ipc/chromium/src/base/scoped_ptr.h

Wed, 31 Dec 2014 06:09:35 +0100

author
Michael Schloh von Bennewitz <michael@schloh.com>
date
Wed, 31 Dec 2014 06:09:35 +0100
changeset 0
6474c204b198
permissions
-rw-r--r--

Cloned upstream origin tor-browser at tor-browser-31.3.0esr-4.5-1-build1
revision ID fc1c9ff7c1b2defdbc039f12214767608f46423f for hacking purpose.

michael@0 1 // Copyright (c) 2006-2008 The Chromium Authors. All rights reserved.
michael@0 2 // Use of this source code is governed by a BSD-style license that can be
michael@0 3 // found in the LICENSE file.
michael@0 4
michael@0 5 // Scopers help you manage ownership of a pointer, helping you easily manage the
michael@0 6 // a pointer within a scope, and automatically destroying the pointer at the
michael@0 7 // end of a scope. There are two main classes you will use, which coorespond
michael@0 8 // to the operators new/delete and new[]/delete[].
michael@0 9 //
michael@0 10 // Example usage (scoped_ptr):
michael@0 11 // {
michael@0 12 // scoped_ptr<Foo> foo(new Foo("wee"));
michael@0 13 // } // foo goes out of scope, releasing the pointer with it.
michael@0 14 //
michael@0 15 // {
michael@0 16 // scoped_ptr<Foo> foo; // No pointer managed.
michael@0 17 // foo.reset(new Foo("wee")); // Now a pointer is managed.
michael@0 18 // foo.reset(new Foo("wee2")); // Foo("wee") was destroyed.
michael@0 19 // foo.reset(new Foo("wee3")); // Foo("wee2") was destroyed.
michael@0 20 // foo->Method(); // Foo::Method() called.
michael@0 21 // foo.get()->Method(); // Foo::Method() called.
michael@0 22 // SomeFunc(foo.Release()); // SomeFunc takes owernship, foo no longer
michael@0 23 // // manages a pointer.
michael@0 24 // foo.reset(new Foo("wee4")); // foo manages a pointer again.
michael@0 25 // foo.reset(); // Foo("wee4") destroyed, foo no longer
michael@0 26 // // manages a pointer.
michael@0 27 // } // foo wasn't managing a pointer, so nothing was destroyed.
michael@0 28 //
michael@0 29 // Example usage (scoped_array):
michael@0 30 // {
michael@0 31 // scoped_array<Foo> foo(new Foo[100]);
michael@0 32 // foo.get()->Method(); // Foo::Method on the 0th element.
michael@0 33 // foo[10].Method(); // Foo::Method on the 10th element.
michael@0 34 // }
michael@0 35
michael@0 36 #ifndef BASE_SCOPED_PTR_H_
michael@0 37 #define BASE_SCOPED_PTR_H_
michael@0 38
michael@0 39 // This is an implementation designed to match the anticipated future TR2
michael@0 40 // implementation of the scoped_ptr class, and its closely-related brethren,
michael@0 41 // scoped_array, scoped_ptr_malloc.
michael@0 42
michael@0 43 #include <assert.h>
michael@0 44 #include <stdlib.h>
michael@0 45 #include <cstddef>
michael@0 46
michael@0 47 // A scoped_ptr<T> is like a T*, except that the destructor of scoped_ptr<T>
michael@0 48 // automatically deletes the pointer it holds (if any).
michael@0 49 // That is, scoped_ptr<T> owns the T object that it points to.
michael@0 50 // Like a T*, a scoped_ptr<T> may hold either NULL or a pointer to a T object.
michael@0 51 // Also like T*, scoped_ptr<T> is thread-compatible, and once you
michael@0 52 // dereference it, you get the threadsafety guarantees of T.
michael@0 53 //
michael@0 54 // The size of a scoped_ptr is small:
michael@0 55 // sizeof(scoped_ptr<C>) == sizeof(C*)
michael@0 56 template <class C>
michael@0 57 class scoped_ptr {
michael@0 58 public:
michael@0 59
michael@0 60 // The element type
michael@0 61 typedef C element_type;
michael@0 62
michael@0 63 // Constructor. Defaults to intializing with NULL.
michael@0 64 // There is no way to create an uninitialized scoped_ptr.
michael@0 65 // The input parameter must be allocated with new.
michael@0 66 explicit scoped_ptr(C* p = NULL) : ptr_(p) { }
michael@0 67
michael@0 68 // Destructor. If there is a C object, delete it.
michael@0 69 // We don't need to test ptr_ == NULL because C++ does that for us.
