media/libjpeg/simd/jiss2fst.asm

Wed, 31 Dec 2014 06:09:35 +0100

author
Michael Schloh von Bennewitz <michael@schloh.com>
date
Wed, 31 Dec 2014 06:09:35 +0100
changeset 0
6474c204b198
permissions
-rw-r--r--

Cloned upstream origin tor-browser at tor-browser-31.3.0esr-4.5-1-build1
revision ID fc1c9ff7c1b2defdbc039f12214767608f46423f for hacking purpose.

     1 ;
     2 ; jiss2fst.asm - fast integer IDCT (SSE2)
     3 ;
     4 ; Copyright 2009 Pierre Ossman <ossman@cendio.se> for Cendio AB
     5 ;
     6 ; Based on
     7 ; x86 SIMD extension for IJG JPEG library
     8 ; Copyright (C) 1999-2006, MIYASAKA Masaru.
     9 ; For conditions of distribution and use, see copyright notice in jsimdext.inc
    10 ;
    11 ; This file should be assembled with NASM (Netwide Assembler),
    12 ; can *not* be assembled with Microsoft's MASM or any compatible
    13 ; assembler (including Borland's Turbo Assembler).
    14 ; NASM is available from http://nasm.sourceforge.net/ or
    15 ; http://sourceforge.net/project/showfiles.php?group_id=6208
    16 ;
    17 ; This file contains a fast, not so accurate integer implementation of
    18 ; the inverse DCT (Discrete Cosine Transform). The following code is
    19 ; based directly on the IJG's original jidctfst.c; see the jidctfst.c
    20 ; for more details.
    21 ;
    22 ; [TAB8]
    24 %include "jsimdext.inc"
    25 %include "jdct.inc"
    27 ; --------------------------------------------------------------------------
    29 %define CONST_BITS	8	; 14 is also OK.
    30 %define PASS1_BITS	2
    32 %if IFAST_SCALE_BITS != PASS1_BITS
    33 %error "'IFAST_SCALE_BITS' must be equal to 'PASS1_BITS'."
    34 %endif
    36 %if CONST_BITS == 8
    37 F_1_082	equ	277		; FIX(1.082392200)
    38 F_1_414	equ	362		; FIX(1.414213562)
    39 F_1_847	equ	473		; FIX(1.847759065)
    40 F_2_613	equ	669		; FIX(2.613125930)
    41 F_1_613	equ	(F_2_613 - 256)	; FIX(2.613125930) - FIX(1)
    42 %else
    43 ; NASM cannot do compile-time arithmetic on floating-point constants.
    44 %define	DESCALE(x,n)  (((x)+(1<<((n)-1)))>>(n))
    45 F_1_082	equ	DESCALE(1162209775,30-CONST_BITS)	; FIX(1.082392200)
    46 F_1_414	equ	DESCALE(1518500249,30-CONST_BITS)	; FIX(1.414213562)
    47 F_1_847	equ	DESCALE(1984016188,30-CONST_BITS)	; FIX(1.847759065)
    48 F_2_613	equ	DESCALE(2805822602,30-CONST_BITS)	; FIX(2.613125930)
    49 F_1_613	equ	(F_2_613 - (1 << CONST_BITS))	; FIX(2.613125930) - FIX(1)
    50 %endif
    52 ; --------------------------------------------------------------------------
    53 	SECTION	SEG_CONST
    55 ; PRE_MULTIPLY_SCALE_BITS <= 2 (to avoid overflow)
    56 ; CONST_BITS + CONST_SHIFT + PRE_MULTIPLY_SCALE_BITS == 16 (for pmulhw)
    58 %define PRE_MULTIPLY_SCALE_BITS   2
    59 %define CONST_SHIFT     (16 - PRE_MULTIPLY_SCALE_BITS - CONST_BITS)
    61 	alignz	16
    62 	global	EXTN(jconst_idct_ifast_sse2)
    64 EXTN(jconst_idct_ifast_sse2):
    66 PW_F1414	times 8 dw  F_1_414 << CONST_SHIFT
    67 PW_F1847	times 8 dw  F_1_847 << CONST_SHIFT
    68 PW_MF1613	times 8 dw -F_1_613 << CONST_SHIFT
    69 PW_F1082	times 8 dw  F_1_082 << CONST_SHIFT
    70 PB_CENTERJSAMP	times 16 db CENTERJSAMPLE
    72 	alignz	16
    74 ; --------------------------------------------------------------------------
    75 	SECTION	SEG_TEXT
    76 	BITS	32
    77 ;
    78 ; Perform dequantization and inverse DCT on one block of coefficients.
