media/libjpeg/simd/jfss2fst-64.asm

Wed, 31 Dec 2014 06:09:35 +0100

author
Michael Schloh von Bennewitz <michael@schloh.com>
date
Wed, 31 Dec 2014 06:09:35 +0100
changeset 0
6474c204b198
permissions
-rw-r--r--

Cloned upstream origin tor-browser at tor-browser-31.3.0esr-4.5-1-build1
revision ID fc1c9ff7c1b2defdbc039f12214767608f46423f for hacking purpose.

     1 ;
     2 ; jfss2fst-64.asm - fast integer FDCT (64-bit SSE2)
     3 ;
     4 ; Copyright 2009 Pierre Ossman <ossman@cendio.se> for Cendio AB
     5 ; Copyright 2009 D. R. Commander
     6 ;
     7 ; Based on
     8 ; x86 SIMD extension for IJG JPEG library
     9 ; Copyright (C) 1999-2006, MIYASAKA Masaru.
    10 ; For conditions of distribution and use, see copyright notice in jsimdext.inc
    11 ;
    12 ; This file should be assembled with NASM (Netwide Assembler),
    13 ; can *not* be assembled with Microsoft's MASM or any compatible
    14 ; assembler (including Borland's Turbo Assembler).
    15 ; NASM is available from http://nasm.sourceforge.net/ or
    16 ; http://sourceforge.net/project/showfiles.php?group_id=6208
    17 ;
    18 ; This file contains a fast, not so accurate integer implementation of
    19 ; the forward DCT (Discrete Cosine Transform). The following code is
    20 ; based directly on the IJG's original jfdctfst.c; see the jfdctfst.c
    21 ; for more details.
    22 ;
    23 ; [TAB8]
    25 %include "jsimdext.inc"
    26 %include "jdct.inc"
    28 ; --------------------------------------------------------------------------
    30 %define CONST_BITS	8	; 14 is also OK.
    32 %if CONST_BITS == 8
    33 F_0_382	equ	 98		; FIX(0.382683433)
    34 F_0_541	equ	139		; FIX(0.541196100)
    35 F_0_707	equ	181		; FIX(0.707106781)
    36 F_1_306	equ	334		; FIX(1.306562965)
    37 %else
    38 ; NASM cannot do compile-time arithmetic on floating-point constants.
    39 %define DESCALE(x,n)  (((x)+(1<<((n)-1)))>>(n))
    40 F_0_382	equ	DESCALE( 410903207,30-CONST_BITS)	; FIX(0.382683433)
    41 F_0_541	equ	DESCALE( 581104887,30-CONST_BITS)	; FIX(0.541196100)
    42 F_0_707	equ	DESCALE( 759250124,30-CONST_BITS)	; FIX(0.707106781)
    43 F_1_306	equ	DESCALE(1402911301,30-CONST_BITS)	; FIX(1.306562965)
    44 %endif
    46 ; --------------------------------------------------------------------------
    47 	SECTION	SEG_CONST
    49 ; PRE_MULTIPLY_SCALE_BITS <= 2 (to avoid overflow)
    50 ; CONST_BITS + CONST_SHIFT + PRE_MULTIPLY_SCALE_BITS == 16 (for pmulhw)
    52 %define PRE_MULTIPLY_SCALE_BITS   2
    53 %define CONST_SHIFT     (16 - PRE_MULTIPLY_SCALE_BITS - CONST_BITS)
    55 	alignz	16
    56 	global	EXTN(jconst_fdct_ifast_sse2)
    58 EXTN(jconst_fdct_ifast_sse2):
    60 PW_F0707	times 8 dw  F_0_707 << CONST_SHIFT
    61 PW_F0382	times 8 dw  F_0_382 << CONST_SHIFT
    62 PW_F0541	times 8 dw  F_0_541 << CONST_SHIFT
    63 PW_F1306	times 8 dw  F_1_306 << CONST_SHIFT
    65 	alignz	16
    67 ; --------------------------------------------------------------------------
    68 	SECTION	SEG_TEXT
    69 	BITS	64
    70 ;
    71 ; Perform the forward DCT on one block of samples.
