media/libjpeg/simd/jfmmxfst.asm

Wed, 31 Dec 2014 06:09:35 +0100

author
Michael Schloh von Bennewitz <michael@schloh.com>
date
Wed, 31 Dec 2014 06:09:35 +0100
changeset 0
6474c204b198
permissions
-rw-r--r--

Cloned upstream origin tor-browser at tor-browser-31.3.0esr-4.5-1-build1
revision ID fc1c9ff7c1b2defdbc039f12214767608f46423f for hacking purpose.

     1 ;
     2 ; jfmmxfst.asm - fast integer FDCT (MMX)
     3 ;
     4 ; Copyright 2009 Pierre Ossman <ossman@cendio.se> for Cendio AB
     5 ;
     6 ; Based on
     7 ; x86 SIMD extension for IJG JPEG library
     8 ; Copyright (C) 1999-2006, MIYASAKA Masaru.
     9 ; For conditions of distribution and use, see copyright notice in jsimdext.inc
    10 ;
    11 ; This file should be assembled with NASM (Netwide Assembler),
    12 ; can *not* be assembled with Microsoft's MASM or any compatible
    13 ; assembler (including Borland's Turbo Assembler).
    14 ; NASM is available from http://nasm.sourceforge.net/ or
    15 ; http://sourceforge.net/project/showfiles.php?group_id=6208
    16 ;
    17 ; This file contains a fast, not so accurate integer implementation of
    18 ; the forward DCT (Discrete Cosine Transform). The following code is
    19 ; based directly on the IJG's original jfdctfst.c; see the jfdctfst.c
    20 ; for more details.
    21 ;
    22 ; [TAB8]
    24 %include "jsimdext.inc"
    25 %include "jdct.inc"
    27 ; --------------------------------------------------------------------------
    29 %define CONST_BITS	8	; 14 is also OK.
    31 %if CONST_BITS == 8
    32 F_0_382	equ	 98		; FIX(0.382683433)
    33 F_0_541	equ	139		; FIX(0.541196100)
    34 F_0_707	equ	181		; FIX(0.707106781)
    35 F_1_306	equ	334		; FIX(1.306562965)
    36 %else
    37 ; NASM cannot do compile-time arithmetic on floating-point constants.
    38 %define DESCALE(x,n)  (((x)+(1<<((n)-1)))>>(n))
    39 F_0_382	equ	DESCALE( 410903207,30-CONST_BITS)	; FIX(0.382683433)
    40 F_0_541	equ	DESCALE( 581104887,30-CONST_BITS)	; FIX(0.541196100)
    41 F_0_707	equ	DESCALE( 759250124,30-CONST_BITS)	; FIX(0.707106781)
    42 F_1_306	equ	DESCALE(1402911301,30-CONST_BITS)	; FIX(1.306562965)
    43 %endif
    45 ; --------------------------------------------------------------------------
    46 	SECTION	SEG_CONST
    48 ; PRE_MULTIPLY_SCALE_BITS <= 2 (to avoid overflow)
    49 ; CONST_BITS + CONST_SHIFT + PRE_MULTIPLY_SCALE_BITS == 16 (for pmulhw)
    51 %define PRE_MULTIPLY_SCALE_BITS   2
    52 %define CONST_SHIFT     (16 - PRE_MULTIPLY_SCALE_BITS - CONST_BITS)
    54 	alignz	16
    55 	global	EXTN(jconst_fdct_ifast_mmx)
    57 EXTN(jconst_fdct_ifast_mmx):
    59 PW_F0707	times 4 dw  F_0_707 << CONST_SHIFT
    60 PW_F0382	times 4 dw  F_0_382 << CONST_SHIFT
    61 PW_F0541	times 4 dw  F_0_541 << CONST_SHIFT
    62 PW_F1306	times 4 dw  F_1_306 << CONST_SHIFT
    64 	alignz	16
    66 ; --------------------------------------------------------------------------
    67 	SECTION	SEG_TEXT
    68 	BITS	32
    69 ;
    70 ; Perform the forward DCT on one block of samples.