michael@0 70 ~scoped_ptr() {
michael@0 71 enum { type_must_be_complete = sizeof(C) };
michael@0 72 delete ptr_;
michael@0 73 }
michael@0 74
michael@0 75 // Reset. Deletes the current owned object, if any.
michael@0 76 // Then takes ownership of a new object, if given.
michael@0 77 // this->reset(this->get()) works.
michael@0 78 void reset(C* p = NULL) {
michael@0 79 if (p != ptr_) {
michael@0 80 enum { type_must_be_complete = sizeof(C) };
michael@0 81 delete ptr_;
michael@0 82 ptr_ = p;
michael@0 83 }
michael@0 84 }
michael@0 85
michael@0 86 // Accessors to get the owned object.
michael@0 87 // operator* and operator-> will assert() if there is no current object.
michael@0 88 C& operator*() const {
michael@0 89 assert(ptr_ != NULL);
michael@0 90 return *ptr_;
michael@0 91 }
michael@0 92 C* operator->() const {
michael@0 93 assert(ptr_ != NULL);
michael@0 94 return ptr_;
michael@0 95 }
michael@0 96 C* get() const { return ptr_; }
michael@0 97
michael@0 98 // Comparison operators.
michael@0 99 // These return whether two scoped_ptr refer to the same object, not just to
michael@0 100 // two different but equal objects.
michael@0 101 bool operator==(C* p) const { return ptr_ == p; }
michael@0 102 bool operator!=(C* p) const { return ptr_ != p; }
michael@0 103
michael@0 104 // Swap two scoped pointers.
michael@0 105 void swap(scoped_ptr& p2) {
michael@0 106 C* tmp = ptr_;
michael@0 107 ptr_ = p2.ptr_;
michael@0 108 p2.ptr_ = tmp;
michael@0 109 }
michael@0 110
michael@0 111 // Release a pointer.
michael@0 112 // The return value is the current pointer held by this object.
michael@0 113 // If this object holds a NULL pointer, the return value is NULL.
michael@0 114 // After this operation, this object will hold a NULL pointer,
michael@0 115 // and will not own the object any more.
michael@0 116 C* release() {
michael@0 117 C* retVal = ptr_;
michael@0 118 ptr_ = NULL;
michael@0 119 return retVal;
michael@0 120 }
michael@0 121
michael@0 122 private:
michael@0 123 C* ptr_;
michael@0 124
michael@0 125 // Forbid comparison of scoped_ptr types. If C2 != C, it totally doesn't
michael@0 126 // make sense, and if C2 == C, it still doesn't make sense because you should
michael@0 127 // never have the same object owned by two different scoped_ptrs.
michael@0 128 template <class C2> bool operator==(scoped_ptr<C2> const& p2) const;
michael@0 129 template <class C2> bool operator!=(scoped_ptr<C2> const& p2) const;
michael@0 130
michael@0 131 // Disallow evil constructors
michael@0 132 scoped_ptr(const scoped_ptr&);
michael@0 133 void operator=(const scoped_ptr&);
michael@0 134 };
michael@0 135
michael@0 136 // Free functions
michael@0 137 template <class C>
michael@0 138 void swap(scoped_ptr<C>& p1, scoped_ptr<C>& p2) {
michael@0 139 p1.swap(p2);
michael@0 140 }
michael@0 141
michael@0 142 template <class C>
michael@0 143 bool operator==(C* p1, const scoped_ptr<C>& p2) {
michael@0 144 return p1 == p2.get();
michael@0 145 }
michael@0 146
michael@0 147 template <class C>
michael@0 148 bool operator!=(C* p1, const scoped_ptr<C>& p2) {
michael@0 149 return p1 != p2.get();
michael@0 150 }
michael@0 151
michael@0 152 // scoped_array<C> is like scoped_ptr<C>, except that the caller must allocate
michael@0 153 // with new [] and the destructor deletes objects with delete [].
michael@0 154 //
michael@0 155 // As with scoped_ptr<C>, a scoped_array<C> either points to an object
michael@0 156 // or is NULL. A scoped_array<C> owns the object that it points to.
michael@0 157 // scoped_array<T> is thread-compatible, and once you index into it,
michael@0 158 // the returned objects have only the threadsafety guarantees of T.
michael@0 159 //
michael@0 160 // Size: sizeof(scoped_array<C>) == sizeof(C*)
michael@0 161 template <class C>
michael@0 162 class scoped_array {
michael@0 163 public:
michael@0 164
michael@0 165 // The element type
michael@0 166 typedef C element_type;
michael@0 167
michael@0 168 // Constructor. Defaults to intializing with NULL.
michael@0 169 // There is no way to create an uninitialized scoped_array.
michael@0 170 // The input parameter must be allocated with new [].
