js/src/jsmath.cpp

Wed, 31 Dec 2014 06:09:35 +0100

author
Michael Schloh von Bennewitz <michael@schloh.com>
date
Wed, 31 Dec 2014 06:09:35 +0100
changeset 0
6474c204b198
permissions
-rw-r--r--

Cloned upstream origin tor-browser at tor-browser-31.3.0esr-4.5-1-build1
revision ID fc1c9ff7c1b2defdbc039f12214767608f46423f for hacking purpose.

     1 /* -*- Mode: C++; tab-width: 8; indent-tabs-mode: nil; c-basic-offset: 4 -*-
     2  * vim: set ts=8 sts=4 et sw=4 tw=99:
     3  * This Source Code Form is subject to the terms of the Mozilla Public
     4  * License, v. 2.0. If a copy of the MPL was not distributed with this
     5  * file, You can obtain one at http://mozilla.org/MPL/2.0/. */
     7 /*
     8  * JS math package.
     9  */
    11 #include "jsmath.h"
    13 #include "mozilla/Constants.h"
    14 #include "mozilla/FloatingPoint.h"
    15 #include "mozilla/MathAlgorithms.h"
    16 #include "mozilla/MemoryReporting.h"
    18 #include <algorithm>  // for std::max
    19 #include <fcntl.h>
    21 #ifdef XP_UNIX
    22 # include <unistd.h>
    23 #endif
    25 #include "jsapi.h"
    26 #include "jsatom.h"
    27 #include "jscntxt.h"
    28 #include "jscompartment.h"
    29 #include "jslibmath.h"
    30 #include "jstypes.h"
    31 #include "prmjtime.h"
    33 #include "jsobjinlines.h"
    35 using namespace js;
    37 using mozilla::Abs;
    38 using mozilla::NumberEqualsInt32;
    39 using mozilla::NumberIsInt32;
    40 using mozilla::ExponentComponent;
    41 using mozilla::FloatingPoint;
    42 using mozilla::IsFinite;
    43 using mozilla::IsInfinite;
    44 using mozilla::IsNaN;
    45 using mozilla::IsNegative;
    46 using mozilla::IsNegativeZero;
    47 using mozilla::PositiveInfinity;
    48 using mozilla::NegativeInfinity;
    49 using JS::ToNumber;
    50 using JS::GenericNaN;
    52 static const JSConstDoubleSpec math_constants[] = {
    53     {M_E,       "E",            0, {0,0,0}},
    54     {M_LOG2E,   "LOG2E",        0, {0,0,0}},
    55     {M_LOG10E,  "LOG10E",       0, {0,0,0}},
    56     {M_LN2,     "LN2",          0, {0,0,0}},
    57     {M_LN10,    "LN10",         0, {0,0,0}},
    58     {M_PI,      "PI",           0, {0,0,0}},
    59     {M_SQRT2,   "SQRT2",        0, {0,0,0}},
    60     {M_SQRT1_2, "SQRT1_2",      0, {0,0,0}},
    61     {0,0,0,{0,0,0}}
    62 };
    64 MathCache::MathCache() {
    65     memset(table, 0, sizeof(table));
    67     /* See comments in lookup(). */
    68     JS_ASSERT(IsNegativeZero(-0.0));
    69     JS_ASSERT(!IsNegativeZero(+0.0));
    70     JS_ASSERT(hash(-0.0) != hash(+0.0));
    71 }
    73 size_t
    74 MathCache::sizeOfIncludingThis(mozilla::MallocSizeOf mallocSizeOf)
    75 {
    76     return mallocSizeOf(this);
    77 }
    79 const Class js::MathClass = {
    80     js_Math_str,
    81     JSCLASS_HAS_CACHED_PROTO(JSProto_Math),
    82     JS_PropertyStub,         /* addProperty */
    83     JS_DeletePropertyStub,   /* delProperty */
    84     JS_PropertyStub,         /* getProperty */
    85     JS_StrictPropertyStub,   /* setProperty */
    86     JS_EnumerateStub,
    87     JS_ResolveStub,
    88     JS_ConvertStub
    89 };
    91 bool
    92 js_math_abs(JSContext *cx, unsigned argc, Value *vp)
    93 {
    94     CallArgs args = CallArgsFromVp(argc, vp);
    96     if (args.length() == 0) {
    97         args.rval().setNaN();
    98         return true;
    99     }
   101     double x;
   102     if (!ToNumber(cx, args[0], &x))
   103         return false;
   105     double z = Abs(x);
   106     args.rval().setNumber(z);
   107     return true;
   108 }
   110 #if defined(SOLARIS) && defined(__GNUC__)
   111 #define ACOS_IF_OUT_OF_RANGE(x) if (x < -1 || 1 < x) return GenericNaN();
   112 #else
   113 #define ACOS_IF_OUT_OF_RANGE(x)
   114 #endif
   116 double
   117 js::math_acos_impl(MathCache *cache, double x)
   118 {
   119     ACOS_IF_OUT_OF_RANGE(x);
   120     return cache->lookup(acos, x);
   121 }
   123 double
   124 js::math_acos_uncached(double x)
   125 {
   126     ACOS_IF_OUT_OF_RANGE(x);
   127     return acos(x);
   128 }
   130 #undef ACOS_IF_OUT_OF_RANGE
   132 bool
   133 js::math_acos(JSContext *cx, unsigned argc, Value *vp)
   134 {
   135     CallArgs args = CallArgsFromVp(argc, vp);
   137     if (args.length() == 0) {
   138         args.rval().setNaN();
   139         return true;
   140     }
   142     double x;
   143     if (!ToNumber(cx, args[0], &x))
   144         return false;
   146     MathCache *mathCache = cx->runtime()->getMathCache(cx);
   147     if (!mathCache)
   148         return false;
   150     double z = math_acos_impl(mathCache, x);
   151     args.rval().setDouble(z);
   152     return true;
   153 }
   155 #if defined(SOLARIS) && defined(__GNUC__)
   156 #define ASIN_IF_OUT_OF_RANGE(x) if (x < -1 || 1 < x) return GenericNaN();
   157 #else
   158 #define ASIN_IF_OUT_OF_RANGE(x)
   159 #endif
   161 double
   162 js::math_asin_impl(MathCache *cache, double x)
   163 {
   164     ASIN_IF_OUT_OF_RANGE(x);
   165     return cache->lookup(asin, x);
   166 }
   168 double
   169 js::math_asin_uncached(double x)
   170 {
   171     ASIN_IF_OUT_OF_RANGE(x);
   172     return asin(x);
   173 }
   175 #undef ASIN_IF_OUT_OF_RANGE
