mfbt/double-conversion/bignum-dtoa.cc

Wed, 31 Dec 2014 06:09:35 +0100

author
Michael Schloh von Bennewitz <michael@schloh.com>
date
Wed, 31 Dec 2014 06:09:35 +0100
changeset 0
6474c204b198
permissions
-rw-r--r--

Cloned upstream origin tor-browser at tor-browser-31.3.0esr-4.5-1-build1
revision ID fc1c9ff7c1b2defdbc039f12214767608f46423f for hacking purpose.

     1 // Copyright 2010 the V8 project authors. All rights reserved.
     2 // Redistribution and use in source and binary forms, with or without
     3 // modification, are permitted provided that the following conditions are
     4 // met:
     5 //
     6 //     * Redistributions of source code must retain the above copyright
     7 //       notice, this list of conditions and the following disclaimer.
     8 //     * Redistributions in binary form must reproduce the above
     9 //       copyright notice, this list of conditions and the following
    10 //       disclaimer in the documentation and/or other materials provided
    11 //       with the distribution.
    12 //     * Neither the name of Google Inc. nor the names of its
    13 //       contributors may be used to endorse or promote products derived
    14 //       from this software without specific prior written permission.
    15 //
    16 // THIS SOFTWARE IS PROVIDED BY THE COPYRIGHT HOLDERS AND CONTRIBUTORS
    17 // "AS IS" AND ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT
    18 // LIMITED TO, THE IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR
    19 // A PARTICULAR PURPOSE ARE DISCLAIMED. IN NO EVENT SHALL THE COPYRIGHT
    20 // OWNER OR CONTRIBUTORS BE LIABLE FOR ANY DIRECT, INDIRECT, INCIDENTAL,
    21 // SPECIAL, EXEMPLARY, OR CONSEQUENTIAL DAMAGES (INCLUDING, BUT NOT
    22 // LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS OR SERVICES; LOSS OF USE,
    23 // DATA, OR PROFITS; OR BUSINESS INTERRUPTION) HOWEVER CAUSED AND ON ANY
    24 // THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT LIABILITY, OR TORT
    25 // (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY OUT OF THE USE
    26 // OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF SUCH DAMAGE.
    28 #include <math.h>
    30 #include "bignum-dtoa.h"
    32 #include "bignum.h"
    33 #include "ieee.h"
    35 namespace double_conversion {
    37 static int NormalizedExponent(uint64_t significand, int exponent) {
    38   ASSERT(significand != 0);
    39   while ((significand & Double::kHiddenBit) == 0) {
    40     significand = significand << 1;
    41     exponent = exponent - 1;
    42   }
    43   return exponent;
    44 }
    47 // Forward declarations:
    48 // Returns an estimation of k such that 10^(k-1) <= v < 10^k.
    49 static int EstimatePower(int exponent);
    50 // Computes v / 10^estimated_power exactly, as a ratio of two bignums, numerator
    51 // and denominator.
    52 static void InitialScaledStartValues(uint64_t significand,
    53                                      int exponent,
    54                                      bool lower_boundary_is_closer,
    55                                      int estimated_power,
    56                                      bool need_boundary_deltas,
    57                                      Bignum* numerator,
    58                                      Bignum* denominator,
    59                                      Bignum* delta_minus,
    60                                      Bignum* delta_plus);
    61 // Multiplies numerator/denominator so that its values lies in the range 1-10.
    62 // Returns decimal_point s.t.
    63 //  v = numerator'/denominator' * 10^(decimal_point-1)
    64 //     where numerator' and denominator' are the values of numerator and
    65 //     denominator after the call to this function.
    66 static void FixupMultiply10(int estimated_power, bool is_even,
    67                             int* decimal_point,
    68                             Bignum* numerator, Bignum* denominator,
    69                             Bignum* delta_minus, Bignum* delta_plus);
    70 // Generates digits from the left to the right and stops when the generated
    71 // digits yield the shortest decimal representation of v.
    72 static void GenerateShortestDigits(Bignum* numerator, Bignum* denominator,
    73                                    Bignum* delta_minus, Bignum* delta_plus,
    74                                    bool is_even,
