { return ptr_; }
    98   // Comparison operators.
    99   // These return whether two scoped_ptr refer to the same object, not just to
   100   // two different but equal objects.
   101   bool operator==(C* p) const { return ptr_ == p; }
   102   bool operator!=(C* p) const { return ptr_ != p; }
   104   // Swap two scoped pointers.
   105   void swap(scoped_ptr& p2) {
   106     C* tmp = ptr_;
   107     ptr_ = p2.ptr_;
   108     p2.ptr_ = tmp;
   109   }
   111   // Release a pointer.
   112   // The return value is the current pointer held by this object.
   113   // If this object holds a NULL pointer, the return value is NULL.
   114   // After this operation, this object will hold a NULL pointer,
   115   // and will not own the object any more.
   116   C* release() {
   117     C* retVal = ptr_;
   118     ptr_ = NULL;
   119     return retVal;
   120   }
   122  private:
   123   C* ptr_;
   125   // Forbid comparison of scoped_ptr types.  If C2 != C, it totally doesn't
   126   // make sense, and if C2 == C, it still doesn't make sense because you should
   127   // never have the same object owned by two different scoped_ptrs.
   128   template <class C2> bool operator==(scoped_ptr<C2> const& p2) const;
   129   template <class C2> bool operator!=(scoped_ptr<C2> const& p2) const;
   131   // Disallow evil constructors
   132   scoped_ptr(const scoped_ptr&);
   133   void operator=(const scoped_ptr&);
   134 };
   136 // Free functions
   137 template <class C>
   138 void swap(scoped_ptr<C>& p1, scoped_ptr<C>& p2) {
   139   p1.swap(p2);
   140 }
   142 template <class C>
   143 bool operator==(C* p1, const scoped_ptr<C>& p2) {
   144   return p1 == p2.get();
   145 }
   147 template <class C>
   148 bool operator!=(C* p1, const scoped_ptr<C>& p2) {
   149   return p1 != p2.get();
   150 }
   152 // scoped_array<C> is like scoped_ptr<C>, except that the caller must allocate
   153 // with new [] and the destructor deletes objects with delete [].
   154 //
   155 // As with scoped_ptr<C>, a scoped_array<C> either points to an object
   156 // or is NULL.  A scoped_array<C> owns the object that it points to.
   157 // scoped_array<T> is thread-compatible, and once you index into it,
   158 // the returned objects have only the threadsafety guarantees of T.
   159 //
   160 // Size: sizeof(scoped_array<C>) == sizeof(C*)
   161 template <class C>
   162 class scoped_array {
   163  public:
   165   // The element type
   166   typedef C element_type;
   168   // Constructor.  Defaults to intializing with NULL.
   169   // There is no way to create an uninitialized scoped_array.
   170   // The input parameter must be allocated with new [].
   171   explicit scoped_array(C* p = NULL) : array_(p) { }
   173   // Destructor.  If there is a C object, delete it.
   174   // We don't need to test ptr_ == NULL because C++ does that for us.
   175   ~scoped_array() {
   176     enum { type_must_be_complete = sizeof(C) };
   177     delete[] array_;
   178   }
   180   // Reset.  Deletes the current owned object, if any.
   181   // Then takes ownership of a new object, if given.
   182   // this->reset(this->get()) works.
   183   void reset(C* p = NULL) {
   184     if (p != array_) {
   185       enum { type_must_be_complete = sizeof(C) };
   186       delete[] array_;
   187       array_ = p;
   188     }
   189   }
   191   // Get one element of the current object.
   192   // Will assert() if there is no current object, or index i is negative.
   193   C& operator[](std::ptrdiff_t i) const {
   194     assert(i >= 0);
   195     assert(array_ != NULL);
   196     return array_[i];
   197   }
   199   // Get a pointer to the zeroth element of the current object.
   200   // If there is no current object, return NULL.
   201   C* get() const {
   202     return array_;
   203   }
   205   // Comparison operators.
   206   // These return whether two scoped_array refer to the same object, not just to
   207   // two different but equal objects.
   208   bool operator==(C* p) const { return array_ == p; }
   209   bool operator!=(C* p) const { return array_ != p; }
   211   // Swap two scoped arrays.
   212   void swap(scoped_array& p2) {
   213     C* tmp = array_;
   214     array_ = p2.array_;
   215     p2.array_ = tmp;
   216   }
   218   // Release an array.
   219   // The return value is the current pointer held by this object.
   220   // If this object holds a NULL pointer, the return value is NULL.
   221   // After this operation, this object will hold a NULL pointer,
   222   // and will not own the object any more.
   223   C* release() {
   224     C* retVal = array_;
   225     array_ = NULL;
   226     return retVal;
   227   }
   229  private:
   230   C* array_;
   232   // Forbid comparison of different scoped_array types.