    72 ;
    73 ; GLOBAL(void)
    74 ; jsimd_fdct_ifast_sse2 (DCTELEM * data)
    75 ;
    77 ; r10 = DCTELEM * data
    79 %define wk(i)		rbp-(WK_NUM-(i))*SIZEOF_XMMWORD	; xmmword wk[WK_NUM]
    80 %define WK_NUM		2
    82 	align	16
    83 	global	EXTN(jsimd_fdct_ifast_sse2)
    85 EXTN(jsimd_fdct_ifast_sse2):
    86 	push	rbp
    87 	mov	rax,rsp				; rax = original rbp
    88 	sub	rsp, byte 4
    89 	and	rsp, byte (-SIZEOF_XMMWORD)	; align to 128 bits
    90 	mov	[rsp],rax
    91 	mov	rbp,rsp				; rbp = aligned rbp
    92 	lea	rsp, [wk(0)]
    93 	collect_args
    95 	; ---- Pass 1: process rows.
    97 	mov	rdx, r10	; (DCTELEM *)
    99 	movdqa	xmm0, XMMWORD [XMMBLOCK(0,0,rdx,SIZEOF_DCTELEM)]
   100 	movdqa	xmm1, XMMWORD [XMMBLOCK(1,0,rdx,SIZEOF_DCTELEM)]
   101 	movdqa	xmm2, XMMWORD [XMMBLOCK(2,0,rdx,SIZEOF_DCTELEM)]
   102 	movdqa	xmm3, XMMWORD [XMMBLOCK(3,0,rdx,SIZEOF_DCTELEM)]
   104 	; xmm0=(00 01 02 03 04 05 06 07), xmm2=(20 21 22 23 24 25 26 27)
   105 	; xmm1=(10 11 12 13 14 15 16 17), xmm3=(30 31 32 33 34 35 36 37)
   107 	movdqa    xmm4,xmm0		; transpose coefficients(phase 1)
   108 	punpcklwd xmm0,xmm1		; xmm0=(00 10 01 11 02 12 03 13)
   109 	punpckhwd xmm4,xmm1		; xmm4=(04 14 05 15 06 16 07 17)
   110 	movdqa    xmm5,xmm2		; transpose coefficients(phase 1)
   111 	punpcklwd xmm2,xmm3		; xmm2=(20 30 21 31 22 32 23 33)
   112 	punpckhwd xmm5,xmm3		; xmm5=(24 34 25 35 26 36 27 37)
   114 	movdqa	xmm6, XMMWORD [XMMBLOCK(4,0,rdx,SIZEOF_DCTELEM)]
   115 	movdqa	xmm7, XMMWORD [XMMBLOCK(5,0,rdx,SIZEOF_DCTELEM)]
   116 	movdqa	xmm1, XMMWORD [XMMBLOCK(6,0,rdx,SIZEOF_DCTELEM)]
   117 	movdqa	xmm3, XMMWORD [XMMBLOCK(7,0,rdx,SIZEOF_DCTELEM)]
   119 	; xmm6=( 4 12 20 28 36 44 52 60), xmm1=( 6 14 22 30 38 46 54 62)
   120 	; xmm7=( 5 13 21 29 37 45 53 61), xmm3=( 7 15 23 31 39 47 55 63)
   122 	movdqa	XMMWORD [wk(0)], xmm2	; wk(0)=(20 30 21 31 22 32 23 33)
   123 	movdqa	XMMWORD [wk(1)], xmm5	; wk(1)=(24 34 25 35 26 36 27 37)
   125 	movdqa    xmm2,xmm6		; transpose coefficients(phase 1)
   126 	punpcklwd xmm6,xmm7		; xmm6=(40 50 41 51 42 52 43 53)
   127 	punpckhwd xmm2,xmm7		; xmm2=(44 54 45 55 46 56 47 57)
   128 	movdqa    xmm5,xmm1		; transpose coefficients(phase 1)
   129 	punpcklwd xmm1,xmm3		; xmm1=(60 70 61 71 62 72 63 73)
   130 	punpckhwd xmm5,xmm3		; xmm5=(64 74 65 75 66 76 67 77)
   132 	movdqa    xmm7,xmm6		; transpose coefficients(phase 2)
   133 	punpckldq xmm6,xmm1		; xmm6=(40 50 60 70 41 51 61 71)
   134 	punpckhdq xmm7,xmm1		; xmm7=(42 52 62 72 43 53 63 73)
   135 	movdqa    xmm3,xmm2		; transpose coefficients(phase 2)