    79 ;
    80 ; GLOBAL(void)
    81 ; jsimd_idct_ifast_sse2 (void * dct_table, JCOEFPTR coef_block,
    82 ;                       JSAMPARRAY output_buf, JDIMENSION output_col)
    83 ;
    85 %define dct_table(b)	(b)+8			; jpeg_component_info * compptr
    86 %define coef_block(b)	(b)+12		; JCOEFPTR coef_block
    87 %define output_buf(b)	(b)+16		; JSAMPARRAY output_buf
    88 %define output_col(b)	(b)+20		; JDIMENSION output_col
    90 %define original_ebp	ebp+0
    91 %define wk(i)		ebp-(WK_NUM-(i))*SIZEOF_XMMWORD	; xmmword wk[WK_NUM]
    92 %define WK_NUM		2
    94 	align	16
    95 	global	EXTN(jsimd_idct_ifast_sse2)
    97 EXTN(jsimd_idct_ifast_sse2):
    98 	push	ebp
    99 	mov	eax,esp				; eax = original ebp
   100 	sub	esp, byte 4
   101 	and	esp, byte (-SIZEOF_XMMWORD)	; align to 128 bits
   102 	mov	[esp],eax
   103 	mov	ebp,esp				; ebp = aligned ebp
   104 	lea	esp, [wk(0)]
   105 	pushpic	ebx
   106 ;	push	ecx		; unused
   107 ;	push	edx		; need not be preserved
   108 	push	esi
   109 	push	edi
   111 	get_GOT	ebx		; get GOT address
   113 	; ---- Pass 1: process columns from input.
   115 ;	mov	eax, [original_ebp]
   116 	mov	edx, POINTER [dct_table(eax)]	; quantptr
   117 	mov	esi, JCOEFPTR [coef_block(eax)]		; inptr
   119 %ifndef NO_ZERO_COLUMN_TEST_IFAST_SSE2
   120 	mov	eax, DWORD [DWBLOCK(1,0,esi,SIZEOF_JCOEF)]
   121 	or	eax, DWORD [DWBLOCK(2,0,esi,SIZEOF_JCOEF)]
   122 	jnz	near .columnDCT
   124 	movdqa	xmm0, XMMWORD [XMMBLOCK(1,0,esi,SIZEOF_JCOEF)]
   125 	movdqa	xmm1, XMMWORD [XMMBLOCK(2,0,esi,SIZEOF_JCOEF)]
   126 	por	xmm0, XMMWORD [XMMBLOCK(3,0,esi,SIZEOF_JCOEF)]
   127 	por	xmm1, XMMWORD [XMMBLOCK(4,0,esi,SIZEOF_JCOEF)]
   128 	por	xmm0, XMMWORD [XMMBLOCK(5,0,esi,SIZEOF_JCOEF)]
   129 	por	xmm1, XMMWORD [XMMBLOCK(6,0,esi,SIZEOF_JCOEF)]
   130 	por	xmm0, XMMWORD [XMMBLOCK(7,0,esi,SIZEOF_JCOEF)]
   131 	por	xmm1,xmm0
   132 	packsswb xmm1,xmm1
   133 	packsswb xmm1,xmm1
   134 	movd	eax,xmm1
   135 	test	eax,eax
   136 	jnz	short .columnDCT
   138 	; -- AC terms all zero
   140 	movdqa	xmm0, XMMWORD [XMMBLOCK(0,0,esi,SIZEOF_JCOEF)]
   141 	pmullw	xmm0, XMMWORD [XMMBLOCK(0,0,edx,SIZEOF_ISLOW_MULT_TYPE)]
   143 	movdqa    xmm7,xmm0		; xmm0=in0=(00 01 02 03 04 05 06 07)
   144 	punpcklwd xmm0,xmm0		; xmm0=(00 00 01 01 02 02 03 03)
   145 	punpckhwd xmm7,xmm7		; xmm7=(04 04 05 05 06 06 07 07)
   147 	pshufd	xmm6,xmm0,0x00		; xmm6=col0=(00 00 00 00 00 00 00 00)
   148 	pshufd	xmm2,xmm0,0x55		; xmm2=col1=(01 01 01 01 01 01 01 01)