    71 ;
    72 ; GLOBAL(void)
    73 ; jsimd_fdct_ifast_mmx (DCTELEM * data)
    74 ;
    76 %define data(b)		(b)+8		; DCTELEM * data
    78 %define original_ebp	ebp+0
    79 %define wk(i)		ebp-(WK_NUM-(i))*SIZEOF_MMWORD	; mmword wk[WK_NUM]
    80 %define WK_NUM		2
    82 	align	16
    83 	global	EXTN(jsimd_fdct_ifast_mmx)
    85 EXTN(jsimd_fdct_ifast_mmx):
    86 	push	ebp
    87 	mov	eax,esp				; eax = original ebp
    88 	sub	esp, byte 4
    89 	and	esp, byte (-SIZEOF_MMWORD)	; align to 64 bits
    90 	mov	[esp],eax
    91 	mov	ebp,esp				; ebp = aligned ebp
    92 	lea	esp, [wk(0)]
    93 	pushpic	ebx
    94 ;	push	ecx		; need not be preserved
    95 ;	push	edx		; need not be preserved
    96 ;	push	esi		; unused
    97 ;	push	edi		; unused
    99 	get_GOT	ebx		; get GOT address
   101 	; ---- Pass 1: process rows.
   103 	mov	edx, POINTER [data(eax)]	; (DCTELEM *)
   104 	mov	ecx, DCTSIZE/4
   105 	alignx	16,7
   106 .rowloop:
   108 	movq	mm0, MMWORD [MMBLOCK(2,0,edx,SIZEOF_DCTELEM)]
   109 	movq	mm1, MMWORD [MMBLOCK(3,0,edx,SIZEOF_DCTELEM)]
   110 	movq	mm2, MMWORD [MMBLOCK(2,1,edx,SIZEOF_DCTELEM)]
   111 	movq	mm3, MMWORD [MMBLOCK(3,1,edx,SIZEOF_DCTELEM)]
   113 	; mm0=(20 21 22 23), mm2=(24 25 26 27)
   114 	; mm1=(30 31 32 33), mm3=(34 35 36 37)
   116 	movq      mm4,mm0		; transpose coefficients(phase 1)
   117 	punpcklwd mm0,mm1		; mm0=(20 30 21 31)
   118 	punpckhwd mm4,mm1		; mm4=(22 32 23 33)
   119 	movq      mm5,mm2		; transpose coefficients(phase 1)
   120 	punpcklwd mm2,mm3		; mm2=(24 34 25 35)
   121 	punpckhwd mm5,mm3		; mm5=(26 36 27 37)
   123 	movq	mm6, MMWORD [MMBLOCK(0,0,edx,SIZEOF_DCTELEM)]
   124 	movq	mm7, MMWORD [MMBLOCK(1,0,edx,SIZEOF_DCTELEM)]
   125 	movq	mm1, MMWORD [MMBLOCK(0,1,edx,SIZEOF_DCTELEM)]
   126 	movq	mm3, MMWORD [MMBLOCK(1,1,edx,SIZEOF_DCTELEM)]
   128 	; mm6=(00 01 02 03), mm1=(04 05 06 07)
   129 	; mm7=(10 11 12 13), mm3=(14 15 16 17)
   131 	movq	MMWORD [wk(0)], mm4	; wk(0)=(22 32 23 33)
   132 	movq	MMWORD [wk(1)], mm2	; wk(1)=(24 34 25 35)
   134 	movq      mm4,mm6		; transpose coefficients(phase 1)
   135 	punpcklwd mm6,mm7		; mm6=(00 10 01 11)
   136 	punpckhwd mm4,mm7		; mm4=(02 12 03 13)
   137 	movq      mm2,mm1		; transpose coefficients(phase 1)