   136 	punpckldq xmm2,xmm5		; xmm2=(44 54 64 74 45 55 65 75)
   137 	punpckhdq xmm3,xmm5		; xmm3=(46 56 66 76 47 57 67 77)
   139 	movdqa	xmm1, XMMWORD [wk(0)]	; xmm1=(20 30 21 31 22 32 23 33)
   140 	movdqa	xmm5, XMMWORD [wk(1)]	; xmm5=(24 34 25 35 26 36 27 37)
   141 	movdqa	XMMWORD [wk(0)], xmm7	; wk(0)=(42 52 62 72 43 53 63 73)
   142 	movdqa	XMMWORD [wk(1)], xmm2	; wk(1)=(44 54 64 74 45 55 65 75)
   144 	movdqa    xmm7,xmm0		; transpose coefficients(phase 2)
   145 	punpckldq xmm0,xmm1		; xmm0=(00 10 20 30 01 11 21 31)
   146 	punpckhdq xmm7,xmm1		; xmm7=(02 12 22 32 03 13 23 33)
   147 	movdqa    xmm2,xmm4		; transpose coefficients(phase 2)
   148 	punpckldq xmm4,xmm5		; xmm4=(04 14 24 34 05 15 25 35)
   149 	punpckhdq xmm2,xmm5		; xmm2=(06 16 26 36 07 17 27 37)
   151 	movdqa     xmm1,xmm0		; transpose coefficients(phase 3)
   152 	punpcklqdq xmm0,xmm6		; xmm0=(00 10 20 30 40 50 60 70)=data0
   153 	punpckhqdq xmm1,xmm6		; xmm1=(01 11 21 31 41 51 61 71)=data1
   154 	movdqa     xmm5,xmm2		; transpose coefficients(phase 3)
   155 	punpcklqdq xmm2,xmm3		; xmm2=(06 16 26 36 46 56 66 76)=data6
   156 	punpckhqdq xmm5,xmm3		; xmm5=(07 17 27 37 47 57 67 77)=data7
   158 	movdqa	xmm6,xmm1
   159 	movdqa	xmm3,xmm0
   160 	psubw	xmm1,xmm2		; xmm1=data1-data6=tmp6
   161 	psubw	xmm0,xmm5		; xmm0=data0-data7=tmp7
   162 	paddw	xmm6,xmm2		; xmm6=data1+data6=tmp1
   163 	paddw	xmm3,xmm5		; xmm3=data0+data7=tmp0
   165 	movdqa	xmm2, XMMWORD [wk(0)]	; xmm2=(42 52 62 72 43 53 63 73)
   166 	movdqa	xmm5, XMMWORD [wk(1)]	; xmm5=(44 54 64 74 45 55 65 75)
   167 	movdqa	XMMWORD [wk(0)], xmm1	; wk(0)=tmp6
   168 	movdqa	XMMWORD [wk(1)], xmm0	; wk(1)=tmp7
   170 	movdqa     xmm1,xmm7		; transpose coefficients(phase 3)
   171 	punpcklqdq xmm7,xmm2		; xmm7=(02 12 22 32 42 52 62 72)=data2
   172 	punpckhqdq xmm1,xmm2		; xmm1=(03 13 23 33 43 53 63 73)=data3
   173 	movdqa     xmm0,xmm4		; transpose coefficients(phase 3)
   174 	punpcklqdq xmm4,xmm5		; xmm4=(04 14 24 34 44 54 64 74)=data4
   175 	punpckhqdq xmm0,xmm5		; xmm0=(05 15 25 35 45 55 65 75)=data5
   177 	movdqa	xmm2,xmm1
   178 	movdqa	xmm5,xmm7
   179 	paddw	xmm1,xmm4		; xmm1=data3+data4=tmp3
   180 	paddw	xmm7,xmm0		; xmm7=data2+data5=tmp2
   181 	psubw	xmm2,xmm4		; xmm2=data3-data4=tmp4
   182 	psubw	xmm5,xmm0		; xmm5=data2-data5=tmp5
   184 	; -- Even part
   186 	movdqa	xmm4,xmm3
   187 	movdqa	xmm0,xmm6
   188 	psubw	xmm3,xmm1		; xmm3=tmp13
   189 	psubw	xmm6,xmm7		; xmm6=tmp12
   190 	paddw	xmm4,xmm1		; xmm4=tmp10
   191 	paddw	xmm0,xmm7		; xmm0=tmp11
