js/src/jsmath.cpp

changeset 0
6474c204b198
     1.1 --- /dev/null	Thu Jan 01 00:00:00 1970 +0000
     1.2 +++ b/js/src/jsmath.cpp	Wed Dec 31 06:09:35 2014 +0100
     1.3 @@ -0,0 +1,1509 @@
     1.4 +/* -*- Mode: C++; tab-width: 8; indent-tabs-mode: nil; c-basic-offset: 4 -*-
     1.5 + * vim: set ts=8 sts=4 et sw=4 tw=99:
     1.6 + * This Source Code Form is subject to the terms of the Mozilla Public
     1.7 + * License, v. 2.0. If a copy of the MPL was not distributed with this
     1.8 + * file, You can obtain one at http://mozilla.org/MPL/2.0/. */
     1.9 +
    1.10 +/*
    1.11 + * JS math package.
    1.12 + */
    1.13 +
    1.14 +#include "jsmath.h"
    1.15 +
    1.16 +#include "mozilla/Constants.h"
    1.17 +#include "mozilla/FloatingPoint.h"
    1.18 +#include "mozilla/MathAlgorithms.h"
    1.19 +#include "mozilla/MemoryReporting.h"
    1.20 +
    1.21 +#include <algorithm>  // for std::max
    1.22 +#include <fcntl.h>
    1.23 +
    1.24 +#ifdef XP_UNIX
    1.25 +# include <unistd.h>
    1.26 +#endif
    1.27 +
    1.28 +#include "jsapi.h"
    1.29 +#include "jsatom.h"
    1.30 +#include "jscntxt.h"
    1.31 +#include "jscompartment.h"
    1.32 +#include "jslibmath.h"
    1.33 +#include "jstypes.h"
    1.34 +#include "prmjtime.h"
    1.35 +
    1.36 +#include "jsobjinlines.h"
    1.37 +
    1.38 +using namespace js;
    1.39 +
    1.40 +using mozilla::Abs;
    1.41 +using mozilla::NumberEqualsInt32;
    1.42 +using mozilla::NumberIsInt32;
    1.43 +using mozilla::ExponentComponent;
    1.44 +using mozilla::FloatingPoint;
    1.45 +using mozilla::IsFinite;
    1.46 +using mozilla::IsInfinite;
    1.47 +using mozilla::IsNaN;
    1.48 +using mozilla::IsNegative;
    1.49 +using mozilla::IsNegativeZero;
    1.50 +using mozilla::PositiveInfinity;
    1.51 +using mozilla::NegativeInfinity;
    1.52 +using JS::ToNumber;
    1.53 +using JS::GenericNaN;
    1.54 +
    1.55 +static const JSConstDoubleSpec math_constants[] = {
    1.56 +    {M_E,       "E",            0, {0,0,0}},
    1.57 +    {M_LOG2E,   "LOG2E",        0, {0,0,0}},
    1.58 +    {M_LOG10E,  "LOG10E",       0, {0,0,0}},
    1.59 +    {M_LN2,     "LN2",          0, {0,0,0}},
    1.60 +    {M_LN10,    "LN10",         0, {0,0,0}},
    1.61 +    {M_PI,      "PI",           0, {0,0,0}},
    1.62 +    {M_SQRT2,   "SQRT2",        0, {0,0,0}},
    1.63 +    {M_SQRT1_2, "SQRT1_2",      0, {0,0,0}},
    1.64 +    {0,0,0,{0,0,0}}
    1.65 +};
    1.66 +
    1.67 +MathCache::MathCache() {
    1.68 +    memset(table, 0, sizeof(table));
    1.69 +
    1.70 +    /* See comments in lookup(). */
    1.71 +    JS_ASSERT(IsNegativeZero(-0.0));
    1.72 +    JS_ASSERT(!IsNegativeZero(+0.0));
    1.73 +    JS_ASSERT(hash(-0.0) != hash(+0.0));
    1.74 +}
    1.75 +
    1.76 +size_t
    1.77 +MathCache::sizeOfIncludingThis(mozilla::MallocSizeOf mallocSizeOf)
    1.78 +{
    1.79 +    return mallocSizeOf(this);
    1.80 +}
    1.81 +
    1.82 +const Class js::MathClass = {
    1.83 +    js_Math_str,
    1.84 +    JSCLASS_HAS_CACHED_PROTO(JSProto_Math),
    1.85 +    JS_PropertyStub,         /* addProperty */
    1.86 +    JS_DeletePropertyStub,   /* delProperty */
    1.87 +    JS_PropertyStub,         /* getProperty */
    1.88 +    JS_StrictPropertyStub,   /* setProperty */
    1.89 +    JS_EnumerateStub,
    1.90 +    JS_ResolveStub,
    1.91 +    JS_ConvertStub
    1.92 +};
    1.93 +
    1.94 +bool
    1.95 +js_math_abs(JSContext *cx, unsigned argc, Value *vp)
    1.96 +{
    1.97 +    CallArgs args = CallArgsFromVp(argc, vp);
    1.98 +
    1.99 +    if (args.length() == 0) {
   1.100 +        args.rval().setNaN();
   1.101 +        return true;
   1.102 +    }
   1.103 +
   1.104 +    double x;
   1.105 +    if (!ToNumber(cx, args[0], &x))
   1.106 +        return false;
   1.107 +
   1.108 +    double z = Abs(x);
   1.109 +    args.rval().setNumber(z);
   1.110 +    return true;
   1.111 +}
   1.112 +
   1.113 +#if defined(SOLARIS) && defined(__GNUC__)
   1.114 +#define ACOS_IF_OUT_OF_RANGE(x) if (x < -1 || 1 < x) return GenericNaN();
   1.115 +#else
   1.116 +#define ACOS_IF_OUT_OF_RANGE(x)
   1.117 +#endif
   1.118 +
   1.119 +double
   1.120 +js::math_acos_impl(MathCache *cache, double x)
   1.121 +{
   1.122 +    ACOS_IF_OUT_OF_RANGE(x);
   1.123 +    return cache->lookup(acos, x);
   1.124 +}
   1.125 +
   1.126 +double
   1.127 +js::math_acos_uncached(double x)
   1.128 +{
   1.129 +    ACOS_IF_OUT_OF_RANGE(x);
   1.130 +    return acos(x);
   1.131 +}
   1.132 +
   1.133 +#undef ACOS_IF_OUT_OF_RANGE
   1.134 +
   1.135 +bool
   1.136 +js::math_acos(JSContext *cx, unsigned argc, Value *vp)
   1.137 +{
   1.138 +    CallArgs args = CallArgsFromVp(argc, vp);
   1.139 +
   1.140 +    if (args.length() == 0) {
   1.141 +        args.rval().setNaN();
   1.142 +        return true;
   1.143 +    }
   1.144 +
   1.145 +    double x;
   1.146 +    if (!ToNumber(cx, args[0], &x))
   1.147 +        return false;
   1.148 +
   1.149 +    MathCache *mathCache = cx->runtime()->getMathCache(cx);
   1.150 +    if (!mathCache)
   1.151 +        return false;
   1.152 +
   1.153 +    double z = math_acos_impl(mathCache, x);
   1.154 +    args.rval().setDouble(z);
   1.155 +    return true;
   1.156 +}
   1.157 +
   1.158 +#if defined(SOLARIS) && defined(__GNUC__)
   1.159 +#define ASIN_IF_OUT_OF_RANGE(x) if (x < -1 || 1 < x) return GenericNaN();
   1.160 +#else
   1.161 +#define ASIN_IF_OUT_OF_RANGE(x)
   1.162 +#endif
   1.163 +
   1.164 +double
   1.165 +js::math_asin_impl(MathCache *cache, double x)
   1.166 +{
   1.167 +    ASIN_IF_OUT_OF_RANGE(x);
   1.168 +    return cache->lookup(asin, x);
   1.169 +}
   1.170 +
   1.171 +double
   1.172 +js::math_asin_uncached(double x)
   1.173 +{
   1.174 +    ASIN_IF_OUT_OF_RANGE(x);
   1.175 +    return asin(x);
   1.176 +}
   1.177 +
   1.178 +#undef ASIN_IF_OUT_OF_RANGE
   1.179 +
   1.180 +bool
   1.181 +js::math_asin(JSContext *cx, unsigned argc, Value *vp)
   1.182 +{
   1.183 +    CallArgs args = CallArgsFromVp(argc, vp);
   1.184 +
   1.185 +    if (args.length() == 0) {
   1.186 +        args.rval().setNaN();
   1.187 +        return true;
   1.188 +    }
   1.189 +
   1.190 +    double x;
   1.191 +    if (!ToNumber(cx, args[0], &x))
   1.192 +        return false;