   233   template <class C2> bool operator==(scoped_array<C2> const& p2) const;
   234   template <class C2> bool operator!=(scoped_array<C2> const& p2) const;
   236   // Disallow evil constructors
   237   scoped_array(const scoped_array&);
   238   void operator=(const scoped_array&);
   239 };
   241 // Free functions
   242 template <class C>
   243 void swap(scoped_array<C>& p1, scoped_array<C>& p2) {
   244   p1.swap(p2);
   245 }
   247 template <class C>
   248 bool operator==(C* p1, const scoped_array<C>& p2) {
   249   return p1 == p2.get();
   250 }
   252 template <class C>
   253 bool operator!=(C* p1, const scoped_array<C>& p2) {
   254   return p1 != p2.get();
   255 }
   257 // This class wraps the c library function free() in a class that can be
   258 // passed as a template argument to scoped_ptr_malloc below.
   259 class ScopedPtrMallocFree {
   260  public:
   261   inline void operator()(void* x) const {
   262     free(x);
   263   }
   264 };
   266 // scoped_ptr_malloc<> is similar to scoped_ptr<>, but it accepts a
   267 // second template argument, the functor used to free the object.
   269 template<class C, class FreeProc = ScopedPtrMallocFree>
   270 class scoped_ptr_malloc {
   271  public:
   273   // The element type
   274   typedef C element_type;
   276   // Constructor.  Defaults to intializing with NULL.
   277   // There is no way to create an uninitialized scoped_ptr.
   278   // The input parameter must be allocated with an allocator that matches the
   279   // Free functor.  For the default Free functor, this is malloc, calloc, or
   280   // realloc.
   281   explicit scoped_ptr_malloc(C* p = NULL): ptr_(p) {}
   283   // Destructor.  If there is a C object, call the Free functor.
   284   ~scoped_ptr_malloc() {
   285     free_(ptr_);
   286   }
   288   // Reset.  Calls the Free functor on the current owned object, if any.
   289   // Then takes ownership of a new object, if given.
   290   // this->reset(this->get()) works.
   291   void reset(C* p = NULL) {
   292     if (ptr_ != p) {
   293       free_(ptr_);
   294       ptr_ = p;
   295     }
   296   }
   298   // Get the current object.
   299   // operator* and operator-> will cause an assert() failure if there is
   300   // no current object.
   301   C& operator*() const {
   302     assert(ptr_ != NULL);
   303     return *ptr_;
   304   }
   306   C* operator->() const {
   307     assert(ptr_ != NULL);
   308     return ptr_;
   309   }
   311   C* get() const {
   312     return ptr_;
   313   }
   315   // Comparison operators.
   316   // These return whether a scoped_ptr_malloc and a plain pointer refer
   317   // to the same object, not just to two different but equal objects.
   318   // For compatibility wwith the boost-derived implementation, these
   319   // take non-const arguments.
   320   bool operator==(C* p) const {
   321     return ptr_ == p;
   322   }
   324   bool operator!=(C* p) const {
   325     return ptr_ != p;
   326   }
   328   // Swap two scoped pointers.
   329   void swap(scoped_ptr_malloc & b) {
   330     C* tmp = b.ptr_;
   331     b.ptr_ = ptr_;
   332     ptr_ = tmp;
   333   }
   335   // Release a pointer.
   336   // The return value is the current pointer held by this object.
   337   // If this object holds a NULL pointer, the return value is NULL.
   338   // After this operation, this object will hold a NULL pointer,
   339   // and will not own the object any more.
   340   C* release() {
   341     C* tmp = ptr_;
   342     ptr_ = NULL;
   343     return tmp;
   344   }
   346  private:
   347   C* ptr_;
   349   // no reason to use these: each scoped_ptr_malloc should have its own object
   350   template <class C2, class GP>
   351   bool operator==(scoped_ptr_malloc<C2, GP> const& p) const;
   352   template <class C2, class GP>
   353   bool operator!=(scoped_ptr_malloc<C2, GP> const& p) const;
   355   static FreeProc const free_;
   357   // Disallow evil constructors
   358   scoped_ptr_malloc(const scoped_ptr_malloc&);
   359   void operator=(const scoped_ptr_malloc&);
   360 };
   362 template<class C, class FP>
   363 FP const scoped_ptr_malloc<C, FP>::free_ = FP();
   365 template<class C, class FP> inline
   366 void swap(scoped_ptr_malloc<C, FP>& a, scoped_ptr_malloc<C, FP>& b) {
   367   a.swap(b);
   368 }
   370 template<class C, class FP> inline
   371 bool operator==(C* p, const scoped_ptr_malloc<C, FP>& b) {
   372   return p == b.get();
   373 }
   375 template<class C, class FP> inline
   376 bool operator!=(C* p, const scoped_ptr_malloc<C, FP>& b) {
   377   return p != b.get();
   378 }
   380 #endif  // BASE_SCOPED_PTR_H_

mercurial