   138 	punpcklwd mm1,mm3		; mm1=(04 14 05 15)
   139 	punpckhwd mm2,mm3		; mm2=(06 16 07 17)
   141 	movq      mm7,mm6		; transpose coefficients(phase 2)
   142 	punpckldq mm6,mm0		; mm6=(00 10 20 30)=data0
   143 	punpckhdq mm7,mm0		; mm7=(01 11 21 31)=data1
   144 	movq      mm3,mm2		; transpose coefficients(phase 2)
   145 	punpckldq mm2,mm5		; mm2=(06 16 26 36)=data6
   146 	punpckhdq mm3,mm5		; mm3=(07 17 27 37)=data7
   148 	movq	mm0,mm7
   149 	movq	mm5,mm6
   150 	psubw	mm7,mm2			; mm7=data1-data6=tmp6
   151 	psubw	mm6,mm3			; mm6=data0-data7=tmp7
   152 	paddw	mm0,mm2			; mm0=data1+data6=tmp1
   153 	paddw	mm5,mm3			; mm5=data0+data7=tmp0
   155 	movq	mm2, MMWORD [wk(0)]	; mm2=(22 32 23 33)
   156 	movq	mm3, MMWORD [wk(1)]	; mm3=(24 34 25 35)
   157 	movq	MMWORD [wk(0)], mm7	; wk(0)=tmp6
   158 	movq	MMWORD [wk(1)], mm6	; wk(1)=tmp7
   160 	movq      mm7,mm4		; transpose coefficients(phase 2)
   161 	punpckldq mm4,mm2		; mm4=(02 12 22 32)=data2
   162 	punpckhdq mm7,mm2		; mm7=(03 13 23 33)=data3
   163 	movq      mm6,mm1		; transpose coefficients(phase 2)
   164 	punpckldq mm1,mm3		; mm1=(04 14 24 34)=data4
   165 	punpckhdq mm6,mm3		; mm6=(05 15 25 35)=data5
   167 	movq	mm2,mm7
   168 	movq	mm3,mm4
   169 	paddw	mm7,mm1			; mm7=data3+data4=tmp3
   170 	paddw	mm4,mm6			; mm4=data2+data5=tmp2
   171 	psubw	mm2,mm1			; mm2=data3-data4=tmp4
   172 	psubw	mm3,mm6			; mm3=data2-data5=tmp5
   174 	; -- Even part
   176 	movq	mm1,mm5
   177 	movq	mm6,mm0
   178 	psubw	mm5,mm7			; mm5=tmp13
   179 	psubw	mm0,mm4			; mm0=tmp12
   180 	paddw	mm1,mm7			; mm1=tmp10
   181 	paddw	mm6,mm4			; mm6=tmp11
   183 	paddw	mm0,mm5
   184 	psllw	mm0,PRE_MULTIPLY_SCALE_BITS
   185 	pmulhw	mm0,[GOTOFF(ebx,PW_F0707)] ; mm0=z1
   187 	movq	mm7,mm1
   188 	movq	mm4,mm5
   189 	psubw	mm1,mm6			; mm1=data4
   190 	psubw	mm5,mm0			; mm5=data6
   191 	paddw	mm7,mm6			; mm7=data0
   192 	paddw	mm4,mm0			; mm4=data2
   194 	movq	MMWORD [MMBLOCK(0,1,edx,SIZEOF_DCTELEM)], mm1
   195 	movq	MMWORD [MMBLOCK(2,1,edx,SIZEOF_DCTELEM)], mm5
   196 	movq	MMWORD [MMBLOCK(0,0,edx,SIZEOF_DCTELEM)], mm7
   197 	movq	MMWORD [MMBLOCK(2,0,edx,SIZEOF_DCTELEM)], mm4
   199 	; -- Odd part
   201 	movq	mm6, MMWORD [wk(0)]	; mm6=tmp6