   1.193 +
   1.194 +    MathCache *mathCache = cx->runtime()->getMathCache(cx);
   1.195 +    if (!mathCache)
   1.196 +        return false;
   1.197 +
   1.198 +    double z = math_asin_impl(mathCache, x);
   1.199 +    args.rval().setDouble(z);
   1.200 +    return true;
   1.201 +}
   1.202 +
   1.203 +double
   1.204 +js::math_atan_impl(MathCache *cache, double x)
   1.205 +{
   1.206 +    return cache->lookup(atan, x);
   1.207 +}
   1.208 +
   1.209 +double
   1.210 +js::math_atan_uncached(double x)
   1.211 +{
   1.212 +    return atan(x);
   1.213 +}
   1.214 +
   1.215 +bool
   1.216 +js::math_atan(JSContext *cx, unsigned argc, Value *vp)
   1.217 +{
   1.218 +    CallArgs args = CallArgsFromVp(argc, vp);
   1.219 +
   1.220 +    if (args.length() == 0) {
   1.221 +        args.rval().setNaN();
   1.222 +        return true;
   1.223 +    }
   1.224 +
   1.225 +    double x;
   1.226 +    if (!ToNumber(cx, args[0], &x))
   1.227 +        return false;
   1.228 +
   1.229 +    MathCache *mathCache = cx->runtime()->getMathCache(cx);
   1.230 +    if (!mathCache)
   1.231 +        return false;
   1.232 +
   1.233 +    double z = math_atan_impl(mathCache, x);
   1.234 +    args.rval().setDouble(z);
   1.235 +    return true;
   1.236 +}
   1.237 +
   1.238 +double
   1.239 +js::ecmaAtan2(double y, double x)
   1.240 +{
   1.241 +#if defined(_MSC_VER)
   1.242 +    /*
   1.243 +     * MSVC's atan2 does not yield the result demanded by ECMA when both x
   1.244 +     * and y are infinite.
   1.245 +     * - The result is a multiple of pi/4.
   1.246 +     * - The sign of y determines the sign of the result.
   1.247 +     * - The sign of x determines the multiplicator, 1 or 3.
   1.248 +     */
   1.249 +    if (IsInfinite(y) && IsInfinite(x)) {
   1.250 +        double z = js_copysign(M_PI / 4, y);
   1.251 +        if (x < 0)
   1.252 +            z *= 3;
   1.253 +        return z;
   1.254 +    }
   1.255 +#endif
   1.256 +
   1.257 +#if defined(SOLARIS) && defined(__GNUC__)
   1.258 +    if (y == 0) {
   1.259 +        if (IsNegativeZero(x))
   1.260 +            return js_copysign(M_PI, y);
   1.261 +        if (x == 0)
   1.262 +            return y;
   1.263 +    }
   1.264 +#endif
   1.265 +    return atan2(y, x);
   1.266 +}
   1.267 +
   1.268 +bool
   1.269 +js::math_atan2(JSContext *cx, unsigned argc, Value *vp)
   1.270 +{
   1.271 +    CallArgs args = CallArgsFromVp(argc, vp);
   1.272 +
   1.273 +    double y;
   1.274 +    if (!ToNumber(cx, args.get(0), &y))
   1.275 +        return false;
   1.276 +
   1.277 +    double x;
   1.278 +    if (!ToNumber(cx, args.get(1), &x))
   1.279 +        return false;
   1.280 +
   1.281 +    double z = ecmaAtan2(y, x);
   1.282 +    args.rval().setDouble(z);
   1.283 +    return true;
   1.284 +}
   1.285 +
   1.286 +double
   1.287 +js::math_ceil_impl(double x)
   1.288 +{
   1.289 +#ifdef __APPLE__
   1.290 +    if (x < 0 && x > -1.0)
   1.291 +        return js_copysign(0, -1);
   1.292 +#endif
   1.293 +    return ceil(x);
   1.294 +}
   1.295 +
   1.296 +bool
   1.297 +js::math_ceil(JSContext *cx, unsigned argc, Value *vp)
   1.298 +{
   1.299 +    CallArgs args = CallArgsFromVp(argc, vp);
   1.300 +
   1.301 +    if (args.length() == 0) {
   1.302 +        args.rval().setNaN();
   1.303 +        return true;
   1.304 +    }
   1.305 +
   1.306 +    double x;
   1.307 +    if (!ToNumber(cx, args[0], &x))
   1.308 +        return false;
   1.309 +
   1.310 +    double z = math_ceil_impl(x);
   1.311 +    args.rval().setNumber(z);
   1.312 +    return true;
   1.313 +}
   1.314 +
   1.315 +bool
   1.316 +js::math_clz32(JSContext *cx, unsigned argc, Value *vp)
   1.317 +{
   1.318 +    CallArgs args = CallArgsFromVp(argc, vp);
   1.319 +
   1.320 +    if (args.length() == 0) {
   1.321 +        args.rval().setInt32(32);
   1.322 +        return true;
   1.323 +    }
   1.324 +
   1.325 +    uint32_t n;
   1.326 +    if (!ToUint32(cx, args[0], &n))
   1.327 +        return false;
   1.328 +
   1.329 +    if (n == 0) {
   1.330 +        args.rval().setInt32(32);
   1.331 +        return true;
   1.332 +    }
   1.333 +
   1.334 +    args.rval().setInt32(mozilla::CountLeadingZeroes32(n));
   1.335 +    return true;
   1.336 +}
   1.337 +
   1.338 +double
   1.339 +js::math_cos_impl(MathCache *cache, double x)
   1.340 +{
   1.341 +    return cache->lookup(cos, x);
   1.342 +}
   1.343 +
   1.344 +double
   1.345 +js::math_cos_uncached(double x)
   1.346 +{
   1.347 +    return cos(x);
   1.348 +}
   1.349 +
   1.350 +bool
   1.351 +js::math_cos(JSContext *cx, unsigned argc, Value *vp)
   1.352 +{
   1.353 +    CallArgs args = CallArgsFromVp(argc, vp);
   1.354 +
   1.355 +    if (args.length() == 0) {
   1.356 +        args.rval().setNaN();
   1.357 +        return true;
   1.358 +    }
   1.359 +
   1.360 +    double x;
   1.361 +    if (!ToNumber(cx, args[0], &x))
   1.362 +        return false;
   1.363 +
   1.364 +    MathCache *mathCache = cx->runtime()->getMathCache(cx);
   1.365 +    if (!mathCache)
   1.366 +        return false;
   1.367 +
   1.368 +    double z = math_cos_impl(mathCache, x);
   1.369 +    args.rval().setDouble(z);
   1.370 +    return true;
   1.371 +}
   1.372 +
   1.373 +#ifdef _WIN32
   1.374 +#define EXP_IF_OUT_OF_RANGE(x)                  \
   1.375 +    if (!IsNaN(x)) {                            \
   1.376 +        if (x == PositiveInfinity<double>())    \
   1.377 +            return PositiveInfinity<double>();  \
   1.378 +        if (x == NegativeInfinity<double>())    \
   1.379 +            return 0.0;                         \
   1.380 +    }
   1.381 +#else
   1.382 +#define EXP_IF_OUT_OF_RANGE(x)
   1.383 +#endif
   1.384 +
   1.385 +double
   1.386 +js::math_exp_impl(MathCache *cache, double x)
   1.387 +{
   1.388 +    EXP_IF_OUT_OF_RANGE(x);
   1.389 +    return cache->lookup(exp, x);
   1.390 +}
   1.391 +
   1.392 +double
   1.393 +js::math_exp_uncached(double x)
   1.394 +{
   1.395 +    EXP_IF_OUT_OF_RANGE(x);
   1.396 +    return exp(x);
   1.397 +}
   1.398 +
   1.399 +#undef EXP_IF_OUT_OF_RANGE
   1.400 +
   1.401 +bool
   1.402 +js::math_exp(JSContext *cx, unsigned argc, Value *vp)
   1.403 +{
   1.404 +    CallArgs args = CallArgsFromVp(argc, vp);