   193 	paddw	xmm6,xmm3
   194 	psllw	xmm6,PRE_MULTIPLY_SCALE_BITS
   195 	pmulhw	xmm6,[rel PW_F0707] ; xmm6=z1
   197 	movdqa	xmm1,xmm4
   198 	movdqa	xmm7,xmm3
   199 	psubw	xmm4,xmm0		; xmm4=data4
   200 	psubw	xmm3,xmm6		; xmm3=data6
   201 	paddw	xmm1,xmm0		; xmm1=data0
   202 	paddw	xmm7,xmm6		; xmm7=data2
   204 	movdqa	xmm0, XMMWORD [wk(0)]	; xmm0=tmp6
   205 	movdqa	xmm6, XMMWORD [wk(1)]	; xmm6=tmp7
   206 	movdqa	XMMWORD [wk(0)], xmm4	; wk(0)=data4
   207 	movdqa	XMMWORD [wk(1)], xmm3	; wk(1)=data6
   209 	; -- Odd part
   211 	paddw	xmm2,xmm5		; xmm2=tmp10
   212 	paddw	xmm5,xmm0		; xmm5=tmp11
   213 	paddw	xmm0,xmm6		; xmm0=tmp12, xmm6=tmp7
   215 	psllw	xmm2,PRE_MULTIPLY_SCALE_BITS
   216 	psllw	xmm0,PRE_MULTIPLY_SCALE_BITS
   218 	psllw	xmm5,PRE_MULTIPLY_SCALE_BITS
   219 	pmulhw	xmm5,[rel PW_F0707] ; xmm5=z3
   221 	movdqa	xmm4,xmm2		; xmm4=tmp10
   222 	psubw	xmm2,xmm0
   223 	pmulhw	xmm2,[rel PW_F0382] ; xmm2=z5
   224 	pmulhw	xmm4,[rel PW_F0541] ; xmm4=MULTIPLY(tmp10,FIX_0_541196)
   225 	pmulhw	xmm0,[rel PW_F1306] ; xmm0=MULTIPLY(tmp12,FIX_1_306562)
   226 	paddw	xmm4,xmm2		; xmm4=z2
   227 	paddw	xmm0,xmm2		; xmm0=z4
   229 	movdqa	xmm3,xmm6
   230 	psubw	xmm6,xmm5		; xmm6=z13
   231 	paddw	xmm3,xmm5		; xmm3=z11
   233 	movdqa	xmm2,xmm6
   234 	movdqa	xmm5,xmm3
   235 	psubw	xmm6,xmm4		; xmm6=data3
   236 	psubw	xmm3,xmm0		; xmm3=data7
   237 	paddw	xmm2,xmm4		; xmm2=data5
   238 	paddw	xmm5,xmm0		; xmm5=data1
   240 	; ---- Pass 2: process columns.
   242 	; xmm1=(00 10 20 30 40 50 60 70), xmm7=(02 12 22 32 42 52 62 72)
   243 	; xmm5=(01 11 21 31 41 51 61 71), xmm6=(03 13 23 33 43 53 63 73)
   245 	movdqa    xmm4,xmm1		; transpose coefficients(phase 1)
   246 	punpcklwd xmm1,xmm5		; xmm1=(00 01 10 11 20 21 30 31)
   247 	punpckhwd xmm4,xmm5		; xmm4=(40 41 50 51 60 61 70 71)
   248 	movdqa    xmm0,xmm7		; transpose coefficients(phase 1)
   249 	punpcklwd xmm7,xmm6		; xmm7=(02 03 12 13 22 23 32 33)
   250 	punpckhwd xmm0,xmm6		; xmm0=(42 43 52 53 62 63 72 73)
   252 	movdqa	xmm5, XMMWORD [wk(0)]	; xmm5=col4
   253 	movdqa	xmm6, XMMWORD [wk(1)]	; xmm6=col6
   255 	; xmm5=(04 14 24 34 44 54 64 74), xmm6=(06 16 26 36 46 56 66 76)
   256 	; xmm2=(05 15 25 35 45 55 65 75), xmm3=(07 17 27 37 47 57 67 77)
   258 	movdqa	XMMWORD [wk(0)], xmm7	; wk(0)=(02 03 12 13 22 23 32 33)
   259 	movdqa	XMMWORD [wk(1)], xmm0	; wk(1)=(42 43 52 53 62 63 72 73)
   261 	movdqa    xmm7,xmm5		; transpose coefficients(phase 1)
   262 	punpcklwd xmm5,xmm2		; xmm5=(04 05 14 15 24 25 34 35)
   263 	punpckhwd xmm7,xmm2		; xmm7=(44 45 54 55 64 65 74 75)