   177 bool
   178 js::math_asin(JSContext *cx, unsigned argc, Value *vp)
   179 {
   180     CallArgs args = CallArgsFromVp(argc, vp);
   182     if (args.length() == 0) {
   183         args.rval().setNaN();
   184         return true;
   185     }
   187     double x;
   188     if (!ToNumber(cx, args[0], &x))
   189         return false;
   191     MathCache *mathCache = cx->runtime()->getMathCache(cx);
   192     if (!mathCache)
   193         return false;
   195     double z = math_asin_impl(mathCache, x);
   196     args.rval().setDouble(z);
   197     return true;
   198 }
   200 double
   201 js::math_atan_impl(MathCache *cache, double x)
   202 {
   203     return cache->lookup(atan, x);
   204 }
   206 double
   207 js::math_atan_uncached(double x)
   208 {
   209     return atan(x);
   210 }
   212 bool
   213 js::math_atan(JSContext *cx, unsigned argc, Value *vp)
   214 {
   215     CallArgs args = CallArgsFromVp(argc, vp);
   217     if (args.length() == 0) {
   218         args.rval().setNaN();
   219         return true;
   220     }
   222     double x;
   223     if (!ToNumber(cx, args[0], &x))
   224         return false;
   226     MathCache *mathCache = cx->runtime()->getMathCache(cx);
   227     if (!mathCache)
   228         return false;
   230     double z = math_atan_impl(mathCache, x);
   231     args.rval().setDouble(z);
   232     return true;
   233 }
   235 double
   236 js::ecmaAtan2(double y, double x)
   237 {
   238 #if defined(_MSC_VER)
   239     /*
   240      * MSVC's atan2 does not yield the result demanded by ECMA when both x
   241      * and y are infinite.
   242      * - The result is a multiple of pi/4.
   243      * - The sign of y determines the sign of the result.
   244      * - The sign of x determines the multiplicator, 1 or 3.
   245      */
   246     if (IsInfinite(y) && IsInfinite(x)) {
   247         double z = js_copysign(M_PI / 4, y);
   248         if (x < 0)
   249             z *= 3;
   250         return z;
   251     }
   252 #endif
   254 #if defined(SOLARIS) && defined(__GNUC__)
   255     if (y == 0) {
   256         if (IsNegativeZero(x))
   257             return js_copysign(M_PI, y);
   258         if (x == 0)
   259             return y;
   260     }
   261 #endif
   262     return atan2(y, x);
   263 }
   265 bool
   266 js::math_atan2(JSContext *cx, unsigned argc, Value *vp)
   267 {
   268     CallArgs args = CallArgsFromVp(argc, vp);
   270     double y;
   271     if (!ToNumber(cx, args.get(0), &y))
   272         return false;
   274     double x;
   275     if (!ToNumber(cx, args.get(1), &x))
   276         return false;
   278     double z = ecmaAtan2(y, x);
   279     args.rval().setDouble(z);
   280     return true;
   281 }
   283 double
   284 js::math_ceil_impl(double x)
   285 {
   286 #ifdef __APPLE__
   287     if (x < 0 && x > -1.0)
   288         return js_copysign(0, -1);
   289 #endif
   290     return ceil(x);
   291 }
   293 bool
   294 js::math_ceil(JSContext *cx, unsigned argc, Value *vp)
   295 {
   296     CallArgs args = CallArgsFromVp(argc, vp);
   298     if (args.length() == 0) {
   299         args.rval().setNaN();
   300         return true;
   301     }
   303     double x;
   304     if (!ToNumber(cx, args[0], &x))
   305         return false;
   307     double z = math_ceil_impl(x);
   308     args.rval().setNumber(z);
   309     return true;
   310 }
   312 bool
   313 js::math_clz32(JSContext *cx, unsigned argc, Value *vp)
   314 {
   315     CallArgs args = CallArgsFromVp(argc, vp);
   317     if (args.length() == 0) {
   318         args.rval().setInt32(32);
   319         return true;
   320     }
   322     uint32_t n;
   323     if (!ToUint32(cx, args[0], &n))
   324         return false;
   326     if (n == 0) {
   327         args.rval().setInt32(32);
   328         return true;
   329     }
   331     args.rval().setInt32(mozilla::CountLeadingZeroes32(n));
   332     return true;
   333 }
   335 double
   336 js::math_cos_impl(MathCache *cache, double x)
   337 {
   338     return cache->lookup(cos, x);
   339 }
   341 double
   342 js::math_cos_uncached(double x)
   343 {
   344     return cos(x);
   345 }
   347 bool
   348 js::math_cos(JSContext *cx, unsigned argc, Value *vp)
   349 {
   350     CallArgs args = CallArgsFromVp(argc, vp);
   352     if (args.length() == 0) {
   353         args.rval().setNaN();
   354         return true;
   355     }
   357     double x;
   358     if (!ToNumber(cx, args[0], &x))
   359         return false;
   361     MathCache *mathCache = cx->runtime()->getMathCache(cx);
   362     if (!mathCache)
   363         return false;
   365     double z = math_cos_impl(mathCache, x);
   366     args.rval().setDouble(z);
   367     return true;
   368 }
   370 #ifdef _WIN32
   371 #define EXP_IF_OUT_OF_RANGE(x)                  \
   372     if (!IsNaN(x)) {                            \
   373         if (x == PositiveInfinity<double>())    \
   374             return PositiveInfinity<double>();  \
   375         if (x == NegativeInfinity<double>())    \
   376             return 0.0;                         \
   377     }
   378 #else
   379 #define EXP_IF_OUT_OF_RANGE(x)