   1.405 +
   1.406 +    if (args.length() == 0) {
   1.407 +        args.rval().setNaN();
   1.408 +        return true;
   1.409 +    }
   1.410 +
   1.411 +    double x;
   1.412 +    if (!ToNumber(cx, args[0], &x))
   1.413 +        return false;
   1.414 +
   1.415 +    MathCache *mathCache = cx->runtime()->getMathCache(cx);
   1.416 +    if (!mathCache)
   1.417 +        return false;
   1.418 +
   1.419 +    double z = math_exp_impl(mathCache, x);
   1.420 +    args.rval().setNumber(z);
   1.421 +    return true;
   1.422 +}
   1.423 +
   1.424 +double
   1.425 +js::math_floor_impl(double x)
   1.426 +{
   1.427 +    return floor(x);
   1.428 +}
   1.429 +
   1.430 +bool
   1.431 +js::math_floor(JSContext *cx, unsigned argc, Value *vp)
   1.432 +{
   1.433 +    CallArgs args = CallArgsFromVp(argc, vp);
   1.434 +
   1.435 +    if (args.length() == 0) {
   1.436 +        args.rval().setNaN();
   1.437 +        return true;
   1.438 +    }
   1.439 +
   1.440 +    double x;
   1.441 +    if (!ToNumber(cx, args[0], &x))
   1.442 +        return false;
   1.443 +
   1.444 +    double z = math_floor_impl(x);
   1.445 +    args.rval().setNumber(z);
   1.446 +    return true;
   1.447 +}
   1.448 +
   1.449 +bool
   1.450 +js::math_imul(JSContext *cx, unsigned argc, Value *vp)
   1.451 +{
   1.452 +    CallArgs args = CallArgsFromVp(argc, vp);
   1.453 +
   1.454 +    uint32_t a = 0, b = 0;
   1.455 +    if (args.hasDefined(0) && !ToUint32(cx, args[0], &a))
   1.456 +        return false;
   1.457 +    if (args.hasDefined(1) && !ToUint32(cx, args[1], &b))
   1.458 +        return false;
   1.459 +
   1.460 +    uint32_t product = a * b;
   1.461 +    args.rval().setInt32(product > INT32_MAX
   1.462 +                         ? int32_t(INT32_MIN + (product - INT32_MAX - 1))
   1.463 +                         : int32_t(product));
   1.464 +    return true;
   1.465 +}
   1.466 +
   1.467 +// Implements Math.fround (20.2.2.16) up to step 3
   1.468 +bool
   1.469 +js::RoundFloat32(JSContext *cx, Handle<Value> v, float *out)
   1.470 +{
   1.471 +    double d;
   1.472 +    bool success = ToNumber(cx, v, &d);
   1.473 +    *out = static_cast<float>(d);
   1.474 +    return success;
   1.475 +}
   1.476 +
   1.477 +bool
   1.478 +js::math_fround(JSContext *cx, unsigned argc, Value *vp)
   1.479 +{
   1.480 +    CallArgs args = CallArgsFromVp(argc, vp);
   1.481 +
   1.482 +    if (args.length() == 0) {
   1.483 +        args.rval().setNaN();
   1.484 +        return true;
   1.485 +    }
   1.486 +
   1.487 +    float f;
   1.488 +    if (!RoundFloat32(cx, args[0], &f))
   1.489 +        return false;
   1.490 +
   1.491 +    args.rval().setDouble(static_cast<double>(f));
   1.492 +    return true;
   1.493 +}
   1.494 +
   1.495 +#if defined(SOLARIS) && defined(__GNUC__)
   1.496 +#define LOG_IF_OUT_OF_RANGE(x) if (x < 0) return GenericNaN();
   1.497 +#else
   1.498 +#define LOG_IF_OUT_OF_RANGE(x)
   1.499 +#endif
   1.500 +
   1.501 +double
   1.502 +js::math_log_impl(MathCache *cache, double x)
   1.503 +{
   1.504 +    LOG_IF_OUT_OF_RANGE(x);
   1.505 +    return cache->lookup(log, x);
   1.506 +}
   1.507 +
   1.508 +double
   1.509 +js::math_log_uncached(double x)
   1.510 +{
   1.511 +    LOG_IF_OUT_OF_RANGE(x);
   1.512 +    return log(x);
   1.513 +}
   1.514 +
   1.515 +#undef LOG_IF_OUT_OF_RANGE
   1.516 +
   1.517 +bool
   1.518 +js::math_log(JSContext *cx, unsigned argc, Value *vp)
   1.519 +{
   1.520 +    CallArgs args = CallArgsFromVp(argc, vp);
   1.521 +
   1.522 +    if (args.length() == 0) {
   1.523 +        args.rval().setNaN();
   1.524 +        return true;
   1.525 +    }
   1.526 +
   1.527 +    double x;
   1.528 +    if (!ToNumber(cx, args[0], &x))
   1.529 +        return false;
   1.530 +
   1.531 +    MathCache *mathCache = cx->runtime()->getMathCache(cx);
   1.532 +    if (!mathCache)
   1.533 +        return false;
   1.534 +
   1.535 +    double z = math_log_impl(mathCache, x);
   1.536 +    args.rval().setNumber(z);
   1.537 +    return true;
   1.538 +}
   1.539 +
   1.540 +bool
   1.541 +js_math_max(JSContext *cx, unsigned argc, Value *vp)
   1.542 +{
   1.543 +    CallArgs args = CallArgsFromVp(argc, vp);
   1.544 +
   1.545 +    double maxval = NegativeInfinity<double>();
   1.546 +    for (unsigned i = 0; i < args.length(); i++) {
   1.547 +        double x;
   1.548 +        if (!ToNumber(cx, args[i], &x))
   1.549 +            return false;
   1.550 +        // Math.max(num, NaN) => NaN, Math.max(-0, +0) => +0
   1.551 +        if (x > maxval || IsNaN(x) || (x == maxval && IsNegative(maxval)))
   1.552 +            maxval = x;
   1.553 +    }
   1.554 +    args.rval().setNumber(maxval);
   1.555 +    return true;
   1.556 +}
   1.557 +
   1.558 +bool
   1.559 +js_math_min(JSContext *cx, unsigned argc, Value *vp)
   1.560 +{
   1.561 +    CallArgs args = CallArgsFromVp(argc, vp);
   1.562 +
   1.563 +    double minval = PositiveInfinity<double>();
   1.564 +    for (unsigned i = 0; i < args.length(); i++) {
   1.565 +        double x;
   1.566 +        if (!ToNumber(cx, args[i], &x))
   1.567 +            return false;
   1.568 +        // Math.min(num, NaN) => NaN, Math.min(-0, +0) => -0
   1.569 +        if (x < minval || IsNaN(x) || (x == minval && IsNegativeZero(x)))
   1.570 +            minval = x;
   1.571 +    }
   1.572 +    args.rval().setNumber(minval);
   1.573 +    return true;
   1.574 +}
   1.575 +
   1.576 +// Disable PGO for Math.pow() and related functions (see bug 791214).
   1.577 +#if defined(_MSC_VER)
   1.578 +# pragma optimize("g", off)
   1.579 +#endif
   1.580 +double
   1.581 +js::powi(double x, int y)
   1.582 +{
   1.583 +    unsigned n = (y < 0) ? -y : y;
   1.584 +    double m = x;
   1.585 +    double p = 1;
   1.586 +    while (true) {
   1.587 +        if ((n & 1) != 0) p *= m;
   1.588 +        n >>= 1;
   1.589 +        if (n == 0) {
   1.590 +            if (y < 0) {
   1.591 +                // Unfortunately, we have to be careful when p has reached
   1.592 +                // infinity in the computation, because sometimes the higher
   1.593 +                // internal precision in the pow() implementation would have
   1.594 +                // given us a finite p. This happens very rarely.