   264 	movdqa    xmm0,xmm6		; transpose coefficients(phase 1)
   265 	punpcklwd xmm6,xmm3		; xmm6=(06 07 16 17 26 27 36 37)
   266 	punpckhwd xmm0,xmm3		; xmm0=(46 47 56 57 66 67 76 77)
   268 	movdqa    xmm2,xmm5		; transpose coefficients(phase 2)
   269 	punpckldq xmm5,xmm6		; xmm5=(04 05 06 07 14 15 16 17)
   270 	punpckhdq xmm2,xmm6		; xmm2=(24 25 26 27 34 35 36 37)
   271 	movdqa    xmm3,xmm7		; transpose coefficients(phase 2)
   272 	punpckldq xmm7,xmm0		; xmm7=(44 45 46 47 54 55 56 57)
   273 	punpckhdq xmm3,xmm0		; xmm3=(64 65 66 67 74 75 76 77)
   275 	movdqa	xmm6, XMMWORD [wk(0)]	; xmm6=(02 03 12 13 22 23 32 33)
   276 	movdqa	xmm0, XMMWORD [wk(1)]	; xmm0=(42 43 52 53 62 63 72 73)
   277 	movdqa	XMMWORD [wk(0)], xmm2	; wk(0)=(24 25 26 27 34 35 36 37)
   278 	movdqa	XMMWORD [wk(1)], xmm7	; wk(1)=(44 45 46 47 54 55 56 57)
   280 	movdqa    xmm2,xmm1		; transpose coefficients(phase 2)
   281 	punpckldq xmm1,xmm6		; xmm1=(00 01 02 03 10 11 12 13)
   282 	punpckhdq xmm2,xmm6		; xmm2=(20 21 22 23 30 31 32 33)
   283 	movdqa    xmm7,xmm4		; transpose coefficients(phase 2)
   284 	punpckldq xmm4,xmm0		; xmm4=(40 41 42 43 50 51 52 53)
   285 	punpckhdq xmm7,xmm0		; xmm7=(60 61 62 63 70 71 72 73)
   287 	movdqa     xmm6,xmm1		; transpose coefficients(phase 3)
   288 	punpcklqdq xmm1,xmm5		; xmm1=(00 01 02 03 04 05 06 07)=data0
   289 	punpckhqdq xmm6,xmm5		; xmm6=(10 11 12 13 14 15 16 17)=data1
   290 	movdqa     xmm0,xmm7		; transpose coefficients(phase 3)
   291 	punpcklqdq xmm7,xmm3		; xmm7=(60 61 62 63 64 65 66 67)=data6
   292 	punpckhqdq xmm0,xmm3		; xmm0=(70 71 72 73 74 75 76 77)=data7
   294 	movdqa	xmm5,xmm6
   295 	movdqa	xmm3,xmm1
   296 	psubw	xmm6,xmm7		; xmm6=data1-data6=tmp6
   297 	psubw	xmm1,xmm0		; xmm1=data0-data7=tmp7
   298 	paddw	xmm5,xmm7		; xmm5=data1+data6=tmp1
   299 	paddw	xmm3,xmm0		; xmm3=data0+data7=tmp0
   301 	movdqa	xmm7, XMMWORD [wk(0)]	; xmm7=(24 25 26 27 34 35 36 37)
   302 	movdqa	xmm0, XMMWORD [wk(1)]	; xmm0=(44 45 46 47 54 55 56 57)
   303 	movdqa	XMMWORD [wk(0)], xmm6	; wk(0)=tmp6
   304 	movdqa	XMMWORD [wk(1)], xmm1	; wk(1)=tmp7
   306 	movdqa     xmm6,xmm2		; transpose coefficients(phase 3)
   307 	punpcklqdq xmm2,xmm7		; xmm2=(20 21 22 23 24 25 26 27)=data2
   308 	punpckhqdq xmm6,xmm7		; xmm6=(30 31 32 33 34 35 36 37)=data3
   309 	movdqa     xmm1,xmm4		; transpose coefficients(phase 3)
   310 	punpcklqdq xmm4,xmm0		; xmm4=(40 41 42 43 44 45 46 47)=data4
   311 	punpckhqdq xmm1,xmm0		; xmm1=(50 51 52 53 54 55 56 57)=data5
   313 	movdqa	xmm7,xmm6
   314 	movdqa	xmm0,xmm2