michael@0 171 explicit scoped_array(C* p = NULL) : array_(p) { }
michael@0 172
michael@0 173 // Destructor. If there is a C object, delete it.
michael@0 174 // We don't need to test ptr_ == NULL because C++ does that for us.
michael@0 175 ~scoped_array() {
michael@0 176 enum { type_must_be_complete = sizeof(C) };
michael@0 177 delete[] array_;
michael@0 178 }
michael@0 179
michael@0 180 // Reset. Deletes the current owned object, if any.
michael@0 181 // Then takes ownership of a new object, if given.
michael@0 182 // this->reset(this->get()) works.
michael@0 183 void reset(C* p = NULL) {
michael@0 184 if (p != array_) {
michael@0 185 enum { type_must_be_complete = sizeof(C) };
michael@0 186 delete[] array_;
michael@0 187 array_ = p;
michael@0 188 }
michael@0 189 }
michael@0 190
michael@0 191 // Get one element of the current object.
michael@0 192 // Will assert() if there is no current object, or index i is negative.
michael@0 193 C& operator[](std::ptrdiff_t i) const {
michael@0 194 assert(i >= 0);
michael@0 195 assert(array_ != NULL);
michael@0 196 return array_[i];
michael@0 197 }
michael@0 198
michael@0 199 // Get a pointer to the zeroth element of the current object.
michael@0 200 // If there is no current object, return NULL.
michael@0 201 C* get() const {
michael@0 202 return array_;
michael@0 203 }
michael@0 204
michael@0 205 // Comparison operators.
michael@0 206 // These return whether two scoped_array refer to the same object, not just to
michael@0 207 // two different but equal objects.
michael@0 208 bool operator==(C* p) const { return array_ == p; }
michael@0 209 bool operator!=(C* p) const { return array_ != p; }
michael@0 210
michael@0 211 // Swap two scoped arrays.
michael@0 212 void swap(scoped_array& p2) {
michael@0 213 C* tmp = array_;
michael@0 214 array_ = p2.array_;
michael@0 215 p2.array_ = tmp;
michael@0 216 }
michael@0 217
michael@0 218 // Release an array.
michael@0 219 // The return value is the current pointer held by this object.
michael@0 220 // If this object holds a NULL pointer, the return value is NULL.
michael@0 221 // After this operation, this object will hold a NULL pointer,
michael@0 222 // and will not own the object any more.
michael@0 223 C* release() {
michael@0 224 C* retVal = array_;
michael@0 225 array_ = NULL;
michael@0 226 return retVal;
michael@0 227 }
michael@0 228
michael@0 229 private:
michael@0 230 C* array_;
michael@0 231
michael@0 232 // Forbid comparison of different scoped_array types.
michael@0 233 template <class C2> bool operator==(scoped_array<C2> const& p2) const;
michael@0 234 template <class C2> bool operator!=(scoped_array<C2> const& p2) const;
michael@0 235
michael@0 236 // Disallow evil constructors
michael@0 237 scoped_array(const scoped_array&);
michael@0 238 void operator=(const scoped_array&);
michael@0 239 };
michael@0 240
michael@0 241 // Free functions
michael@0 242 template <class C>
michael@0 243 void swap(scoped_array<C>& p1, scoped_array<C>& p2) {
michael@0 244 p1.swap(p2);
michael@0 245 }
michael@0 246
michael@0 247 template <class C>
michael@0 248 bool operator==(C* p1, const scoped_array<C>& p2) {
michael@0 249 return p1 == p2.get();
michael@0 250 }
michael@0 251
michael@0 252 template <class C>
michael@0 253 bool operator!=(C* p1, const scoped_array<C>& p2) {
michael@0 254 return p1 != p2.get();
michael@0 255 }
michael@0 256
michael@0 257 // This class wraps the c library function free() in a class that can be
michael@0 258 // passed as a template argument to scoped_ptr_malloc below.
michael@0 259 class ScopedPtrMallocFree {
michael@0 260 public:
michael@0 261 inline void operator()(void* x) const {
michael@0 262 free(x);
michael@0 263 }
michael@0 264 };
michael@0 265
michael@0 266 // scoped_ptr_malloc<> is similar to scoped_ptr<>, but it accepts a
michael@0 267 // second template argument, the functor used to free the object.
michael@0 268
michael@0 269 template<class C, class FreeProc = ScopedPtrMallocFree>
michael@0 270 class scoped_ptr_malloc {
michael@0 271 public:
michael@0 272
michael@0 273 // The element type
michael@0 274 typedef C element_type;
michael@0 275
michael@0 276 // Constructor. Defaults to intializing with NULL.