   1.595 +
   1.596 +                double result = 1.0 / p;
   1.597 +                return (result == 0 && IsInfinite(p))
   1.598 +                       ? pow(x, static_cast<double>(y))  // Avoid pow(double, int).
   1.599 +                       : result;
   1.600 +            }
   1.601 +
   1.602 +            return p;
   1.603 +        }
   1.604 +        m *= m;
   1.605 +    }
   1.606 +}
   1.607 +#if defined(_MSC_VER)
   1.608 +# pragma optimize("", on)
   1.609 +#endif
   1.610 +
   1.611 +// Disable PGO for Math.pow() and related functions (see bug 791214).
   1.612 +#if defined(_MSC_VER)
   1.613 +# pragma optimize("g", off)
   1.614 +#endif
   1.615 +double
   1.616 +js::ecmaPow(double x, double y)
   1.617 +{
   1.618 +    /*
   1.619 +     * Use powi if the exponent is an integer-valued double. We don't have to
   1.620 +     * check for NaN since a comparison with NaN is always false.
   1.621 +     */
   1.622 +    int32_t yi;
   1.623 +    if (NumberEqualsInt32(y, &yi))
   1.624 +        return powi(x, yi);
   1.625 +
   1.626 +    /*
   1.627 +     * Because C99 and ECMA specify different behavior for pow(),
   1.628 +     * we need to wrap the libm call to make it ECMA compliant.
   1.629 +     */
   1.630 +    if (!IsFinite(y) && (x == 1.0 || x == -1.0))
   1.631 +        return GenericNaN();
   1.632 +
   1.633 +    /* pow(x, +-0) is always 1, even for x = NaN (MSVC gets this wrong). */
   1.634 +    if (y == 0)
   1.635 +        return 1;
   1.636 +
   1.637 +    /*
   1.638 +     * Special case for square roots. Note that pow(x, 0.5) != sqrt(x)
   1.639 +     * when x = -0.0, so we have to guard for this.
   1.640 +     */
   1.641 +    if (IsFinite(x) && x != 0.0) {
   1.642 +        if (y == 0.5)
   1.643 +            return sqrt(x);
   1.644 +        if (y == -0.5)
   1.645 +            return 1.0 / sqrt(x);
   1.646 +    }
   1.647 +    return pow(x, y);
   1.648 +}
   1.649 +#if defined(_MSC_VER)
   1.650 +# pragma optimize("", on)
   1.651 +#endif
   1.652 +
   1.653 +// Disable PGO for Math.pow() and related functions (see bug 791214).
   1.654 +#if defined(_MSC_VER)
   1.655 +# pragma optimize("g", off)
   1.656 +#endif
   1.657 +bool
   1.658 +js_math_pow(JSContext *cx, unsigned argc, Value *vp)
   1.659 +{
   1.660 +    CallArgs args = CallArgsFromVp(argc, vp);
   1.661 +
   1.662 +    double x;
   1.663 +    if (!ToNumber(cx, args.get(0), &x))
   1.664 +        return false;
   1.665 +
   1.666 +    double y;
   1.667 +    if (!ToNumber(cx, args.get(1), &y))
   1.668 +        return false;
   1.669 +
   1.670 +    double z = ecmaPow(x, y);
   1.671 +    args.rval().setNumber(z);
   1.672 +    return true;
   1.673 +}
   1.674 +#if defined(_MSC_VER)
   1.675 +# pragma optimize("", on)
   1.676 +#endif
   1.677 +
   1.678 +static uint64_t
   1.679 +random_generateSeed()
   1.680 +{
   1.681 +    union {
   1.682 +        uint8_t     u8[8];
   1.683 +        uint32_t    u32[2];
   1.684 +        uint64_t    u64;
   1.685 +    } seed;
   1.686 +    seed.u64 = 0;
   1.687 +
   1.688 +#if defined(XP_WIN)
   1.689 +    /*
   1.690 +     * Our PRNG only uses 48 bits, so calling rand_s() twice to get 64 bits is
   1.691 +     * probably overkill.
   1.692 +     */
   1.693 +    rand_s(&seed.u32[0]);
   1.694 +#elif defined(XP_UNIX)
   1.695 +    /*
   1.696 +     * In the unlikely event we can't read /dev/urandom, there's not much we can
   1.697 +     * do, so just mix in the fd error code and the current time.
   1.698 +     */
   1.699 +    int fd = open("/dev/urandom", O_RDONLY);
   1.700 +    MOZ_ASSERT(fd >= 0, "Can't open /dev/urandom");
   1.701 +    if (fd >= 0) {
   1.702 +        read(fd, seed.u8, mozilla::ArrayLength(seed.u8));
   1.703 +        close(fd);
   1.704 +    }
   1.705 +    seed.u32[0] ^= fd;
   1.706 +#else
   1.707 +# error "Platform needs to implement random_generateSeed()"
   1.708 +#endif
   1.709 +
   1.710 +    seed.u32[1] ^= PRMJ_Now();
   1.711 +    return seed.u64;
   1.712 +}
   1.713 +
   1.714 +static const uint64_t RNG_MULTIPLIER = 0x5DEECE66DLL;
   1.715 +static const uint64_t RNG_ADDEND = 0xBLL;
   1.716 +static const uint64_t RNG_MASK = (1LL << 48) - 1;
   1.717 +static const double RNG_DSCALE = double(1LL << 53);
   1.718 +
   1.719 +/*
   1.720 + * Math.random() support, lifted from java.util.Random.java.
   1.721 + */
   1.722 +static void
   1.723 +random_initState(uint64_t *rngState)
   1.724 +{
   1.725 +    /* Our PRNG only uses 48 bits, so squeeze our entropy into those bits. */
   1.726 +    uint64_t seed = random_generateSeed();
   1.727 +    seed ^= (seed >> 16);
   1.728 +    *rngState = (seed ^ RNG_MULTIPLIER) & RNG_MASK;
   1.729 +}
   1.730 +
   1.731 +uint64_t
   1.732 +random_next(uint64_t *rngState, int bits)
   1.733 +{
   1.734 +    MOZ_ASSERT((*rngState & 0xffff000000000000ULL) == 0, "Bad rngState");
   1.735 +    MOZ_ASSERT(bits > 0 && bits <= 48, "bits is out of range");
   1.736 +
   1.737 +    if (*rngState == 0) {
   1.738 +        random_initState(rngState);
   1.739 +    }
   1.740 +
   1.741 +    uint64_t nextstate = *rngState * RNG_MULTIPLIER;
   1.742 +    nextstate += RNG_ADDEND;
   1.743 +    nextstate &= RNG_MASK;
   1.744 +    *rngState = nextstate;
   1.745 +    return nextstate >> (48 - bits);
   1.746 +}
   1.747 +
   1.748 +static inline double
   1.749 +random_nextDouble(JSContext *cx)
   1.750 +{
   1.751 +    uint64_t *rng = &cx->compartment()->rngState;
   1.752 +    return double((random_next(rng, 26) << 27) + random_next(rng, 27)) / RNG_DSCALE;
   1.753 +}
   1.754 +
   1.755 +double
   1.756 +math_random_no_outparam(JSContext *cx)
   1.757 +{
   1.758 +    /* Calculate random without memory traffic, for use in the JITs. */
   1.759 +    return random_nextDouble(cx);
   1.760 +}
   1.761 +
   1.762 +bool
   1.763 +js_math_random(JSContext *cx, unsigned argc, Value *vp)
   1.764 +{
   1.765 +    CallArgs args = CallArgsFromVp(argc, vp);
   1.766 +    double z = random_nextDouble(cx);
   1.767 +    args.rval().setDouble(z);
   1.768 +    return true;
   1.769 +}
   1.770 +
   1.771 +double
   1.772 +js::math_round_impl(double x)
   1.773 +{
   1.774 +    int32_t ignored;
   1.775 +    if (NumberIsInt32(x, &ignored))
   1.776 +        return x;
   1.777 +
   1.778 +    /* Some numbers are so big that adding 0.5 would give the wrong number. */
   1.779 +    if (ExponentComponent(x) >= int_fast16_t(FloatingPoint<double>::ExponentShift))