   149 	pshufd	xmm5,xmm0,0xAA		; xmm5=col2=(02 02 02 02 02 02 02 02)
   150 	pshufd	xmm0,xmm0,0xFF		; xmm0=col3=(03 03 03 03 03 03 03 03)
   151 	pshufd	xmm1,xmm7,0x00		; xmm1=col4=(04 04 04 04 04 04 04 04)
   152 	pshufd	xmm4,xmm7,0x55		; xmm4=col5=(05 05 05 05 05 05 05 05)
   153 	pshufd	xmm3,xmm7,0xAA		; xmm3=col6=(06 06 06 06 06 06 06 06)
   154 	pshufd	xmm7,xmm7,0xFF		; xmm7=col7=(07 07 07 07 07 07 07 07)
   156 	movdqa	XMMWORD [wk(0)], xmm2	; wk(0)=col1
   157 	movdqa	XMMWORD [wk(1)], xmm0	; wk(1)=col3
   158 	jmp	near .column_end
   159 	alignx	16,7
   160 %endif
   161 .columnDCT:
   163 	; -- Even part
   165 	movdqa	xmm0, XMMWORD [XMMBLOCK(0,0,esi,SIZEOF_JCOEF)]
   166 	movdqa	xmm1, XMMWORD [XMMBLOCK(2,0,esi,SIZEOF_JCOEF)]
   167 	pmullw	xmm0, XMMWORD [XMMBLOCK(0,0,edx,SIZEOF_IFAST_MULT_TYPE)]
   168 	pmullw	xmm1, XMMWORD [XMMBLOCK(2,0,edx,SIZEOF_IFAST_MULT_TYPE)]
   169 	movdqa	xmm2, XMMWORD [XMMBLOCK(4,0,esi,SIZEOF_JCOEF)]
   170 	movdqa	xmm3, XMMWORD [XMMBLOCK(6,0,esi,SIZEOF_JCOEF)]
   171 	pmullw	xmm2, XMMWORD [XMMBLOCK(4,0,edx,SIZEOF_IFAST_MULT_TYPE)]
   172 	pmullw	xmm3, XMMWORD [XMMBLOCK(6,0,edx,SIZEOF_IFAST_MULT_TYPE)]
   174 	movdqa	xmm4,xmm0
   175 	movdqa	xmm5,xmm1
   176 	psubw	xmm0,xmm2		; xmm0=tmp11
   177 	psubw	xmm1,xmm3
   178 	paddw	xmm4,xmm2		; xmm4=tmp10
   179 	paddw	xmm5,xmm3		; xmm5=tmp13
   181 	psllw	xmm1,PRE_MULTIPLY_SCALE_BITS
   182 	pmulhw	xmm1,[GOTOFF(ebx,PW_F1414)]
   183 	psubw	xmm1,xmm5		; xmm1=tmp12
   185 	movdqa	xmm6,xmm4
   186 	movdqa	xmm7,xmm0
   187 	psubw	xmm4,xmm5		; xmm4=tmp3
   188 	psubw	xmm0,xmm1		; xmm0=tmp2
   189 	paddw	xmm6,xmm5		; xmm6=tmp0
   190 	paddw	xmm7,xmm1		; xmm7=tmp1
   192 	movdqa	XMMWORD [wk(1)], xmm4	; wk(1)=tmp3
   193 	movdqa	XMMWORD [wk(0)], xmm0	; wk(0)=tmp2
   195 	; -- Odd part
   197 	movdqa	xmm2, XMMWORD [XMMBLOCK(1,0,esi,SIZEOF_JCOEF)]
   198 	movdqa	xmm3, XMMWORD [XMMBLOCK(3,0,esi,SIZEOF_JCOEF)]
   199 	pmullw	xmm2, XMMWORD [XMMBLOCK(1,0,edx,SIZEOF_IFAST_MULT_TYPE)]
   200 	pmullw	xmm3, XMMWORD [XMMBLOCK(3,0,edx,SIZEOF_IFAST_MULT_TYPE)]
   201 	movdqa	xmm5, XMMWORD [XMMBLOCK(5,0,esi,SIZEOF_JCOEF)]
   202 	movdqa	xmm1, XMMWORD [XMMBLOCK(7,0,esi,SIZEOF_JCOEF)]
   203 	pmullw	xmm5, XMMWORD [XMMBLOCK(5,0,edx,SIZEOF_IFAST_MULT_TYPE)]
   204 	pmullw	xmm1, XMMWORD [XMMBLOCK(7,0,edx,SIZEOF_IFAST_MULT_TYPE)]
   206 	movdqa	xmm4,xmm2
   207 	movdqa	xmm0,xmm5
   208 	psubw	xmm2,xmm1		; xmm2=z12
   209 	psubw	xmm5,xmm3		; xmm5=z10
   210 	paddw	xmm4,xmm1		; xmm4=z11
   211 	paddw	xmm0,xmm3		; xmm0=z13