   380 #endif
   382 double
   383 js::math_exp_impl(MathCache *cache, double x)
   384 {
   385     EXP_IF_OUT_OF_RANGE(x);
   386     return cache->lookup(exp, x);
   387 }
   389 double
   390 js::math_exp_uncached(double x)
   391 {
   392     EXP_IF_OUT_OF_RANGE(x);
   393     return exp(x);
   394 }
   396 #undef EXP_IF_OUT_OF_RANGE
   398 bool
   399 js::math_exp(JSContext *cx, unsigned argc, Value *vp)
   400 {
   401     CallArgs args = CallArgsFromVp(argc, vp);
   403     if (args.length() == 0) {
   404         args.rval().setNaN();
   405         return true;
   406     }
   408     double x;
   409     if (!ToNumber(cx, args[0], &x))
   410         return false;
   412     MathCache *mathCache = cx->runtime()->getMathCache(cx);
   413     if (!mathCache)
   414         return false;
   416     double z = math_exp_impl(mathCache, x);
   417     args.rval().setNumber(z);
   418     return true;
   419 }
   421 double
   422 js::math_floor_impl(double x)
   423 {
   424     return floor(x);
   425 }
   427 bool
   428 js::math_floor(JSContext *cx, unsigned argc, Value *vp)
   429 {
   430     CallArgs args = CallArgsFromVp(argc, vp);
   432     if (args.length() == 0) {
   433         args.rval().setNaN();
   434         return true;
   435     }
   437     double x;
   438     if (!ToNumber(cx, args[0], &x))
   439         return false;
   441     double z = math_floor_impl(x);
   442     args.rval().setNumber(z);
   443     return true;
   444 }
   446 bool
   447 js::math_imul(JSContext *cx, unsigned argc, Value *vp)
   448 {
   449     CallArgs args = CallArgsFromVp(argc, vp);
   451     uint32_t a = 0, b = 0;
   452     if (args.hasDefined(0) && !ToUint32(cx, args[0], &a))
   453         return false;
   454     if (args.hasDefined(1) && !ToUint32(cx, args[1], &b))
   455         return false;
   457     uint32_t product = a * b;
   458     args.rval().setInt32(product > INT32_MAX
   459                          ? int32_t(INT32_MIN + (product - INT32_MAX - 1))
   460                          : int32_t(product));
   461     return true;
   462 }
   464 // Implements Math.fround (20.2.2.16) up to step 3
   465 bool
   466 js::RoundFloat32(JSContext *cx, Handle<Value> v, float *out)
   467 {
   468     double d;
   469     bool success = ToNumber(cx, v, &d);
   470     *out = static_cast<float>(d);
   471     return success;
   472 }
   474 bool
   475 js::math_fround(JSContext *cx, unsigned argc, Value *vp)
   476 {
   477     CallArgs args = CallArgsFromVp(argc, vp);
   479     if (args.length() == 0) {
   480         args.rval().setNaN();
   481         return true;
   482     }
   484     float f;
   485     if (!RoundFloat32(cx, args[0], &f))
   486         return false;
   488     args.rval().setDouble(static_cast<double>(f));
   489     return true;
   490 }
   492 #if defined(SOLARIS) && defined(__GNUC__)
   493 #define LOG_IF_OUT_OF_RANGE(x) if (x < 0) return GenericNaN();
   494 #else
   495 #define LOG_IF_OUT_OF_RANGE(x)
   496 #endif
   498 double
   499 js::math_log_impl(MathCache *cache, double x)
   500 {
   501     LOG_IF_OUT_OF_RANGE(x);
   502     return cache->lookup(log, x);
   503 }
   505 double
   506 js::math_log_uncached(double x)
   507 {
   508     LOG_IF_OUT_OF_RANGE(x);
   509     return log(x);
   510 }
   512 #undef LOG_IF_OUT_OF_RANGE
   514 bool
   515 js::math_log(JSContext *cx, unsigned argc, Value *vp)
   516 {
   517     CallArgs args = CallArgsFromVp(argc, vp);
   519     if (args.length() == 0) {
   520         args.rval().setNaN();
   521         return true;
   522     }
   524     double x;
   525     if (!ToNumber(cx, args[0], &x))
   526         return false;
   528     MathCache *mathCache = cx->runtime()->getMathCache(cx);
   529     if (!mathCache)
   530         return false;
   532     double z = math_log_impl(mathCache, x);
   533     args.rval().setNumber(z);
   534     return true;
   535 }
   537 bool
   538 js_math_max(JSContext *cx, unsigned argc, Value *vp)
   539 {
   540     CallArgs args = CallArgsFromVp(argc, vp);
   542     double maxval = NegativeInfinity<double>();
   543     for (unsigned i = 0; i < args.length(); i++) {
   544         double x;
   545         if (!ToNumber(cx, args[i], &x))
   546             return false;
   547         // Math.max(num, NaN) => NaN, Math.max(-0, +0) => +0
   548         if (x > maxval || IsNaN(x) || (x == maxval && IsNegative(maxval)))
   549             maxval = x;
   550     }
   551     args.rval().setNumber(maxval);
   552     return true;
   553 }
   555 bool
   556 js_math_min(JSContext *cx, unsigned argc, Value *vp)
   557 {
   558     CallArgs args = CallArgsFromVp(argc, vp);
   560     double minval = PositiveInfinity<double>();
   561     for (unsigned i = 0; i < args.length(); i++) {
   562         double x;
   563         if (!ToNumber(cx, args[i], &x))
   564             return false;
   565         // Math.min(num, NaN) => NaN, Math.min(-0, +0) => -0
   566         if (x < minval || IsNaN(x) || (x == minval && IsNegativeZero(x)))
   567             minval = x;
   568     }
   569     args.rval().setNumber(minval);
   570     return true;
   571 }
   573 // Disable PGO for Math.pow() and related functions (see bug 791214).