   1.780 +        return x;
   1.781 +
   1.782 +    return js_copysign(floor(x + 0.5), x);
   1.783 +}
   1.784 +
   1.785 +float
   1.786 +js::math_roundf_impl(float x)
   1.787 +{
   1.788 +    int32_t ignored;
   1.789 +    if (NumberIsInt32(x, &ignored))
   1.790 +        return x;
   1.791 +
   1.792 +    /* Some numbers are so big that adding 0.5 would give the wrong number. */
   1.793 +    if (ExponentComponent(x) >= int_fast16_t(FloatingPoint<float>::ExponentShift))
   1.794 +        return x;
   1.795 +
   1.796 +    return js_copysign(floorf(x + 0.5f), x);
   1.797 +}
   1.798 +
   1.799 +bool /* ES5 15.8.2.15. */
   1.800 +js::math_round(JSContext *cx, unsigned argc, Value *vp)
   1.801 +{
   1.802 +    CallArgs args = CallArgsFromVp(argc, vp);
   1.803 +
   1.804 +    if (args.length() == 0) {
   1.805 +        args.rval().setNaN();
   1.806 +        return true;
   1.807 +    }
   1.808 +
   1.809 +    double x;
   1.810 +    if (!ToNumber(cx, args[0], &x))
   1.811 +        return false;
   1.812 +
   1.813 +    double z = math_round_impl(x);
   1.814 +    args.rval().setNumber(z);
   1.815 +    return true;
   1.816 +}
   1.817 +
   1.818 +double
   1.819 +js::math_sin_impl(MathCache *cache, double x)
   1.820 +{
   1.821 +    return cache->lookup(sin, x);
   1.822 +}
   1.823 +
   1.824 +double
   1.825 +js::math_sin_uncached(double x)
   1.826 +{
   1.827 +    return sin(x);
   1.828 +}
   1.829 +
   1.830 +bool
   1.831 +js::math_sin(JSContext *cx, unsigned argc, Value *vp)
   1.832 +{
   1.833 +    CallArgs args = CallArgsFromVp(argc, vp);
   1.834 +
   1.835 +    if (args.length() == 0) {
   1.836 +        args.rval().setNaN();
   1.837 +        return true;
   1.838 +    }
   1.839 +
   1.840 +    double x;
   1.841 +    if (!ToNumber(cx, args[0], &x))
   1.842 +        return false;
   1.843 +
   1.844 +    MathCache *mathCache = cx->runtime()->getMathCache(cx);
   1.845 +    if (!mathCache)
   1.846 +        return false;
   1.847 +
   1.848 +    double z = math_sin_impl(mathCache, x);
   1.849 +    args.rval().setDouble(z);
   1.850 +    return true;
   1.851 +}
   1.852 +
   1.853 +bool
   1.854 +js_math_sqrt(JSContext *cx, unsigned argc, Value *vp)
   1.855 +{
   1.856 +    CallArgs args = CallArgsFromVp(argc, vp);
   1.857 +
   1.858 +    if (args.length() == 0) {
   1.859 +        args.rval().setNaN();
   1.860 +        return true;
   1.861 +    }
   1.862 +
   1.863 +    double x;
   1.864 +    if (!ToNumber(cx, args[0], &x))
   1.865 +        return false;
   1.866 +
   1.867 +    MathCache *mathCache = cx->runtime()->getMathCache(cx);
   1.868 +    if (!mathCache)
   1.869 +        return false;
   1.870 +
   1.871 +    double z = mathCache->lookup(sqrt, x);
   1.872 +    args.rval().setDouble(z);
   1.873 +    return true;
   1.874 +}
   1.875 +
   1.876 +double
   1.877 +js::math_tan_impl(MathCache *cache, double x)
   1.878 +{
   1.879 +    return cache->lookup(tan, x);
   1.880 +}
   1.881 +
   1.882 +double
   1.883 +js::math_tan_uncached(double x)
   1.884 +{
   1.885 +    return tan(x);
   1.886 +}
   1.887 +
   1.888 +bool
   1.889 +js::math_tan(JSContext *cx, unsigned argc, Value *vp)
   1.890 +{
   1.891 +    CallArgs args = CallArgsFromVp(argc, vp);
   1.892 +
   1.893 +    if (args.length() == 0) {
   1.894 +        args.rval().setNaN();
   1.895 +        return true;
   1.896 +    }
   1.897 +
   1.898 +    double x;
   1.899 +    if (!ToNumber(cx, args[0], &x))
   1.900 +        return false;
   1.901 +
   1.902 +    MathCache *mathCache = cx->runtime()->getMathCache(cx);
   1.903 +    if (!mathCache)
   1.904 +        return false;
   1.905 +
   1.906 +    double z = math_tan_impl(mathCache, x);
   1.907 +    args.rval().setDouble(z);
   1.908 +    return true;
   1.909 +}
   1.910 +
   1.911 +
   1.912 +typedef double (*UnaryMathFunctionType)(MathCache *cache, double);
   1.913 +
   1.914 +template <UnaryMathFunctionType F>
   1.915 +static bool math_function(JSContext *cx, unsigned argc, Value *vp)
   1.916 +{
   1.917 +    CallArgs args = CallArgsFromVp(argc, vp);
   1.918 +    if (args.length() == 0) {
   1.919 +        args.rval().setNumber(GenericNaN());
   1.920 +        return true;
   1.921 +    }
   1.922 +
   1.923 +    double x;
   1.924 +    if (!ToNumber(cx, args[0], &x))
   1.925 +        return false;
   1.926 +
   1.927 +    MathCache *mathCache = cx->runtime()->getMathCache(cx);
   1.928 +    if (!mathCache)
   1.929 +        return false;
   1.930 +    double z = F(mathCache, x);
   1.931 +    args.rval().setNumber(z);
   1.932 +
   1.933 +    return true;
   1.934 +}
   1.935 +
   1.936 +
   1.937 +
   1.938 +double
   1.939 +js::math_log10_impl(MathCache *cache, double x)
   1.940 +{
   1.941 +    return cache->lookup(log10, x);
   1.942 +}
   1.943 +
   1.944 +double
   1.945 +js::math_log10_uncached(double x)
   1.946 +{
   1.947 +    return log10(x);
   1.948 +}
   1.949 +
   1.950 +bool
   1.951 +js::math_log10(JSContext *cx, unsigned argc, Value *vp)
   1.952 +{
   1.953 +    return math_function<math_log10_impl>(cx, argc, vp);
   1.954 +}
   1.955 +
   1.956 +#if !HAVE_LOG2
   1.957 +double log2(double x)
   1.958 +{
   1.959 +    return log(x) / M_LN2;
   1.960 +}
   1.961 +#endif
   1.962 +
   1.963 +double
   1.964 +js::math_log2_impl(MathCache *cache, double x)
   1.965 +{
   1.966 +    return cache->lookup(log2, x);
   1.967 +}
   1.968 +
   1.969 +double
   1.970 +js::math_log2_uncached(double x)
   1.971 +{
   1.972 +    return log2(x);
   1.973 +}
   1.974 +
   1.975 +bool
   1.976 +js::math_log2(JSContext *cx, unsigned argc, Value *vp)
   1.977 +{
   1.978 +    return math_function<math_log2_impl>(cx, argc, vp);
   1.979 +}
   1.980 +
   1.981 +#if !HAVE_LOG1P
   1.982 +double log1p(double x)
   1.983 +{
   1.984 +    if (fabs(x) < 1e-4) {
   1.985 +        /*
   1.986 +         * Use Taylor approx. log(1 + x) = x - x^2 / 2 + x^3 / 3 - x^4 / 4 with error x^5 / 5
   1.987 +         * Since |x| < 10^-4, |x|^5 < 10^-20, relative error less than 10^-16
   1.988 +         */
   1.989 +        double z = -(x * x * x * x) / 4 + (x * x * x) / 3 - (x * x) / 2 + x;
   1.990 +        return z;
   1.991 +    } else {
   1.992 +        /* For other large enough values of x use direct computation */
   1.993 +        return log(1.0 + x);
   1.994 +    }
   1.995 +}
   1.996 +#endif
   1.997 +
   1.998 +#ifdef __APPLE__
   1.999 +// Ensure that log1p(-0) is -0.