   315 	paddw	xmm6,xmm4		; xmm6=data3+data4=tmp3
   316 	paddw	xmm2,xmm1		; xmm2=data2+data5=tmp2
   317 	psubw	xmm7,xmm4		; xmm7=data3-data4=tmp4
   318 	psubw	xmm0,xmm1		; xmm0=data2-data5=tmp5
   320 	; -- Even part
   322 	movdqa	xmm4,xmm3
   323 	movdqa	xmm1,xmm5
   324 	psubw	xmm3,xmm6		; xmm3=tmp13
   325 	psubw	xmm5,xmm2		; xmm5=tmp12
   326 	paddw	xmm4,xmm6		; xmm4=tmp10
   327 	paddw	xmm1,xmm2		; xmm1=tmp11
   329 	paddw	xmm5,xmm3
   330 	psllw	xmm5,PRE_MULTIPLY_SCALE_BITS
   331 	pmulhw	xmm5,[rel PW_F0707] ; xmm5=z1
   333 	movdqa	xmm6,xmm4
   334 	movdqa	xmm2,xmm3
   335 	psubw	xmm4,xmm1		; xmm4=data4
   336 	psubw	xmm3,xmm5		; xmm3=data6
   337 	paddw	xmm6,xmm1		; xmm6=data0
   338 	paddw	xmm2,xmm5		; xmm2=data2
   340 	movdqa	XMMWORD [XMMBLOCK(4,0,rdx,SIZEOF_DCTELEM)], xmm4
   341 	movdqa	XMMWORD [XMMBLOCK(6,0,rdx,SIZEOF_DCTELEM)], xmm3
   342 	movdqa	XMMWORD [XMMBLOCK(0,0,rdx,SIZEOF_DCTELEM)], xmm6
   343 	movdqa	XMMWORD [XMMBLOCK(2,0,rdx,SIZEOF_DCTELEM)], xmm2
   345 	; -- Odd part
   347 	movdqa	xmm1, XMMWORD [wk(0)]	; xmm1=tmp6
   348 	movdqa	xmm5, XMMWORD [wk(1)]	; xmm5=tmp7
   350 	paddw	xmm7,xmm0		; xmm7=tmp10
   351 	paddw	xmm0,xmm1		; xmm0=tmp11
   352 	paddw	xmm1,xmm5		; xmm1=tmp12, xmm5=tmp7
   354 	psllw	xmm7,PRE_MULTIPLY_SCALE_BITS
   355 	psllw	xmm1,PRE_MULTIPLY_SCALE_BITS
   357 	psllw	xmm0,PRE_MULTIPLY_SCALE_BITS
   358 	pmulhw	xmm0,[rel PW_F0707] ; xmm0=z3
   360 	movdqa	xmm4,xmm7		; xmm4=tmp10
   361 	psubw	xmm7,xmm1
   362 	pmulhw	xmm7,[rel PW_F0382] ; xmm7=z5
   363 	pmulhw	xmm4,[rel PW_F0541] ; xmm4=MULTIPLY(tmp10,FIX_0_541196)
   364 	pmulhw	xmm1,[rel PW_F1306] ; xmm1=MULTIPLY(tmp12,FIX_1_306562)
   365 	paddw	xmm4,xmm7		; xmm4=z2
   366 	paddw	xmm1,xmm7		; xmm1=z4
   368 	movdqa	xmm3,xmm5
   369 	psubw	xmm5,xmm0		; xmm5=z13
   370 	paddw	xmm3,xmm0		; xmm3=z11
   372 	movdqa	xmm6,xmm5
   373 	movdqa	xmm2,xmm3
   374 	psubw	xmm5,xmm4		; xmm5=data3
   375 	psubw	xmm3,xmm1		; xmm3=data7
   376 	paddw	xmm6,xmm4		; xmm6=data5
   377 	paddw	xmm2,xmm1		; xmm2=data1
   379 	movdqa	XMMWORD [XMMBLOCK(3,0,rdx,SIZEOF_DCTELEM)], xmm5
   380 	movdqa	XMMWORD [XMMBLOCK(7,0,rdx,SIZEOF_DCTELEM)], xmm3
   381 	movdqa	XMMWORD [XMMBLOCK(5,0,rdx,SIZEOF_DCTELEM)], xmm6
   382 	movdqa	XMMWORD [XMMBLOCK(1,0,rdx,SIZEOF_DCTELEM)], xmm2
   384 	uncollect_args
   385 	mov	rsp,rbp		; rsp <- aligned rbp
   386 	pop	rsp		; rsp <- original rbp
   387 	pop	rbp
   388 	ret
   390 ; For some reason, the OS X linker does not honor the request to align the
   391 ; segment unless we do this.
   392 	align	16

mercurial