   574 #if defined(_MSC_VER)
   575 # pragma optimize("g", off)
   576 #endif
   577 double
   578 js::powi(double x, int y)
   579 {
   580     unsigned n = (y < 0) ? -y : y;
   581     double m = x;
   582     double p = 1;
   583     while (true) {
   584         if ((n & 1) != 0) p *= m;
   585         n >>= 1;
   586         if (n == 0) {
   587             if (y < 0) {
   588                 // Unfortunately, we have to be careful when p has reached
   589                 // infinity in the computation, because sometimes the higher
   590                 // internal precision in the pow() implementation would have
   591                 // given us a finite p. This happens very rarely.
   593                 double result = 1.0 / p;
   594                 return (result == 0 && IsInfinite(p))
   595                        ? pow(x, static_cast<double>(y))  // Avoid pow(double, int).
   596                        : result;
   597             }
   599             return p;
   600         }
   601         m *= m;
   602     }
   603 }
   604 #if defined(_MSC_VER)
   605 # pragma optimize("", on)
   606 #endif
   608 // Disable PGO for Math.pow() and related functions (see bug 791214).
   609 #if defined(_MSC_VER)
   610 # pragma optimize("g", off)
   611 #endif
   612 double
   613 js::ecmaPow(double x, double y)
   614 {
   615     /*
   616      * Use powi if the exponent is an integer-valued double. We don't have to
   617      * check for NaN since a comparison with NaN is always false.
   618      */
   619     int32_t yi;
   620     if (NumberEqualsInt32(y, &yi))
   621         return powi(x, yi);
   623     /*
   624      * Because C99 and ECMA specify different behavior for pow(),
   625      * we need to wrap the libm call to make it ECMA compliant.
   626      */
   627     if (!IsFinite(y) && (x == 1.0 || x == -1.0))
   628         return GenericNaN();
   630     /* pow(x, +-0) is always 1, even for x = NaN (MSVC gets this wrong). */
   631     if (y == 0)
   632         return 1;
   634     /*
   635      * Special case for square roots. Note that pow(x, 0.5) != sqrt(x)
   636      * when x = -0.0, so we have to guard for this.
   637      */
   638     if (IsFinite(x) && x != 0.0) {
   639         if (y == 0.5)
   640             return sqrt(x);
   641         if (y == -0.5)
   642             return 1.0 / sqrt(x);
   643     }
   644     return pow(x, y);
   645 }
   646 #if defined(_MSC_VER)
   647 # pragma optimize("", on)
   648 #endif
   650 // Disable PGO for Math.pow() and related functions (see bug 791214).
   651 #if defined(_MSC_VER)
   652 # pragma optimize("g", off)
   653 #endif
   654 bool
   655 js_math_pow(JSContext *cx, unsigned argc, Value *vp)
   656 {
   657     CallArgs args = CallArgsFromVp(argc, vp);
   659     double x;
   660     if (!ToNumber(cx, args.get(0), &x))
   661         return false;
   663     double y;
   664     if (!ToNumber(cx, args.get(1), &y))
   665         return false;
   667     double z = ecmaPow(x, y);
   668     args.rval().setNumber(z);
   669     return true;
   670 }
   671 #if defined(_MSC_VER)
   672 # pragma optimize("", on)
   673 #endif
   675 static uint64_t
   676 random_generateSeed()
   677 {
   678     union {
   679         uint8_t     u8[8];
   680         uint32_t    u32[2];
   681         uint64_t    u64;
   682     } seed;
   683     seed.u64 = 0;
   685 #if defined(XP_WIN)
   686     /*
   687      * Our PRNG only uses 48 bits, so calling rand_s() twice to get 64 bits is
   688      * probably overkill.
   689      */
   690     rand_s(&seed.u32[0]);
   691 #elif defined(XP_UNIX)
   692     /*
   693      * In the unlikely event we can't read /dev/urandom, there's not much we can
   694      * do, so just mix in the fd error code and the current time.
   695      */
   696     int fd = open("/dev/urandom", O_RDONLY);
   697     MOZ_ASSERT(fd >= 0, "Can't open /dev/urandom");
   698     if (fd >= 0) {
   699         read(fd, seed.u8, mozilla::ArrayLength(seed.u8));
   700         close(fd);
   701     }
   702     seed.u32[0] ^= fd;
   703 #else
   704 # error "Platform needs to implement random_generateSeed()"
   705 #endif
   707     seed.u32[1] ^= PRMJ_Now();
   708     return seed.u64;
   709 }
   711 static const uint64_t RNG_MULTIPLIER = 0x5DEECE66DLL;
   712 static const uint64_t RNG_ADDEND = 0xBLL;
   713 static const uint64_t RNG_MASK = (1LL << 48) - 1;
   714 static const double RNG_DSCALE = double(1LL << 53);
   716 /*
   717  * Math.random() support, lifted from java.util.Random.java.