   213 	movdqa	xmm1,xmm5		; xmm1=z10(unscaled)
   214 	psllw	xmm2,PRE_MULTIPLY_SCALE_BITS
   215 	psllw	xmm5,PRE_MULTIPLY_SCALE_BITS
   217 	movdqa	xmm3,xmm4
   218 	psubw	xmm4,xmm0
   219 	paddw	xmm3,xmm0		; xmm3=tmp7
   221 	psllw	xmm4,PRE_MULTIPLY_SCALE_BITS
   222 	pmulhw	xmm4,[GOTOFF(ebx,PW_F1414)]	; xmm4=tmp11
   224 	; To avoid overflow...
   225 	;
   226 	; (Original)
   227 	; tmp12 = -2.613125930 * z10 + z5;
   228 	;
   229 	; (This implementation)
   230 	; tmp12 = (-1.613125930 - 1) * z10 + z5;
   231 	;       = -1.613125930 * z10 - z10 + z5;
   233 	movdqa	xmm0,xmm5
   234 	paddw	xmm5,xmm2
   235 	pmulhw	xmm5,[GOTOFF(ebx,PW_F1847)]	; xmm5=z5
   236 	pmulhw	xmm0,[GOTOFF(ebx,PW_MF1613)]
   237 	pmulhw	xmm2,[GOTOFF(ebx,PW_F1082)]
   238 	psubw	xmm0,xmm1
   239 	psubw	xmm2,xmm5		; xmm2=tmp10
   240 	paddw	xmm0,xmm5		; xmm0=tmp12
   242 	; -- Final output stage
   244 	psubw	xmm0,xmm3		; xmm0=tmp6
   245 	movdqa	xmm1,xmm6
   246 	movdqa	xmm5,xmm7
   247 	paddw	xmm6,xmm3		; xmm6=data0=(00 01 02 03 04 05 06 07)
   248 	paddw	xmm7,xmm0		; xmm7=data1=(10 11 12 13 14 15 16 17)
   249 	psubw	xmm1,xmm3		; xmm1=data7=(70 71 72 73 74 75 76 77)
   250 	psubw	xmm5,xmm0		; xmm5=data6=(60 61 62 63 64 65 66 67)
   251 	psubw	xmm4,xmm0		; xmm4=tmp5
   253 	movdqa    xmm3,xmm6		; transpose coefficients(phase 1)
   254 	punpcklwd xmm6,xmm7		; xmm6=(00 10 01 11 02 12 03 13)
   255 	punpckhwd xmm3,xmm7		; xmm3=(04 14 05 15 06 16 07 17)
   256 	movdqa    xmm0,xmm5		; transpose coefficients(phase 1)
   257 	punpcklwd xmm5,xmm1		; xmm5=(60 70 61 71 62 72 63 73)
   258 	punpckhwd xmm0,xmm1		; xmm0=(64 74 65 75 66 76 67 77)
   260 	movdqa	xmm7, XMMWORD [wk(0)]	; xmm7=tmp2
   261 	movdqa	xmm1, XMMWORD [wk(1)]	; xmm1=tmp3
   263 	movdqa	XMMWORD [wk(0)], xmm5	; wk(0)=(60 70 61 71 62 72 63 73)
   264 	movdqa	XMMWORD [wk(1)], xmm0	; wk(1)=(64 74 65 75 66 76 67 77)
   266 	paddw	xmm2,xmm4		; xmm2=tmp4
   267 	movdqa	xmm5,xmm7
   268 	movdqa	xmm0,xmm1
   269 	paddw	xmm7,xmm4		; xmm7=data2=(20 21 22 23 24 25 26 27)
   270 	paddw	xmm1,xmm2		; xmm1=data4=(40 41 42 43 44 45 46 47)
   271 	psubw	xmm5,xmm4		; xmm5=data5=(50 51 52 53 54 55 56 57)
   272 	psubw	xmm0,xmm2		; xmm0=data3=(30 31 32 33 34 35 36 37)
   274 	movdqa    xmm4,xmm7		; transpose coefficients(phase 1)
   275 	punpcklwd xmm7,xmm0		; xmm7=(20 30 21 31 22 32 23 33)
   276 	punpckhwd xmm4,xmm0		; xmm4=(24 34 25 35 26 36 27 37)
   277 	movdqa    xmm2,xmm1		; transpose coefficients(phase 1)
   278 	punpcklwd xmm1,xmm5		; xmm1=(40 50 41 51 42 52 43 53)