michael@0 277 // There is no way to create an uninitialized scoped_ptr.
michael@0 278 // The input parameter must be allocated with an allocator that matches the
michael@0 279 // Free functor. For the default Free functor, this is malloc, calloc, or
michael@0 280 // realloc.
michael@0 281 explicit scoped_ptr_malloc(C* p = NULL): ptr_(p) {}
michael@0 282
michael@0 283 // Destructor. If there is a C object, call the Free functor.
michael@0 284 ~scoped_ptr_malloc() {
michael@0 285 free_(ptr_);
michael@0 286 }
michael@0 287
michael@0 288 // Reset. Calls the Free functor on the current owned object, if any.
michael@0 289 // Then takes ownership of a new object, if given.
michael@0 290 // this->reset(this->get()) works.
michael@0 291 void reset(C* p = NULL) {
michael@0 292 if (ptr_ != p) {
michael@0 293 free_(ptr_);
michael@0 294 ptr_ = p;
michael@0 295 }
michael@0 296 }
michael@0 297
michael@0 298 // Get the current object.
michael@0 299 // operator* and operator-> will cause an assert() failure if there is
michael@0 300 // no current object.
michael@0 301 C& operator*() const {
michael@0 302 assert(ptr_ != NULL);
michael@0 303 return *ptr_;
michael@0 304 }
michael@0 305
michael@0 306 C* operator->() const {
michael@0 307 assert(ptr_ != NULL);
michael@0 308 return ptr_;
michael@0 309 }
michael@0 310
michael@0 311 C* get() const {
michael@0 312 return ptr_;
michael@0 313 }
michael@0 314
michael@0 315 // Comparison operators.
michael@0 316 // These return whether a scoped_ptr_malloc and a plain pointer refer
michael@0 317 // to the same object, not just to two different but equal objects.
michael@0 318 // For compatibility wwith the boost-derived implementation, these
michael@0 319 // take non-const arguments.
michael@0 320 bool operator==(C* p) const {
michael@0 321 return ptr_ == p;
michael@0 322 }
michael@0 323
michael@0 324 bool operator!=(C* p) const {
michael@0 325 return ptr_ != p;
michael@0 326 }
michael@0 327
michael@0 328 // Swap two scoped pointers.
michael@0 329 void swap(scoped_ptr_malloc & b) {
michael@0 330 C* tmp = b.ptr_;
michael@0 331 b.ptr_ = ptr_;
michael@0 332 ptr_ = tmp;
michael@0 333 }
michael@0 334
michael@0 335 // Release a pointer.
michael@0 336 // The return value is the current pointer held by this object.
michael@0 337 // If this object holds a NULL pointer, the return value is NULL.
michael@0 338 // After this operation, this object will hold a NULL pointer,
michael@0 339 // and will not own the object any more.
michael@0 340 C* release() {
michael@0 341 C* tmp = ptr_;
michael@0 342 ptr_ = NULL;
michael@0 343 return tmp;
michael@0 344 }
michael@0 345
michael@0 346 private:
michael@0 347 C* ptr_;
michael@0 348
michael@0 349 // no reason to use these: each scoped_ptr_malloc should have its own object
michael@0 350 template <class C2, class GP>
michael@0 351 bool operator==(scoped_ptr_malloc<C2, GP> const& p) const;
michael@0 352 template <class C2, class GP>
michael@0 353 bool operator!=(scoped_ptr_malloc<C2, GP> const& p) const;
michael@0 354
michael@0 355 static FreeProc const free_;
michael@0 356
michael@0 357 // Disallow evil constructors
michael@0 358 scoped_ptr_malloc(const scoped_ptr_malloc&);
michael@0 359 void operator=(const scoped_ptr_malloc&);
michael@0 360 };
michael@0 361
michael@0 362 template<class C, class FP>
michael@0 363 FP const scoped_ptr_malloc<C, FP>::free_ = FP();
michael@0 364
michael@0 365 template<class C, class FP> inline
michael@0 366 void swap(scoped_ptr_malloc<C, FP>& a, scoped_ptr_malloc<C, FP>& b) {
michael@0 367 a.swap(b);
michael@0 368 }
michael@0 369
michael@0 370 template<class C, class FP> inline
michael@0 371 bool operator==(C* p, const scoped_ptr_malloc<C, FP>& b) {
michael@0 372 return p == b.get();
michael@0 373 }
michael@0 374
michael@0 375 template<class C, class FP> inline
michael@0 376 bool operator!=(C* p, const scoped_ptr_malloc<C, FP>& b) {
michael@0 377 return p != b.get();
michael@0 378 }
michael@0 379
michael@0 380 #endif // BASE_SCOPED_PTR_H_

mercurial