   718  */
   719 static void
   720 random_initState(uint64_t *rngState)
   721 {
   722     /* Our PRNG only uses 48 bits, so squeeze our entropy into those bits. */
   723     uint64_t seed = random_generateSeed();
   724     seed ^= (seed >> 16);
   725     *rngState = (seed ^ RNG_MULTIPLIER) & RNG_MASK;
   726 }
   728 uint64_t
   729 random_next(uint64_t *rngState, int bits)
   730 {
   731     MOZ_ASSERT((*rngState & 0xffff000000000000ULL) == 0, "Bad rngState");
   732     MOZ_ASSERT(bits > 0 && bits <= 48, "bits is out of range");
   734     if (*rngState == 0) {
   735         random_initState(rngState);
   736     }
   738     uint64_t nextstate = *rngState * RNG_MULTIPLIER;
   739     nextstate += RNG_ADDEND;
   740     nextstate &= RNG_MASK;
   741     *rngState = nextstate;
   742     return nextstate >> (48 - bits);
   743 }
   745 static inline double
   746 random_nextDouble(JSContext *cx)
   747 {
   748     uint64_t *rng = &cx->compartment()->rngState;
   749     return double((random_next(rng, 26) << 27) + random_next(rng, 27)) / RNG_DSCALE;
   750 }
   752 double
   753 math_random_no_outparam(JSContext *cx)
   754 {
   755     /* Calculate random without memory traffic, for use in the JITs. */
   756     return random_nextDouble(cx);
   757 }
   759 bool
   760 js_math_random(JSContext *cx, unsigned argc, Value *vp)
   761 {
   762     CallArgs args = CallArgsFromVp(argc, vp);
   763     double z = random_nextDouble(cx);
   764     args.rval().setDouble(z);
   765     return true;
   766 }
   768 double
   769 js::math_round_impl(double x)
   770 {
   771     int32_t ignored;
   772     if (NumberIsInt32(x, &ignored))
   773         return x;
   775     /* Some numbers are so big that adding 0.5 would give the wrong number. */
   776     if (ExponentComponent(x) >= int_fast16_t(FloatingPoint<double>::ExponentShift))
   777         return x;
   779     return js_copysign(floor(x + 0.5), x);
   780 }
   782 float
   783 js::math_roundf_impl(float x)
   784 {
   785     int32_t ignored;
   786     if (NumberIsInt32(x, &ignored))
   787         return x;
   789     /* Some numbers are so big that adding 0.5 would give the wrong number. */
   790     if (ExponentComponent(x) >= int_fast16_t(FloatingPoint<float>::ExponentShift))
   791         return x;
   793     return js_copysign(floorf(x + 0.5f), x);
   794 }
   796 bool /* ES5 15.8.2.15. */
   797 js::math_round(JSContext *cx, unsigned argc, Value *vp)
   798 {
   799     CallArgs args = CallArgsFromVp(argc, vp);
   801     if (args.length() == 0) {
   802         args.rval().setNaN();
   803         return true;
   804     }
   806     double x;
   807     if (!ToNumber(cx, args[0], &x))
   808         return false;
   810     double z = math_round_impl(x);
   811     args.rval().setNumber(z);
   812     return true;
   813 }
   815 double
   816 js::math_sin_impl(MathCache *cache, double x)
   817 {
   818     return cache->lookup(sin, x);
   819 }
   821 double
   822 js::math_sin_uncached(double x)
   823 {
   824     return sin(x);
   825 }
   827 bool
   828 js::math_sin(JSContext *cx, unsigned argc, Value *vp)
   829 {
   830     CallArgs args = CallArgsFromVp(argc, vp);
   832     if (args.length() == 0) {
   833         args.rval().setNaN();
   834         return true;
   835     }
   837     double x;
   838     if (!ToNumber(cx, args[0], &x))
   839         return false;
   841     MathCache *mathCache = cx->runtime()->getMathCache(cx);
   842     if (!mathCache)
   843         return false;
   845     double z = math_sin_impl(mathCache, x);
   846     args.rval().setDouble(z);
   847     return true;
   848 }
   850 bool
   851 js_math_sqrt(JSContext *cx, unsigned argc, Value *vp)
   852 {
   853     CallArgs args = CallArgsFromVp(argc, vp);
   855     if (args.length() == 0) {
   856         args.rval().setNaN();
   857         return true;
   858     }
   860     double x;
   861     if (!ToNumber(cx, args[0], &x))
   862         return false;
   864     MathCache *mathCache = cx->runtime()->getMathCache(cx);
   865     if (!mathCache)
   866         return false;
   868     double z = mathCache->lookup(sqrt, x);
   869     args.rval().setDouble(z);
   870     return true;
   871 }
   873 double
   874 js::math_tan_impl(MathCache *cache, double x)
   875 {
   876     return cache->lookup(tan, x);
   877 }
   879 double
   880 js::math_tan_uncached(double x)
   881 {
   882     return tan(x);
   883 }
   885 bool
   886 js::math_tan(JSContext *cx, unsigned argc, Value *vp)
   887 {
   888     CallArgs args = CallArgsFromVp(argc, vp);
   890     if (args.length() == 0) {
   891         args.rval().setNaN();
   892         return true;
   893     }
   895     double x;
   896     if (!ToNumber(cx, args[0], &x))
   897         return false;
   899     MathCache *mathCache = cx->runtime()->getMathCache(cx);
   900     if (!mathCache)
   901         return false;
   903     double z = math_tan_impl(mathCache, x);
   904     args.rval().setDouble(z);
   905     return true;
   906 }
   909 typedef double (*UnaryMathFunctionType)(MathCache *cache, double);
   911 template <UnaryMathFunctionType F>
   912 static bool math_function(JSContext *cx, unsigned argc, Value *vp)
   913 {
   914     CallArgs args = CallArgsFromVp(argc, vp);
   915     if (args.length() == 0) {
   916         args.rval().setNumber(GenericNaN());
   917         return true;
   918     }
   920     double x;
   921     if (!ToNumber(cx, args[0], &x))
   922         return false;
   924     MathCache *mathCache = cx->runtime()->getMathCache(cx);
   925     if (!mathCache)
   926         return false;
   927     double z = F(mathCache, x);
   928     args.rval().setNumber(z);
   930     return true;
   931 }
   935 double
   936 js::math_log10_impl(MathCache *cache, double x)
   937 {
   938     return cache->lookup(log10, x);
   939 }
   941 double
   942 js::math_log10_uncached(double x)
   943 {
   944     return log10(x);
   945 }
   947 bool
   948 js::math_log10(JSContext *cx, unsigned argc, Value *vp)
   949 {
   950     return math_function<math_log10_impl>(cx, argc, vp);
   951 }
   953 #if !HAVE_LOG2
   954 double log2(double x)
   955 {
   956     return log(x) / M_LN2;
   957 }
   958 #endif
   960 double
   961 js::math_log2_impl(MathCache *cache, double x)
   962 {
   963     return cache->lookup(log2, x);
   964 }
   966 double
   967 js::math_log2_uncached(double x)
   968 {
   969     return log2(x);
   970 }
   972 bool
   973 js::math_log2(JSContext *cx, unsigned argc, Value *vp)
   974 {
   975     return math_function<math_log2_impl>(cx, argc, vp);
   976 }
   978 #if !HAVE_LOG1P
   979 double log1p(double x)
   980 {
   981     if (fabs(x) < 1e-4) {
   982         /*
   983          * Use Taylor approx. log(1 + x) = x - x^2 / 2 + x^3 / 3 - x^4 / 4 with error x^5 / 5
   984          * Since |x| < 10^-4, |x|^5 < 10^-20, relative error less than 10^-16
   985          */
   986         double z = -(x * x * x * x) / 4 + (x * x * x) / 3 - (x * x) / 2 + x;
   987         return z;
   988     } else {
   989         /* For other large enough values of x use direct computation */
   990         return log(1.0 + x);
   991     }
   992 }
   993 #endif
   995 #ifdef __APPLE__
   996 // Ensure that log1p(-0) is -0.