   279 	punpckhwd xmm2,xmm5		; xmm2=(44 54 45 55 46 56 47 57)
   281 	movdqa    xmm0,xmm3		; transpose coefficients(phase 2)
   282 	punpckldq xmm3,xmm4		; xmm3=(04 14 24 34 05 15 25 35)
   283 	punpckhdq xmm0,xmm4		; xmm0=(06 16 26 36 07 17 27 37)
   284 	movdqa    xmm5,xmm6		; transpose coefficients(phase 2)
   285 	punpckldq xmm6,xmm7		; xmm6=(00 10 20 30 01 11 21 31)
   286 	punpckhdq xmm5,xmm7		; xmm5=(02 12 22 32 03 13 23 33)
   288 	movdqa	xmm4, XMMWORD [wk(0)]	; xmm4=(60 70 61 71 62 72 63 73)
   289 	movdqa	xmm7, XMMWORD [wk(1)]	; xmm7=(64 74 65 75 66 76 67 77)
   291 	movdqa	XMMWORD [wk(0)], xmm3	; wk(0)=(04 14 24 34 05 15 25 35)
   292 	movdqa	XMMWORD [wk(1)], xmm0	; wk(1)=(06 16 26 36 07 17 27 37)
   294 	movdqa    xmm3,xmm1		; transpose coefficients(phase 2)
   295 	punpckldq xmm1,xmm4		; xmm1=(40 50 60 70 41 51 61 71)
   296 	punpckhdq xmm3,xmm4		; xmm3=(42 52 62 72 43 53 63 73)
   297 	movdqa    xmm0,xmm2		; transpose coefficients(phase 2)
   298 	punpckldq xmm2,xmm7		; xmm2=(44 54 64 74 45 55 65 75)
   299 	punpckhdq xmm0,xmm7		; xmm0=(46 56 66 76 47 57 67 77)
   301 	movdqa     xmm4,xmm6		; transpose coefficients(phase 3)
   302 	punpcklqdq xmm6,xmm1		; xmm6=col0=(00 10 20 30 40 50 60 70)
   303 	punpckhqdq xmm4,xmm1		; xmm4=col1=(01 11 21 31 41 51 61 71)
   304 	movdqa     xmm7,xmm5		; transpose coefficients(phase 3)
   305 	punpcklqdq xmm5,xmm3		; xmm5=col2=(02 12 22 32 42 52 62 72)
   306 	punpckhqdq xmm7,xmm3		; xmm7=col3=(03 13 23 33 43 53 63 73)
   308 	movdqa	xmm1, XMMWORD [wk(0)]	; xmm1=(04 14 24 34 05 15 25 35)
   309 	movdqa	xmm3, XMMWORD [wk(1)]	; xmm3=(06 16 26 36 07 17 27 37)
   311 	movdqa	XMMWORD [wk(0)], xmm4	; wk(0)=col1
   312 	movdqa	XMMWORD [wk(1)], xmm7	; wk(1)=col3
   314 	movdqa     xmm4,xmm1		; transpose coefficients(phase 3)
   315 	punpcklqdq xmm1,xmm2		; xmm1=col4=(04 14 24 34 44 54 64 74)
   316 	punpckhqdq xmm4,xmm2		; xmm4=col5=(05 15 25 35 45 55 65 75)
   317 	movdqa     xmm7,xmm3		; transpose coefficients(phase 3)
   318 	punpcklqdq xmm3,xmm0		; xmm3=col6=(06 16 26 36 46 56 66 76)
   319 	punpckhqdq xmm7,xmm0		; xmm7=col7=(07 17 27 37 47 57 67 77)
   320 .column_end:
   322 	; -- Prefetch the next coefficient block
   324 	prefetchnta [esi + DCTSIZE2*SIZEOF_JCOEF + 0*32]
   325 	prefetchnta [esi + DCTSIZE2*SIZEOF_JCOEF + 1*32]
   326 	prefetchnta [esi + DCTSIZE2*SIZEOF_JCOEF + 2*32]
   327 	prefetchnta [esi + DCTSIZE2*SIZEOF_JCOEF + 3*32]
   329 	; ---- Pass 2: process rows from work array, store into output array.