   202 	movq	mm0, MMWORD [wk(1)]	; mm0=tmp7
   204 	paddw	mm2,mm3			; mm2=tmp10
   205 	paddw	mm3,mm6			; mm3=tmp11
   206 	paddw	mm6,mm0			; mm6=tmp12, mm0=tmp7
   208 	psllw	mm2,PRE_MULTIPLY_SCALE_BITS
   209 	psllw	mm6,PRE_MULTIPLY_SCALE_BITS
   211 	psllw	mm3,PRE_MULTIPLY_SCALE_BITS
   212 	pmulhw	mm3,[GOTOFF(ebx,PW_F0707)] ; mm3=z3
   214 	movq	mm1,mm2			; mm1=tmp10
   215 	psubw	mm2,mm6
   216 	pmulhw	mm2,[GOTOFF(ebx,PW_F0382)] ; mm2=z5
   217 	pmulhw	mm1,[GOTOFF(ebx,PW_F0541)] ; mm1=MULTIPLY(tmp10,FIX_0_54119610)
   218 	pmulhw	mm6,[GOTOFF(ebx,PW_F1306)] ; mm6=MULTIPLY(tmp12,FIX_1_30656296)
   219 	paddw	mm1,mm2			; mm1=z2
   220 	paddw	mm6,mm2			; mm6=z4
   222 	movq	mm5,mm0
   223 	psubw	mm0,mm3			; mm0=z13
   224 	paddw	mm5,mm3			; mm5=z11
   226 	movq	mm7,mm0
   227 	movq	mm4,mm5
   228 	psubw	mm0,mm1			; mm0=data3
   229 	psubw	mm5,mm6			; mm5=data7
   230 	paddw	mm7,mm1			; mm7=data5
   231 	paddw	mm4,mm6			; mm4=data1
   233 	movq	MMWORD [MMBLOCK(3,0,edx,SIZEOF_DCTELEM)], mm0
   234 	movq	MMWORD [MMBLOCK(3,1,edx,SIZEOF_DCTELEM)], mm5
   235 	movq	MMWORD [MMBLOCK(1,1,edx,SIZEOF_DCTELEM)], mm7
   236 	movq	MMWORD [MMBLOCK(1,0,edx,SIZEOF_DCTELEM)], mm4
   238 	add	edx, byte 4*DCTSIZE*SIZEOF_DCTELEM
   239 	dec	ecx
   240 	jnz	near .rowloop
   242 	; ---- Pass 2: process columns.
   244 	mov	edx, POINTER [data(eax)]	; (DCTELEM *)
   245 	mov	ecx, DCTSIZE/4
   246 	alignx	16,7
   247 .columnloop:
   249 	movq	mm0, MMWORD [MMBLOCK(2,0,edx,SIZEOF_DCTELEM)]
   250 	movq	mm1, MMWORD [MMBLOCK(3,0,edx,SIZEOF_DCTELEM)]
   251 	movq	mm2, MMWORD [MMBLOCK(6,0,edx,SIZEOF_DCTELEM)]
   252 	movq	mm3, MMWORD [MMBLOCK(7,0,edx,SIZEOF_DCTELEM)]
   254 	; mm0=(02 12 22 32), mm2=(42 52 62 72)
   255 	; mm1=(03 13 23 33), mm3=(43 53 63 73)
   257 	movq      mm4,mm0		; transpose coefficients(phase 1)
   258 	punpcklwd mm0,mm1		; mm0=(02 03 12 13)
   259 	punpckhwd mm4,mm1		; mm4=(22 23 32 33)
   260 	movq      mm5,mm2		; transpose coefficients(phase 1)
   261 	punpcklwd mm2,mm3		; mm2=(42 43 52 53)
   262 	punpckhwd mm5,mm3		; mm5=(62 63 72 73)
   264 	movq	mm6, MMWORD [MMBLOCK(0,0,edx,SIZEOF_DCTELEM)]
   265 	movq	mm7, MMWORD [MMBLOCK(1,0,edx,SIZEOF_DCTELEM)]