   997 #define LOG1P_IF_OUT_OF_RANGE(x) if (x == 0) return x;
   998 #else
   999 #define LOG1P_IF_OUT_OF_RANGE(x)
  1000 #endif
  1002 double
  1003 js::math_log1p_impl(MathCache *cache, double x)
  1005     LOG1P_IF_OUT_OF_RANGE(x);
  1006     return cache->lookup(log1p, x);
  1009 double
  1010 js::math_log1p_uncached(double x)
  1012     LOG1P_IF_OUT_OF_RANGE(x);
  1013     return log1p(x);
  1016 #undef LOG1P_IF_OUT_OF_RANGE
  1018 bool
  1019 js::math_log1p(JSContext *cx, unsigned argc, Value *vp)
  1021     return math_function<math_log1p_impl>(cx, argc, vp);
  1024 #if !HAVE_EXPM1
  1025 double expm1(double x)
  1027     /* Special handling for -0 */
  1028     if (x == 0.0)
  1029         return x;
  1031     if (fabs(x) < 1e-5) {
  1032         /*
  1033          * Use Taylor approx. exp(x) - 1 = x + x^2 / 2 + x^3 / 6 with error x^4 / 24
  1034          * Since |x| < 10^-5, |x|^4 < 10^-20, relative error less than 10^-15
  1035          */
  1036         double z = (x * x * x) / 6 + (x * x) / 2 + x;
  1037         return z;
  1038     } else {
  1039         /* For other large enough values of x use direct computation */
  1040         return exp(x) - 1.0;
  1043 #endif
  1045 double
  1046 js::math_expm1_impl(MathCache *cache, double x)
  1048     return cache->lookup(expm1, x);
  1051 double
  1052 js::math_expm1_uncached(double x)
  1054     return expm1(x);
  1057 bool
  1058 js::math_expm1(JSContext *cx, unsigned argc, Value *vp)
  1060     return math_function<math_expm1_impl>(cx, argc, vp);
  1063 #if !HAVE_SQRT1PM1
  1064 /* This algorithm computes sqrt(1+x)-1 for small x */
  1065 double sqrt1pm1(double x)
  1067     if (fabs(x) > 0.75)
  1068         return sqrt(1 + x) - 1;
  1070     return expm1(log1p(x) / 2);
  1072 #endif
  1075 double
  1076 js::math_cosh_impl(MathCache *cache, double x)
  1078     return cache->lookup(cosh, x);
  1081 double
  1082 js::math_cosh_uncached(double x)
  1084     return cosh(x);
  1087 bool
  1088 js::math_cosh(JSContext *cx, unsigned argc, Value *vp)
  1090     return math_function<math_cosh_impl>(cx, argc, vp);
  1093 double
  1094 js::math_sinh_impl(MathCache *cache, double x)
  1096     return cache->lookup(sinh, x);
  1099 double
  1100 js::math_sinh_uncached(double x)
  1102     return sinh(x);
  1105 bool
  1106 js::math_sinh(JSContext *cx, unsigned argc, Value *vp)
  1108     return math_function<math_sinh_impl>(cx, argc, vp);
  1111 double
  1112 js::math_tanh_impl(MathCache *cache, double x)
  1114     return cache->lookup(tanh, x);
  1117 double
  1118 js::math_tanh_uncached(double x)
  1120     return tanh(x);
  1123 bool
  1124 js::math_tanh(JSContext *cx, unsigned argc, Value *vp)
  1126     return math_function<math_tanh_impl>(cx, argc, vp);
  1129 #if !HAVE_ACOSH
  1130 double acosh(double x)
  1132     const double SQUARE_ROOT_EPSILON = sqrt(std::numeric_limits<double>::epsilon());
  1134     if ((x - 1) >= SQUARE_ROOT_EPSILON) {
  1135         if (x > 1 / SQUARE_ROOT_EPSILON) {
  1136             /*
  1137              * http://functions.wolfram.com/ElementaryFunctions/ArcCosh/06/01/06/01/0001/
  1138              * approximation by laurent series in 1/x at 0+ order from -1 to 0
  1139              */
  1140             return log(x) + M_LN2;
  1141         } else if (x < 1.5) {
  1142             // This is just a rearrangement of the standard form below
  1143             // devised to minimize loss of precision when x ~ 1:
  1144             double y = x - 1;
  1145             return log1p(y + sqrt(y * y + 2 * y));
  1146         } else {
  1147             // http://functions.wolfram.com/ElementaryFunctions/ArcCosh/02/
  1148             return log(x + sqrt(x * x - 1));
  1150     } else {
  1151         // see http://functions.wolfram.com/ElementaryFunctions/ArcCosh/06/01/04/01/0001/
  1152         double y = x - 1;
  1153         // approximation by taylor series in y at 0 up to order 2.
  1154         // If x is less than 1, sqrt(2 * y) is NaN and the result is NaN.