   331 	mov	eax, [original_ebp]
   332 	mov	edi, JSAMPARRAY [output_buf(eax)]	; (JSAMPROW *)
   333 	mov	eax, JDIMENSION [output_col(eax)]
   335 	; -- Even part
   337 	; xmm6=col0, xmm5=col2, xmm1=col4, xmm3=col6
   339 	movdqa	xmm2,xmm6
   340 	movdqa	xmm0,xmm5
   341 	psubw	xmm6,xmm1		; xmm6=tmp11
   342 	psubw	xmm5,xmm3
   343 	paddw	xmm2,xmm1		; xmm2=tmp10
   344 	paddw	xmm0,xmm3		; xmm0=tmp13
   346 	psllw	xmm5,PRE_MULTIPLY_SCALE_BITS
   347 	pmulhw	xmm5,[GOTOFF(ebx,PW_F1414)]
   348 	psubw	xmm5,xmm0		; xmm5=tmp12
   350 	movdqa	xmm1,xmm2
   351 	movdqa	xmm3,xmm6
   352 	psubw	xmm2,xmm0		; xmm2=tmp3
   353 	psubw	xmm6,xmm5		; xmm6=tmp2
   354 	paddw	xmm1,xmm0		; xmm1=tmp0
   355 	paddw	xmm3,xmm5		; xmm3=tmp1
   357 	movdqa	xmm0, XMMWORD [wk(0)]	; xmm0=col1
   358 	movdqa	xmm5, XMMWORD [wk(1)]	; xmm5=col3
   360 	movdqa	XMMWORD [wk(0)], xmm2	; wk(0)=tmp3
   361 	movdqa	XMMWORD [wk(1)], xmm6	; wk(1)=tmp2
   363 	; -- Odd part
   365 	; xmm0=col1, xmm5=col3, xmm4=col5, xmm7=col7
   367 	movdqa	xmm2,xmm0
   368 	movdqa	xmm6,xmm4
   369 	psubw	xmm0,xmm7		; xmm0=z12
   370 	psubw	xmm4,xmm5		; xmm4=z10
   371 	paddw	xmm2,xmm7		; xmm2=z11
   372 	paddw	xmm6,xmm5		; xmm6=z13
   374 	movdqa	xmm7,xmm4		; xmm7=z10(unscaled)
   375 	psllw	xmm0,PRE_MULTIPLY_SCALE_BITS
   376 	psllw	xmm4,PRE_MULTIPLY_SCALE_BITS
   378 	movdqa	xmm5,xmm2
   379 	psubw	xmm2,xmm6
   380 	paddw	xmm5,xmm6		; xmm5=tmp7
   382 	psllw	xmm2,PRE_MULTIPLY_SCALE_BITS
   383 	pmulhw	xmm2,[GOTOFF(ebx,PW_F1414)]	; xmm2=tmp11
   385 	; To avoid overflow...