  1.1000 +#define LOG1P_IF_OUT_OF_RANGE(x) if (x == 0) return x;
  1.1001 +#else
  1.1002 +#define LOG1P_IF_OUT_OF_RANGE(x)
  1.1003 +#endif
  1.1004 +
  1.1005 +double
  1.1006 +js::math_log1p_impl(MathCache *cache, double x)
  1.1007 +{
  1.1008 +    LOG1P_IF_OUT_OF_RANGE(x);
  1.1009 +    return cache->lookup(log1p, x);
  1.1010 +}
  1.1011 +
  1.1012 +double
  1.1013 +js::math_log1p_uncached(double x)
  1.1014 +{
  1.1015 +    LOG1P_IF_OUT_OF_RANGE(x);
  1.1016 +    return log1p(x);
  1.1017 +}
  1.1018 +
  1.1019 +#undef LOG1P_IF_OUT_OF_RANGE
  1.1020 +
  1.1021 +bool
  1.1022 +js::math_log1p(JSContext *cx, unsigned argc, Value *vp)
  1.1023 +{
  1.1024 +    return math_function<math_log1p_impl>(cx, argc, vp);
  1.1025 +}
  1.1026 +
  1.1027 +#if !HAVE_EXPM1
  1.1028 +double expm1(double x)
  1.1029 +{
  1.1030 +    /* Special handling for -0 */
  1.1031 +    if (x == 0.0)
  1.1032 +        return x;
  1.1033 +
  1.1034 +    if (fabs(x) < 1e-5) {
  1.1035 +        /*
  1.1036 +         * Use Taylor approx. exp(x) - 1 = x + x^2 / 2 + x^3 / 6 with error x^4 / 24
  1.1037 +         * Since |x| < 10^-5, |x|^4 < 10^-20, relative error less than 10^-15
  1.1038 +         */
  1.1039 +        double z = (x * x * x) / 6 + (x * x) / 2 + x;
  1.1040 +        return z;
  1.1041 +    } else {
  1.1042 +        /* For other large enough values of x use direct computation */
  1.1043 +        return exp(x) - 1.0;
  1.1044 +    }
  1.1045 +}
  1.1046 +#endif
  1.1047 +
  1.1048 +double
  1.1049 +js::math_expm1_impl(MathCache *cache, double x)
  1.1050 +{
  1.1051 +    return cache->lookup(expm1, x);
  1.1052 +}
  1.1053 +
  1.1054 +double
  1.1055 +js::math_expm1_uncached(double x)
  1.1056 +{
  1.1057 +    return expm1(x);
  1.1058 +}
  1.1059 +
  1.1060 +bool
  1.1061 +js::math_expm1(JSContext *cx, unsigned argc, Value *vp)
  1.1062 +{
  1.1063 +    return math_function<math_expm1_impl>(cx, argc, vp);
  1.1064 +}
  1.1065 +
  1.1066 +#if !HAVE_SQRT1PM1
  1.1067 +/* This algorithm computes sqrt(1+x)-1 for small x */
  1.1068 +double sqrt1pm1(double x)
  1.1069 +{
  1.1070 +    if (fabs(x) > 0.75)
  1.1071 +        return sqrt(1 + x) - 1;
  1.1072 +
  1.1073 +    return expm1(log1p(x) / 2);
  1.1074 +}
  1.1075 +#endif
  1.1076 +
  1.1077 +
  1.1078 +double
  1.1079 +js::math_cosh_impl(MathCache *cache, double x)
  1.1080 +{
  1.1081 +    return cache->lookup(cosh, x);
  1.1082 +}
  1.1083 +
  1.1084 +double
  1.1085 +js::math_cosh_uncached(double x)
  1.1086 +{
  1.1087 +    return cosh(x);
  1.1088 +}
  1.1089 +
  1.1090 +bool
  1.1091 +js::math_cosh(JSContext *cx, unsigned argc, Value *vp)
  1.1092 +{
  1.1093 +    return math_function<math_cosh_impl>(cx, argc, vp);
  1.1094 +}
  1.1095 +
  1.1096 +double
  1.1097 +js::math_sinh_impl(MathCache *cache, double x)
  1.1098 +{
  1.1099 +    return cache->lookup(sinh, x);
  1.1100 +}
  1.1101 +
  1.1102 +double
  1.1103 +js::math_sinh_uncached(double x)
  1.1104 +{
  1.1105 +    return sinh(x);
  1.1106 +}
  1.1107 +
  1.1108 +bool
  1.1109 +js::math_sinh(JSContext *cx, unsigned argc, Value *vp)
  1.1110 +{
  1.1111 +    return math_function<math_sinh_impl>(cx, argc, vp);
  1.1112 +}
  1.1113 +
  1.1114 +double
  1.1115 +js::math_tanh_impl(MathCache *cache, double x)
  1.1116 +{
  1.1117 +    return cache->lookup(tanh, x);
  1.1118 +}
  1.1119 +
  1.1120 +double
  1.1121 +js::math_tanh_uncached(double x)
  1.1122 +{
  1.1123 +    return tanh(x);
  1.1124 +}
  1.1125 +
  1.1126 +bool
  1.1127 +js::math_tanh(JSContext *cx, unsigned argc, Value *vp)
  1.1128 +{
  1.1129 +    return math_function<math_tanh_impl>(cx, argc, vp);
  1.1130 +}
  1.1131 +
  1.1132 +#if !HAVE_ACOSH
  1.1133 +double acosh(double x)
  1.1134 +{
  1.1135 +    const double SQUARE_ROOT_EPSILON = sqrt(std::numeric_limits<double>::epsilon());
  1.1136 +
  1.1137 +    if ((x - 1) >= SQUARE_ROOT_EPSILON) {
  1.1138 +        if (x > 1 / SQUARE_ROOT_EPSILON) {
  1.1139 +            /*
  1.1140 +             * http://functions.wolfram.com/ElementaryFunctions/ArcCosh/06/01/06/01/0001/
  1.1141 +             * approximation by laurent series in 1/x at 0+ order from -1 to 0
  1.1142 +             */
  1.1143 +            return log(x) + M_LN2;
  1.1144 +        } else if (x < 1.5) {
  1.1145 +            // This is just a rearrangement of the standard form below
  1.1146 +            // devised to minimize loss of precision when x ~ 1:
  1.1147 +            double y = x - 1;
  1.1148 +            return log1p(y + sqrt(y * y + 2 * y));
  1.1149 +        } else {
  1.1150 +            // http://functions.wolfram.com/ElementaryFunctions/ArcCosh/02/
  1.1151 +            return log(x + sqrt(x * x - 1));
  1.1152 +        }
  1.1153 +    } else {
  1.1154 +        // see http://functions.wolfram.com/ElementaryFunctions/ArcCosh/06/01/04/01/0001/
  1.1155 +        double y = x - 1;
  1.1156 +        // approximation by taylor series in y at 0 up to order 2.
  1.1157 +        // If x is less than 1, sqrt(2 * y) is NaN and the result is NaN.
  1.1158 +        return sqrt(2 * y) * (1 - y / 12 + 3 * y * y / 160);
  1.1159 +    }
  1.1160 +}
  1.1161 +#endif
  1.1162 +
  1.1163 +double
  1.1164 +js::math_acosh_impl(MathCache *cache, double x)
  1.1165 +{
  1.1166 +    return cache->lookup(acosh, x);
  1.1167 +}
  1.1168 +
  1.1169 +double
  1.1170 +js::math_acosh_uncached(double x)
  1.1171 +{
  1.1172 +    return acosh(x);
  1.1173 +}
  1.1174 +
  1.1175 +bool
  1.1176 +js::math_acosh(JSContext *cx, unsigned argc, Value *vp)
  1.1177 +{
  1.1178 +    return math_function<math_acosh_impl>(cx, argc, vp);
  1.1179 +}
  1.1180 +
  1.1181 +#if !HAVE_ASINH
  1.1182 +// Bug 899712 - gcc incorrectly rewrites -asinh(-x) to asinh(x) when overriding
  1.1183 +// asinh.