  1155         return sqrt(2 * y) * (1 - y / 12 + 3 * y * y / 160);
  1158 #endif
  1160 double
  1161 js::math_acosh_impl(MathCache *cache, double x)
  1163     return cache->lookup(acosh, x);
  1166 double
  1167 js::math_acosh_uncached(double x)
  1169     return acosh(x);
  1172 bool
  1173 js::math_acosh(JSContext *cx, unsigned argc, Value *vp)
  1175     return math_function<math_acosh_impl>(cx, argc, vp);
  1178 #if !HAVE_ASINH
  1179 // Bug 899712 - gcc incorrectly rewrites -asinh(-x) to asinh(x) when overriding
  1180 // asinh.
  1181 static double my_asinh(double x)
  1183     const double SQUARE_ROOT_EPSILON = sqrt(std::numeric_limits<double>::epsilon());
  1184     const double FOURTH_ROOT_EPSILON = sqrt(SQUARE_ROOT_EPSILON);
  1186     if (x >= FOURTH_ROOT_EPSILON) {
  1187         if (x > 1 / SQUARE_ROOT_EPSILON)
  1188             // http://functions.wolfram.com/ElementaryFunctions/ArcSinh/06/01/06/01/0001/
  1189             // approximation by laurent series in 1/x at 0+ order from -1 to 1
  1190             return M_LN2 + log(x) + 1 / (4 * x * x);
  1191         else if (x < 0.5)
  1192             return log1p(x + sqrt1pm1(x * x));
  1193         else
  1194             return log(x + sqrt(x * x + 1));
  1195     } else if (x <= -FOURTH_ROOT_EPSILON) {
  1196         return -my_asinh(-x);
  1197     } else {
  1198         // http://functions.wolfram.com/ElementaryFunctions/ArcSinh/06/01/03/01/0001/
  1199         // approximation by taylor series in x at 0 up to order 2
  1200         double result = x;
  1202         if (fabs(x) >= SQUARE_ROOT_EPSILON) {
  1203             double x3 = x * x * x;
  1204             // approximation by taylor series in x at 0 up to order 4
  1205             result -= x3 / 6;
  1208         return result;
  1211 #endif
  1213 double
  1214 js::math_asinh_impl(MathCache *cache, double x)
  1216 #ifdef HAVE_ASINH
  1217     return cache->lookup(asinh, x);
  1218 #else
  1219     return cache->lookup(my_asinh, x);
  1220 #endif
  1223 double
  1224 js::math_asinh_uncached(double x)
  1226 #ifdef HAVE_ASINH
  1227     return asinh(x);
  1228 #else
  1229     return my_asinh(x);
  1230 #endif
  1233 bool
  1234 js::math_asinh(JSContext *cx, unsigned argc, Value *vp)
  1236     return math_function<math_asinh_impl>(cx, argc, vp);
  1239 #if !HAVE_ATANH
  1240 double atanh(double x)
  1242     const double EPSILON = std::numeric_limits<double>::epsilon();
  1243     const double SQUARE_ROOT_EPSILON = sqrt(EPSILON);
  1244     const double FOURTH_ROOT_EPSILON = sqrt(SQUARE_ROOT_EPSILON);
  1246     if (fabs(x) >= FOURTH_ROOT_EPSILON) {
  1247         // http://functions.wolfram.com/ElementaryFunctions/ArcTanh/02/
  1248         if (fabs(x) < 0.5)
  1249             return (log1p(x) - log1p(-x)) / 2;
  1251         return log((1 + x) / (1 - x)) / 2;
  1252     } else {
  1253         // http://functions.wolfram.com/ElementaryFunctions/ArcTanh/06/01/03/01/
  1254         // approximation by taylor series in x at 0 up to order 2
  1255         double result = x;
  1257         if (fabs(x) >= SQUARE_ROOT_EPSILON) {
  1258             double x3 = x * x * x;
  1259             result += x3 / 3;
  1262         return result;
  1265 #endif
  1267 double
  1268 js::math_atanh_impl(MathCache *cache, double x)
  1270     return cache->lookup(atanh, x);
  1273 double
  1274 js::math_atanh_uncached(double x)
  1276     return atanh(x);
  1279 bool
  1280 js::math_atanh(JSContext *cx, unsigned argc, Value *vp)
  1282     return math_function<math_atanh_impl>(cx, argc, vp);
  1285 /* Consistency wrapper for platform deviations in hypot() */
  1286 double
  1287 js::ecmaHypot(double x, double y)
  1289 #ifdef XP_WIN
  1290     /*
  1291      * Workaround MS hypot bug, where hypot(Infinity, NaN or Math.MIN_VALUE)
  1292      * is NaN, not Infinity.
  1293      */
  1294     if (mozilla::IsInfinite(x) || mozilla::IsInfinite(y)) {
  1295         return mozilla::PositiveInfinity<double>();
  1297 #endif
  1298     return hypot(x, y);
  1301 bool
  1302 js::math_hypot(JSContext *cx, unsigned argc, Value *vp)
  1304     CallArgs args = CallArgsFromVp(argc, vp);
  1306     // IonMonkey calls the system hypot function directly if two arguments are
  1307     // given. Do that here as well to get the same results.