   386 	;
   387 	; (Original)
   388 	; tmp12 = -2.613125930 * z10 + z5;
   389 	;
   390 	; (This implementation)
   391 	; tmp12 = (-1.613125930 - 1) * z10 + z5;
   392 	;       = -1.613125930 * z10 - z10 + z5;
   394 	movdqa	xmm6,xmm4
   395 	paddw	xmm4,xmm0
   396 	pmulhw	xmm4,[GOTOFF(ebx,PW_F1847)]	; xmm4=z5
   397 	pmulhw	xmm6,[GOTOFF(ebx,PW_MF1613)]
   398 	pmulhw	xmm0,[GOTOFF(ebx,PW_F1082)]
   399 	psubw	xmm6,xmm7
   400 	psubw	xmm0,xmm4		; xmm0=tmp10
   401 	paddw	xmm6,xmm4		; xmm6=tmp12
   403 	; -- Final output stage
   405 	psubw	xmm6,xmm5		; xmm6=tmp6
   406 	movdqa	xmm7,xmm1
   407 	movdqa	xmm4,xmm3
   408 	paddw	xmm1,xmm5		; xmm1=data0=(00 10 20 30 40 50 60 70)
   409 	paddw	xmm3,xmm6		; xmm3=data1=(01 11 21 31 41 51 61 71)
   410 	psraw	xmm1,(PASS1_BITS+3)	; descale
   411 	psraw	xmm3,(PASS1_BITS+3)	; descale
   412 	psubw	xmm7,xmm5		; xmm7=data7=(07 17 27 37 47 57 67 77)
   413 	psubw	xmm4,xmm6		; xmm4=data6=(06 16 26 36 46 56 66 76)
   414 	psraw	xmm7,(PASS1_BITS+3)	; descale
   415 	psraw	xmm4,(PASS1_BITS+3)	; descale
   416 	psubw	xmm2,xmm6		; xmm2=tmp5
   418 	packsswb  xmm1,xmm4	; xmm1=(00 10 20 30 40 50 60 70 06 16 26 36 46 56 66 76)
   419 	packsswb  xmm3,xmm7	; xmm3=(01 11 21 31 41 51 61 71 07 17 27 37 47 57 67 77)
   421 	movdqa	xmm5, XMMWORD [wk(1)]	; xmm5=tmp2
   422 	movdqa	xmm6, XMMWORD [wk(0)]	; xmm6=tmp3
   424 	paddw	xmm0,xmm2		; xmm0=tmp4
   425 	movdqa	xmm4,xmm5
   426 	movdqa	xmm7,xmm6
   427 	paddw	xmm5,xmm2		; xmm5=data2=(02 12 22 32 42 52 62 72)
   428 	paddw	xmm6,xmm0		; xmm6=data4=(04 14 24 34 44 54 64 74)
   429 	psraw	xmm5,(PASS1_BITS+3)	; descale
   430 	psraw	xmm6,(PASS1_BITS+3)	; descale
   431 	psubw	xmm4,xmm2		; xmm4=data5=(05 15 25 35 45 55 65 75)
   432 	psubw	xmm7,xmm0		; xmm7=data3=(03 13 23 33 43 53 63 73)
   433 	psraw	xmm4,(PASS1_BITS+3)	; descale
   434 	psraw	xmm7,(PASS1_BITS+3)	; descale
   436 	movdqa    xmm2,[GOTOFF(ebx,PB_CENTERJSAMP)]	; xmm2=[PB_CENTERJSAMP]
   438 	packsswb  xmm5,xmm6	; xmm5=(02 12 22 32 42 52 62 72 04 14 24 34 44 54 64 74)
   439 	packsswb  xmm7,xmm4	; xmm7=(03 13 23 33 43 53 63 73 05 15 25 35 45 55 65 75)
   441 	paddb     xmm1,xmm2
   442 	paddb     xmm3,xmm2
   443 	paddb     xmm5,xmm2
   444 	paddb     xmm7,xmm2
   446 	movdqa    xmm0,xmm1	; transpose coefficients(phase 1)
   447 	punpcklbw xmm1,xmm3	; xmm1=(00 01 10 11 20 21 30 31 40 41 50 51 60 61 70 71)
   448 	punpckhbw xmm0,xmm3	; xmm0=(06 07 16 17 26 27 36 37 46 47 56 57 66 67 76 77)
   449 	movdqa    xmm6,xmm5	; transpose coefficients(phase 1)
   450 	punpcklbw xmm5,xmm7	; xmm5=(02 03 12 13 22 23 32 33 42 43 52 53 62 63 72 73)