   266 	movq	mm1, MMWORD [MMBLOCK(4,0,edx,SIZEOF_DCTELEM)]
   267 	movq	mm3, MMWORD [MMBLOCK(5,0,edx,SIZEOF_DCTELEM)]
   269 	; mm6=(00 10 20 30), mm1=(40 50 60 70)
   270 	; mm7=(01 11 21 31), mm3=(41 51 61 71)
   272 	movq	MMWORD [wk(0)], mm4	; wk(0)=(22 23 32 33)
   273 	movq	MMWORD [wk(1)], mm2	; wk(1)=(42 43 52 53)
   275 	movq      mm4,mm6		; transpose coefficients(phase 1)
   276 	punpcklwd mm6,mm7		; mm6=(00 01 10 11)
   277 	punpckhwd mm4,mm7		; mm4=(20 21 30 31)
   278 	movq      mm2,mm1		; transpose coefficients(phase 1)
   279 	punpcklwd mm1,mm3		; mm1=(40 41 50 51)
   280 	punpckhwd mm2,mm3		; mm2=(60 61 70 71)
   282 	movq      mm7,mm6		; transpose coefficients(phase 2)
   283 	punpckldq mm6,mm0		; mm6=(00 01 02 03)=data0
   284 	punpckhdq mm7,mm0		; mm7=(10 11 12 13)=data1
   285 	movq      mm3,mm2		; transpose coefficients(phase 2)
   286 	punpckldq mm2,mm5		; mm2=(60 61 62 63)=data6
   287 	punpckhdq mm3,mm5		; mm3=(70 71 72 73)=data7
   289 	movq	mm0,mm7
   290 	movq	mm5,mm6
   291 	psubw	mm7,mm2			; mm7=data1-data6=tmp6
   292 	psubw	mm6,mm3			; mm6=data0-data7=tmp7
   293 	paddw	mm0,mm2			; mm0=data1+data6=tmp1
   294 	paddw	mm5,mm3			; mm5=data0+data7=tmp0
   296 	movq	mm2, MMWORD [wk(0)]	; mm2=(22 23 32 33)
   297 	movq	mm3, MMWORD [wk(1)]	; mm3=(42 43 52 53)
   298 	movq	MMWORD [wk(0)], mm7	; wk(0)=tmp6
   299 	movq	MMWORD [wk(1)], mm6	; wk(1)=tmp7
   301 	movq      mm7,mm4		; transpose coefficients(phase 2)
   302 	punpckldq mm4,mm2		; mm4=(20 21 22 23)=data2
   303 	punpckhdq mm7,mm2		; mm7=(30 31 32 33)=data3
   304 	movq      mm6,mm1		; transpose coefficients(phase 2)
   305 	punpckldq mm1,mm3		; mm1=(40 41 42 43)=data4
   306 	punpckhdq mm6,mm3		; mm6=(50 51 52 53)=data5
   308 	movq	mm2,mm7
   309 	movq	mm3,mm4
   310 	paddw	mm7,mm1			; mm7=data3+data4=tmp3
   311 	paddw	mm4,mm6			; mm4=data2+data5=tmp2
   312 	psubw	mm2,mm1			; mm2=data3-data4=tmp4
   313 	psubw	mm3,mm6			; mm3=data2-data5=tmp5
   315 	; -- Even part
   317 	movq	mm1,mm5
   318 	movq	mm6,mm0
   319 	psubw	mm5,mm7			; mm5=tmp13
   320 	psubw	mm0,mm4			; mm0=tmp12
   321 	paddw	mm1,mm7			; mm1=tmp10
   322 	paddw	mm6,mm4			; mm6=tmp11
   324 	paddw	mm0,mm5
   325 	psllw	mm0,PRE_MULTIPLY_SCALE_BITS