  1.1184 +static double my_asinh(double x)
  1.1185 +{
  1.1186 +    const double SQUARE_ROOT_EPSILON = sqrt(std::numeric_limits<double>::epsilon());
  1.1187 +    const double FOURTH_ROOT_EPSILON = sqrt(SQUARE_ROOT_EPSILON);
  1.1188 +
  1.1189 +    if (x >= FOURTH_ROOT_EPSILON) {
  1.1190 +        if (x > 1 / SQUARE_ROOT_EPSILON)
  1.1191 +            // http://functions.wolfram.com/ElementaryFunctions/ArcSinh/06/01/06/01/0001/
  1.1192 +            // approximation by laurent series in 1/x at 0+ order from -1 to 1
  1.1193 +            return M_LN2 + log(x) + 1 / (4 * x * x);
  1.1194 +        else if (x < 0.5)
  1.1195 +            return log1p(x + sqrt1pm1(x * x));
  1.1196 +        else
  1.1197 +            return log(x + sqrt(x * x + 1));
  1.1198 +    } else if (x <= -FOURTH_ROOT_EPSILON) {
  1.1199 +        return -my_asinh(-x);
  1.1200 +    } else {
  1.1201 +        // http://functions.wolfram.com/ElementaryFunctions/ArcSinh/06/01/03/01/0001/
  1.1202 +        // approximation by taylor series in x at 0 up to order 2
  1.1203 +        double result = x;
  1.1204 +
  1.1205 +        if (fabs(x) >= SQUARE_ROOT_EPSILON) {
  1.1206 +            double x3 = x * x * x;
  1.1207 +            // approximation by taylor series in x at 0 up to order 4
  1.1208 +            result -= x3 / 6;
  1.1209 +        }
  1.1210 +
  1.1211 +        return result;
  1.1212 +    }
  1.1213 +}
  1.1214 +#endif
  1.1215 +
  1.1216 +double
  1.1217 +js::math_asinh_impl(MathCache *cache, double x)
  1.1218 +{
  1.1219 +#ifdef HAVE_ASINH
  1.1220 +    return cache->lookup(asinh, x);
  1.1221 +#else
  1.1222 +    return cache->lookup(my_asinh, x);
  1.1223 +#endif
  1.1224 +}
  1.1225 +
  1.1226 +double
  1.1227 +js::math_asinh_uncached(double x)
  1.1228 +{
  1.1229 +#ifdef HAVE_ASINH
  1.1230 +    return asinh(x);
  1.1231 +#else
  1.1232 +    return my_asinh(x);
  1.1233 +#endif
  1.1234 +}
  1.1235 +
  1.1236 +bool
  1.1237 +js::math_asinh(JSContext *cx, unsigned argc, Value *vp)
  1.1238 +{
  1.1239 +    return math_function<math_asinh_impl>(cx, argc, vp);
  1.1240 +}
  1.1241 +
  1.1242 +#if !HAVE_ATANH
  1.1243 +double atanh(double x)
  1.1244 +{
  1.1245 +    const double EPSILON = std::numeric_limits<double>::epsilon();
  1.1246 +    const double SQUARE_ROOT_EPSILON = sqrt(EPSILON);
  1.1247 +    const double FOURTH_ROOT_EPSILON = sqrt(SQUARE_ROOT_EPSILON);
  1.1248 +
  1.1249 +    if (fabs(x) >= FOURTH_ROOT_EPSILON) {
  1.1250 +        // http://functions.wolfram.com/ElementaryFunctions/ArcTanh/02/
  1.1251 +        if (fabs(x) < 0.5)
  1.1252 +            return (log1p(x) - log1p(-x)) / 2;
  1.1253 +
  1.1254 +        return log((1 + x) / (1 - x)) / 2;
  1.1255 +    } else {
  1.1256 +        // http://functions.wolfram.com/ElementaryFunctions/ArcTanh/06/01/03/01/
  1.1257 +        // approximation by taylor series in x at 0 up to order 2
  1.1258 +        double result = x;
  1.1259 +
  1.1260 +        if (fabs(x) >= SQUARE_ROOT_EPSILON) {
  1.1261 +            double x3 = x * x * x;
  1.1262 +            result += x3 / 3;
  1.1263 +        }
  1.1264 +
  1.1265 +        return result;
  1.1266 +    }
  1.1267 +}
  1.1268 +#endif
  1.1269 +
  1.1270 +double
  1.1271 +js::math_atanh_impl(MathCache *cache, double x)
  1.1272 +{
  1.1273 +    return cache->lookup(atanh, x);
  1.1274 +}
  1.1275 +
  1.1276 +double
  1.1277 +js::math_atanh_uncached(double x)
  1.1278 +{
  1.1279 +    return atanh(x);
  1.1280 +}
  1.1281 +
  1.1282 +bool
  1.1283 +js::math_atanh(JSContext *cx, unsigned argc, Value *vp)
  1.1284 +{
  1.1285 +    return math_function<math_atanh_impl>(cx, argc, vp);
  1.1286 +}
  1.1287 +
  1.1288 +/* Consistency wrapper for platform deviations in hypot() */
  1.1289 +double
  1.1290 +js::ecmaHypot(double x, double y)
  1.1291 +{
  1.1292 +#ifdef XP_WIN
  1.1293 +    /*
  1.1294 +     * Workaround MS hypot bug, where hypot(Infinity, NaN or Math.MIN_VALUE)
  1.1295 +     * is NaN, not Infinity.
  1.1296 +     */
  1.1297 +    if (mozilla::IsInfinite(x) || mozilla::IsInfinite(y)) {
  1.1298 +        return mozilla::PositiveInfinity<double>();
  1.1299 +    }
  1.1300 +#endif
  1.1301 +    return hypot(x, y);
  1.1302 +}
  1.1303 +
  1.1304 +bool
  1.1305 +js::math_hypot(JSContext *cx, unsigned argc, Value *vp)
  1.1306 +{
  1.1307 +    CallArgs args = CallArgsFromVp(argc, vp);
  1.1308 +
  1.1309 +    // IonMonkey calls the system hypot function directly if two arguments are
  1.1310 +    // given. Do that here as well to get the same results.