  1308     if (args.length() == 2) {
  1309         double x, y;
  1310         if (!ToNumber(cx, args[0], &x))
  1311             return false;
  1312         if (!ToNumber(cx, args[1], &y))
  1313             return false;
  1315         double result = ecmaHypot(x, y);
  1316         args.rval().setNumber(result);
  1317         return true;
  1320     bool isInfinite = false;
  1321     bool isNaN = false;
  1323     double scale = 0;
  1324     double sumsq = 1;
  1326     for (unsigned i = 0; i < args.length(); i++) {
  1327         double x;
  1328         if (!ToNumber(cx, args[i], &x))
  1329             return false;
  1331         isInfinite |= mozilla::IsInfinite(x);
  1332         isNaN |= mozilla::IsNaN(x);
  1334         double xabs = mozilla::Abs(x);
  1336         if (scale < xabs) {
  1337             sumsq = 1 + sumsq * (scale / xabs) * (scale / xabs);
  1338             scale = xabs;
  1339         } else if (scale != 0) {
  1340             sumsq += (xabs / scale) * (xabs / scale);
  1344     double result = isInfinite ? PositiveInfinity<double>() :
  1345                     isNaN ? GenericNaN() :
  1346                     scale * sqrt(sumsq);
  1347     args.rval().setNumber(result);
  1348     return true;
  1351 #if !HAVE_TRUNC
  1352 double trunc(double x)
  1354     return x > 0 ? floor(x) : ceil(x);
  1356 #endif
  1358 double
  1359 js::math_trunc_impl(MathCache *cache, double x)
  1361     return cache->lookup(trunc, x);
  1364 double
  1365 js::math_trunc_uncached(double x)
  1367     return trunc(x);
  1370 bool
  1371 js::math_trunc(JSContext *cx, unsigned argc, Value *vp)
  1373     return math_function<math_trunc_impl>(cx, argc, vp);
  1376 static double sign(double x)
  1378     if (mozilla::IsNaN(x))
  1379         return GenericNaN();
  1381     return x == 0 ? x : x < 0 ? -1 : 1;
  1384 double
  1385 js::math_sign_impl(MathCache *cache, double x)
  1387     return cache->lookup(sign, x);
  1390 double
  1391 js::math_sign_uncached(double x)
  1393     return sign(x);
  1396 bool
  1397 js::math_sign(JSContext *cx, unsigned argc, Value *vp)
  1399     return math_function<math_sign_impl>(cx, argc, vp);
  1402 #if !HAVE_CBRT
  1403 double cbrt(double x)
  1405     if (x > 0) {
  1406         return pow(x, 1.0 / 3.0);
  1407     } else if (x == 0) {
  1408         return x;
  1409     } else {
  1410         return -pow(-x, 1.0 / 3.0);
  1413 #endif
  1415 double
  1416 js::math_cbrt_impl(MathCache *cache, double x)
  1418     return cache->lookup(cbrt, x);
  1421 double
  1422 js::math_cbrt_uncached(double x)
  1424     return cbrt(x);
  1427 bool
  1428 js::math_cbrt(JSContext *cx, unsigned argc, Value *vp)
  1430     return math_function<math_cbrt_impl>(cx, argc, vp);
  1433 #if JS_HAS_TOSOURCE
  1434 static bool
  1435 math_toSource(JSContext *cx, unsigned argc, Value *vp)
  1437     CallArgs args = CallArgsFromVp(argc, vp);
  1438     args.rval().setString(cx->names().Math);
  1439     return true;
  1441 #endif
  1443 static const JSFunctionSpec math_static_methods[] = {
  1444 #if JS_HAS_TOSOURCE
  1445     JS_FN(js_toSource_str,  math_toSource,        0, 0),
  1446 #endif
  1447     JS_FN("abs",            js_math_abs,          1, 0),
  1448     JS_FN("acos",           math_acos,            1, 0),
  1449     JS_FN("asin",           math_asin,            1, 0),
  1450     JS_FN("atan",           math_atan,            1, 0),
  1451     JS_FN("atan2",          math_atan2,           2, 0),
  1452     JS_FN("ceil",           math_ceil,            1, 0),
  1453     JS_FN("clz32",          math_clz32,           1, 0),
  1454     JS_FN("cos",            math_cos,             1, 0),
  1455     JS_FN("exp",            math_exp,             1, 0),
  1456     JS_FN("floor",          math_floor,           1, 0),
  1457     JS_FN("imul",           math_imul,            2, 0),
  1458     JS_FN("fround",         math_fround,          1, 0),
  1459     JS_FN("log",            math_log,             1, 0),
  1460     JS_FN("max",            js_math_max,          2, 0),
  1461     JS_FN("min",            js_math_min,          2, 0),
  1462     JS_FN("pow",            js_math_pow,          2, 0),
  1463     JS_FN("random",         js_math_random,       0, 0),
  1464     JS_FN("round",          math_round,           1, 0),
  1465     JS_FN("sin",            math_sin,             1, 0),
  1466     JS_FN("sqrt",           js_math_sqrt,         1, 0),
  1467     JS_FN("tan",            math_tan,             1, 0),
  1468     JS_FN("log10",          math_log10,           1, 0),
  1469     JS_FN("log2",           math_log2,            1, 0),
  1470     JS_FN("log1p",          math_log1p,           1, 0),
  1471     JS_FN("expm1",          math_expm1,           1, 0),
  1472     JS_FN("cosh",           math_cosh,            1, 0),
  1473     JS_FN("sinh",           math_sinh,            1, 0),
  1474     JS_FN("tanh",           math_tanh,            1, 0),
  1475     JS_FN("acosh",          math_acosh,           1, 0),
  1476     JS_FN("asinh",          math_asinh,           1, 0),
  1477     JS_FN("atanh",          math_atanh,           1, 0),
  1478     JS_FN("hypot",          math_hypot,           2, 0),
  1479     JS_FN("trunc",          math_trunc,           1, 0),
  1480     JS_FN("sign",           math_sign,            1, 0),
  1481     JS_FN("cbrt",           math_cbrt,            1, 0),
  1482     JS_FS_END
  1483 };
  1485 JSObject *
  1486 js_InitMathClass(JSContext *cx, HandleObject obj)
  1488     RootedObject proto(cx, obj->as<GlobalObject>().getOrCreateObjectPrototype(cx));
  1489     if (!proto)
  1490         return nullptr;
  1491     RootedObject Math(cx, NewObjectWithGivenProto(cx, &MathClass, proto, obj, SingletonObject));
  1492     if (!Math)
  1493         return nullptr;
  1495     if (!JS_DefineProperty(cx, obj, js_Math_str, Math, 0,
  1496                            JS_PropertyStub, JS_StrictPropertyStub))
  1498         return nullptr;
  1501     if (!JS_DefineFunctions(cx, Math, math_static_methods))
  1502         return nullptr;
  1503     if (!JS_DefineConstDoubles(cx, Math, math_constants))
  1504         return nullptr;
  1506     obj->as<GlobalObject>().setConstructor(JSProto_Math, ObjectValue(*Math));
  1508     return Math;

mercurial