   451 	punpckhbw xmm6,xmm7	; xmm6=(04 05 14 15 24 25 34 35 44 45 54 55 64 65 74 75)
   453 	movdqa    xmm4,xmm1	; transpose coefficients(phase 2)
   454 	punpcklwd xmm1,xmm5	; xmm1=(00 01 02 03 10 11 12 13 20 21 22 23 30 31 32 33)
   455 	punpckhwd xmm4,xmm5	; xmm4=(40 41 42 43 50 51 52 53 60 61 62 63 70 71 72 73)
   456 	movdqa    xmm2,xmm6	; transpose coefficients(phase 2)
   457 	punpcklwd xmm6,xmm0	; xmm6=(04 05 06 07 14 15 16 17 24 25 26 27 34 35 36 37)
   458 	punpckhwd xmm2,xmm0	; xmm2=(44 45 46 47 54 55 56 57 64 65 66 67 74 75 76 77)
   460 	movdqa    xmm3,xmm1	; transpose coefficients(phase 3)
   461 	punpckldq xmm1,xmm6	; xmm1=(00 01 02 03 04 05 06 07 10 11 12 13 14 15 16 17)
   462 	punpckhdq xmm3,xmm6	; xmm3=(20 21 22 23 24 25 26 27 30 31 32 33 34 35 36 37)
   463 	movdqa    xmm7,xmm4	; transpose coefficients(phase 3)
   464 	punpckldq xmm4,xmm2	; xmm4=(40 41 42 43 44 45 46 47 50 51 52 53 54 55 56 57)
   465 	punpckhdq xmm7,xmm2	; xmm7=(60 61 62 63 64 65 66 67 70 71 72 73 74 75 76 77)
   467 	pshufd	xmm5,xmm1,0x4E	; xmm5=(10 11 12 13 14 15 16 17 00 01 02 03 04 05 06 07)
   468 	pshufd	xmm0,xmm3,0x4E	; xmm0=(30 31 32 33 34 35 36 37 20 21 22 23 24 25 26 27)
   469 	pshufd	xmm6,xmm4,0x4E	; xmm6=(50 51 52 53 54 55 56 57 40 41 42 43 44 45 46 47)
   470 	pshufd	xmm2,xmm7,0x4E	; xmm2=(70 71 72 73 74 75 76 77 60 61 62 63 64 65 66 67)
   472 	mov	edx, JSAMPROW [edi+0*SIZEOF_JSAMPROW]
   473 	mov	esi, JSAMPROW [edi+2*SIZEOF_JSAMPROW]
   474 	movq	XMM_MMWORD [edx+eax*SIZEOF_JSAMPLE], xmm1
   475 	movq	XMM_MMWORD [esi+eax*SIZEOF_JSAMPLE], xmm3
   476 	mov	edx, JSAMPROW [edi+4*SIZEOF_JSAMPROW]
   477 	mov	esi, JSAMPROW [edi+6*SIZEOF_JSAMPROW]
   478 	movq	XMM_MMWORD [edx+eax*SIZEOF_JSAMPLE], xmm4
   479 	movq	XMM_MMWORD [esi+eax*SIZEOF_JSAMPLE], xmm7
   481 	mov	edx, JSAMPROW [edi+1*SIZEOF_JSAMPROW]
   482 	mov	esi, JSAMPROW [edi+3*SIZEOF_JSAMPROW]
   483 	movq	XMM_MMWORD [edx+eax*SIZEOF_JSAMPLE], xmm5
   484 	movq	XMM_MMWORD [esi+eax*SIZEOF_JSAMPLE], xmm0
   485 	mov	edx, JSAMPROW [edi+5*SIZEOF_JSAMPROW]
   486 	mov	esi, JSAMPROW [edi+7*SIZEOF_JSAMPROW]
   487 	movq	XMM_MMWORD [edx+eax*SIZEOF_JSAMPLE], xmm6
   488 	movq	XMM_MMWORD [esi+eax*SIZEOF_JSAMPLE], xmm2
   490 	pop	edi
   491 	pop	esi
   492 ;	pop	edx		; need not be preserved
   493 ;	pop	ecx		; unused
   494 	poppic	ebx
   495 	mov	esp,ebp		; esp <- aligned ebp
   496 	pop	esp		; esp <- original ebp
   497 	pop	ebp
   498 	ret
   500 ; For some reason, the OS X linker does not honor the request to align the
   501 ; segment unless we do this.
   502 	align	16

mercurial