  1.1311 +    if (args.length() == 2) {
  1.1312 +        double x, y;
  1.1313 +        if (!ToNumber(cx, args[0], &x))
  1.1314 +            return false;
  1.1315 +        if (!ToNumber(cx, args[1], &y))
  1.1316 +            return false;
  1.1317 +
  1.1318 +        double result = ecmaHypot(x, y);
  1.1319 +        args.rval().setNumber(result);
  1.1320 +        return true;
  1.1321 +    }
  1.1322 +
  1.1323 +    bool isInfinite = false;
  1.1324 +    bool isNaN = false;
  1.1325 +
  1.1326 +    double scale = 0;
  1.1327 +    double sumsq = 1;
  1.1328 +
  1.1329 +    for (unsigned i = 0; i < args.length(); i++) {
  1.1330 +        double x;
  1.1331 +        if (!ToNumber(cx, args[i], &x))
  1.1332 +            return false;
  1.1333 +
  1.1334 +        isInfinite |= mozilla::IsInfinite(x);
  1.1335 +        isNaN |= mozilla::IsNaN(x);
  1.1336 +
  1.1337 +        double xabs = mozilla::Abs(x);
  1.1338 +
  1.1339 +        if (scale < xabs) {
  1.1340 +            sumsq = 1 + sumsq * (scale / xabs) * (scale / xabs);
  1.1341 +            scale = xabs;
  1.1342 +        } else if (scale != 0) {
  1.1343 +            sumsq += (xabs / scale) * (xabs / scale);
  1.1344 +        }
  1.1345 +    }
  1.1346 +
  1.1347 +    double result = isInfinite ? PositiveInfinity<double>() :
  1.1348 +                    isNaN ? GenericNaN() :
  1.1349 +                    scale * sqrt(sumsq);
  1.1350 +    args.rval().setNumber(result);
  1.1351 +    return true;
  1.1352 +}
  1.1353 +
  1.1354 +#if !HAVE_TRUNC
  1.1355 +double trunc(double x)
  1.1356 +{
  1.1357 +    return x > 0 ? floor(x) : ceil(x);
  1.1358 +}
  1.1359 +#endif
  1.1360 +
  1.1361 +double
  1.1362 +js::math_trunc_impl(MathCache *cache, double x)
  1.1363 +{
  1.1364 +    return cache->lookup(trunc, x);
  1.1365 +}
  1.1366 +
  1.1367 +double
  1.1368 +js::math_trunc_uncached(double x)
  1.1369 +{
  1.1370 +    return trunc(x);
  1.1371 +}
  1.1372 +
  1.1373 +bool
  1.1374 +js::math_trunc(JSContext *cx, unsigned argc, Value *vp)
  1.1375 +{
  1.1376 +    return math_function<math_trunc_impl>(cx, argc, vp);
  1.1377 +}
  1.1378 +
  1.1379 +static double sign(double x)
  1.1380 +{
  1.1381 +    if (mozilla::IsNaN(x))
  1.1382 +        return GenericNaN();
  1.1383 +
  1.1384 +    return x == 0 ? x : x < 0 ? -1 : 1;
  1.1385 +}
  1.1386 +
  1.1387 +double
  1.1388 +js::math_sign_impl(MathCache *cache, double x)
  1.1389 +{
  1.1390 +    return cache->lookup(sign, x);
  1.1391 +}
  1.1392 +
  1.1393 +double
  1.1394 +js::math_sign_uncached(double x)
  1.1395 +{
  1.1396 +    return sign(x);
  1.1397 +}
  1.1398 +
  1.1399 +bool
  1.1400 +js::math_sign(JSContext *cx, unsigned argc, Value *vp)
  1.1401 +{
  1.1402 +    return math_function<math_sign_impl>(cx, argc, vp);
  1.1403 +}
  1.1404 +
  1.1405 +#if !HAVE_CBRT
  1.1406 +double cbrt(double x)
  1.1407 +{
  1.1408 +    if (x > 0) {
  1.1409 +        return pow(x, 1.0 / 3.0);
  1.1410 +    } else if (x == 0) {
  1.1411 +        return x;
  1.1412 +    } else {
  1.1413 +        return -pow(-x, 1.0 / 3.0);
  1.1414 +    }
  1.1415 +}
  1.1416 +#endif
  1.1417 +
  1.1418 +double
  1.1419 +js::math_cbrt_impl(MathCache *cache, double x)
  1.1420 +{
  1.1421 +    return cache->lookup(cbrt, x);
  1.1422 +}
  1.1423 +
  1.1424 +double
  1.1425 +js::math_cbrt_uncached(double x)
  1.1426 +{
  1.1427 +    return cbrt(x);
  1.1428 +}
  1.1429 +
  1.1430 +bool
  1.1431 +js::math_cbrt(JSContext *cx, unsigned argc, Value *vp)
  1.1432 +{
  1.1433 +    return math_function<math_cbrt_impl>(cx, argc, vp);
  1.1434 +}
  1.1435 +
  1.1436 +#if JS_HAS_TOSOURCE
  1.1437 +static bool
  1.1438 +math_toSource(JSContext *cx, unsigned argc, Value *vp)
  1.1439 +{
  1.1440 +    CallArgs args = CallArgsFromVp(argc, vp);
  1.1441 +    args.rval().setString(cx->names().Math);
  1.1442 +    return true;
  1.1443 +}
  1.1444 +#endif
  1.1445 +
  1.1446 +static const JSFunctionSpec math_static_methods[] = {
  1.1447 +#if JS_HAS_TOSOURCE
  1.1448 +    JS_FN(js_toSource_str,  math_toSource,        0, 0),
  1.1449 +#endif
  1.1450 +    JS_FN("abs",            js_math_abs,          1, 0),
  1.1451 +    JS_FN("acos",           math_acos,            1, 0),
  1.1452 +    JS_FN("asin",           math_asin,            1, 0),
  1.1453 +    JS_FN("atan",           math_atan,            1, 0),
  1.1454 +    JS_FN("atan2",          math_atan2,           2, 0),
  1.1455 +    JS_FN("ceil",           math_ceil,            1, 0),
  1.1456 +    JS_FN("clz32",          math_clz32,           1, 0),
  1.1457 +    JS_FN("cos",            math_cos,             1, 0),
  1.1458 +    JS_FN("exp",            math_exp,             1, 0),
  1.1459 +    JS_FN("floor",          math_floor,           1, 0),
  1.1460 +    JS_FN("imul",           math_imul,            2, 0),
  1.1461 +    JS_FN("fround",         math_fround,          1, 0),
  1.1462 +    JS_FN("log",            math_log,             1, 0),
  1.1463 +    JS_FN("max",            js_math_max,          2, 0),
  1.1464 +    JS_FN("min",            js_math_min,          2, 0),
  1.1465 +    JS_FN("pow",            js_math_pow,          2, 0),
  1.1466 +    JS_FN("random",         js_math_random,       0, 0),
  1.1467 +    JS_FN("round",          math_round,           1, 0),
  1.1468 +    JS_FN("sin",            math_sin,             1, 0),
  1.1469 +    JS_FN("sqrt",           js_math_sqrt,         1, 0),
  1.1470 +    JS_FN("tan",            math_tan,             1, 0),
  1.1471 +    JS_FN("log10",          math_log10,           1, 0),
  1.1472 +    JS_FN("log2",           math_log2,            1, 0),
  1.1473 +    JS_FN("log1p",          math_log1p,           1, 0),
  1.1474 +    JS_FN("expm1",          math_expm1,           1, 0),
  1.1475 +    JS_FN("cosh",           math_cosh,            1, 0),
  1.1476 +    JS_FN("sinh",           math_sinh,            1, 0),
  1.1477 +    JS_FN("tanh",           math_tanh,            1, 0),
  1.1478 +    JS_FN("acosh",          math_acosh,           1, 0),
  1.1479 +    JS_FN("asinh",          math_asinh,           1, 0),
  1.1480 +    JS_FN("atanh",          math_atanh,           1, 0),
  1.1481 +    JS_FN("hypot",          math_hypot,           2, 0),
  1.1482 +    JS_FN("trunc",          math_trunc,           1, 0),
  1.1483 +    JS_FN("sign",           math_sign,            1, 0),
  1.1484 +    JS_FN("cbrt",           math_cbrt,            1, 0),
  1.1485 +    JS_FS_END
  1.1486 +};
  1.1487 +
  1.1488 +JSObject *
  1.1489 +js_InitMathClass(JSContext *cx, HandleObject obj)
  1.1490 +{
  1.1491 +    RootedObject proto(cx, obj->as<GlobalObject>().getOrCreateObjectPrototype(cx));
  1.1492 +    if (!proto)
  1.1493 +        return nullptr;
  1.1494 +    RootedObject Math(cx, NewObjectWithGivenProto(cx, &MathClass, proto, obj, SingletonObject));
  1.1495 +    if (!Math)
  1.1496 +        return nullptr;
  1.1497 +
  1.1498 +    if (!JS_DefineProperty(cx, obj, js_Math_str, Math, 0,
  1.1499 +                           JS_PropertyStub, JS_StrictPropertyStub))
  1.1500 +    {
  1.1501 +        return nullptr;
  1.1502 +    }
  1.1503 +
  1.1504 +    if (!JS_DefineFunctions(cx, Math, math_static_methods))
  1.1505 +        return nullptr;
  1.1506 +    if (!JS_DefineConstDoubles(cx, Math, math_constants))
  1.1507 +        return nullptr;
  1.1508 +
  1.1509 +    obj->as<GlobalObject>().setConstructor(JSProto_Math, ObjectValue(*Math));
  1.1510 +
  1.1511 +    return Math;
  1.1512 +}

mercurial