   326 	pmulhw	mm0,[GOTOFF(ebx,PW_F0707)] ; mm0=z1
   328 	movq	mm7,mm1
   329 	movq	mm4,mm5
   330 	psubw	mm1,mm6			; mm1=data4
   331 	psubw	mm5,mm0			; mm5=data6
   332 	paddw	mm7,mm6			; mm7=data0
   333 	paddw	mm4,mm0			; mm4=data2
   335 	movq	MMWORD [MMBLOCK(4,0,edx,SIZEOF_DCTELEM)], mm1
   336 	movq	MMWORD [MMBLOCK(6,0,edx,SIZEOF_DCTELEM)], mm5
   337 	movq	MMWORD [MMBLOCK(0,0,edx,SIZEOF_DCTELEM)], mm7
   338 	movq	MMWORD [MMBLOCK(2,0,edx,SIZEOF_DCTELEM)], mm4
   340 	; -- Odd part
   342 	movq	mm6, MMWORD [wk(0)]	; mm6=tmp6
   343 	movq	mm0, MMWORD [wk(1)]	; mm0=tmp7
   345 	paddw	mm2,mm3			; mm2=tmp10
   346 	paddw	mm3,mm6			; mm3=tmp11
   347 	paddw	mm6,mm0			; mm6=tmp12, mm0=tmp7
   349 	psllw	mm2,PRE_MULTIPLY_SCALE_BITS
   350 	psllw	mm6,PRE_MULTIPLY_SCALE_BITS
   352 	psllw	mm3,PRE_MULTIPLY_SCALE_BITS
   353 	pmulhw	mm3,[GOTOFF(ebx,PW_F0707)] ; mm3=z3
   355 	movq	mm1,mm2			; mm1=tmp10
   356 	psubw	mm2,mm6
   357 	pmulhw	mm2,[GOTOFF(ebx,PW_F0382)] ; mm2=z5
   358 	pmulhw	mm1,[GOTOFF(ebx,PW_F0541)] ; mm1=MULTIPLY(tmp10,FIX_0_54119610)
   359 	pmulhw	mm6,[GOTOFF(ebx,PW_F1306)] ; mm6=MULTIPLY(tmp12,FIX_1_30656296)
   360 	paddw	mm1,mm2			; mm1=z2
   361 	paddw	mm6,mm2			; mm6=z4
   363 	movq	mm5,mm0
   364 	psubw	mm0,mm3			; mm0=z13
   365 	paddw	mm5,mm3			; mm5=z11
   367 	movq	mm7,mm0
   368 	movq	mm4,mm5
   369 	psubw	mm0,mm1			; mm0=data3
   370 	psubw	mm5,mm6			; mm5=data7
   371 	paddw	mm7,mm1			; mm7=data5
   372 	paddw	mm4,mm6			; mm4=data1
   374 	movq	MMWORD [MMBLOCK(3,0,edx,SIZEOF_DCTELEM)], mm0
   375 	movq	MMWORD [MMBLOCK(7,0,edx,SIZEOF_DCTELEM)], mm5
   376 	movq	MMWORD [MMBLOCK(5,0,edx,SIZEOF_DCTELEM)], mm7
   377 	movq	MMWORD [MMBLOCK(1,0,edx,SIZEOF_DCTELEM)], mm4
   379 	add	edx, byte 4*SIZEOF_DCTELEM
   380 	dec	ecx
   381 	jnz	near .columnloop
   383 	emms		; empty MMX state
   385 ;	pop	edi		; unused
   386 ;	pop	esi		; unused
   387 ;	pop	edx		; need not be preserved
   388 ;	pop	ecx		; need not be preserved
   389 	poppic	ebx
   390 	mov	esp,ebp		; esp <- aligned ebp
   391 	pop	esp		; esp <- original ebp
   392 	pop	ebp
   393 	ret
   395 ; For some reason, the OS X linker does not honor the request to align the
   396 ; segment unless we do this.
   397 	align	16

mercurial