    75                                    Vector<char> buffer, int* length);
    76 // Generates 'requested_digits' after the decimal point.
    77 static void BignumToFixed(int requested_digits, int* decimal_point,
    78                           Bignum* numerator, Bignum* denominator,
    79                           Vector<char>(buffer), int* length);
    80 // Generates 'count' digits of numerator/denominator.
    81 // Once 'count' digits have been produced rounds the result depending on the
    82 // remainder (remainders of exactly .5 round upwards). Might update the
    83 // decimal_point when rounding up (for example for 0.9999).
    84 static void GenerateCountedDigits(int count, int* decimal_point,
    85                                   Bignum* numerator, Bignum* denominator,
    86                                   Vector<char>(buffer), int* length);
    89 void BignumDtoa(double v, BignumDtoaMode mode, int requested_digits,
    90                 Vector<char> buffer, int* length, int* decimal_point) {
    91   ASSERT(v > 0);
    92   ASSERT(!Double(v).IsSpecial());
    93   uint64_t significand;
    94   int exponent;
    95   bool lower_boundary_is_closer;
    96   if (mode == BIGNUM_DTOA_SHORTEST_SINGLE) {
    97     float f = static_cast<float>(v);
    98     ASSERT(f == v);
    99     significand = Single(f).Significand();
   100     exponent = Single(f).Exponent();
   101     lower_boundary_is_closer = Single(f).LowerBoundaryIsCloser();
   102   } else {
   103     significand = Double(v).Significand();
   104     exponent = Double(v).Exponent();
   105     lower_boundary_is_closer = Double(v).LowerBoundaryIsCloser();
   106   }
   107   bool need_boundary_deltas =
   108       (mode == BIGNUM_DTOA_SHORTEST || mode == BIGNUM_DTOA_SHORTEST_SINGLE);
   110   bool is_even = (significand & 1) == 0;
   111   int normalized_exponent = NormalizedExponent(significand, exponent);
   112   // estimated_power might be too low by 1.
   113   int estimated_power = EstimatePower(normalized_exponent);
   115   // Shortcut for Fixed.
   116   // The requested digits correspond to the digits after the point. If the
   117   // number is much too small, then there is no need in trying to get any
   118   // digits.
   119   if (mode == BIGNUM_DTOA_FIXED && -estimated_power - 1 > requested_digits) {
   120     buffer[0] = '\0';
   121     *length = 0;
   122     // Set decimal-point to -requested_digits. This is what Gay does.
   123     // Note that it should not have any effect anyways since the string is
   124     // empty.
   125     *decimal_point = -requested_digits;
   126     return;
   127   }
   129   Bignum numerator;
   130   Bignum denominator;
   131   Bignum delta_minus;
   132   Bignum delta_plus;
   133   // Make sure the bignum can grow large enough. The smallest double equals
   134   // 4e-324. In this case the denominator needs fewer than 324*4 binary digits.
   135   // The maximum double is 1.7976931348623157e308 which needs fewer than
   136   // 308*4 binary digits.
   137   ASSERT(Bignum::kMaxSignificantBits >= 324*4);
   138   InitialScaledStartValues(significand, exponent, lower_boundary_is_closer,
   139                            estimated_power, need_boundary_deltas,
   140                            &numerator, &denominator,
   141                            &delta_minus, &delta_plus);
   142   // We now have v = (numerator / denominator) * 10^estimated_power.
   143   FixupMultiply10(estimated_power, is_even, decimal_point,
   144                   &numerator, &denominator,
   145                   &delta_minus, &delta_plus);
   146   // We now have v = (numerator / denominator) * 10^(decimal_point-1), and
   147   //  1 <= (numerator + delta_plus) / denominator < 10
   148   switch (mode) {
   149     case BIGNUM_DTOA_SHORTEST:
   150     case BIGNUM_DTOA_SHORTEST_SINGLE:
   151       GenerateShortestDigits(&numerator, &denominator,
   152                              &delta_minus, &delta_plus,
   153                              is_even, buffer, length);
   154       break;
   155     case BIGNUM_DTOA_FIXED:
   156       BignumToFixed(requested_digits, decimal_point,
   157                     &numerator, &denominator,
   158                     buffer, length);
   159       break;
   160     case BIGNUM_DTOA_PRECISION:
   161       GenerateCountedDigits(requested_digits, decimal_point,
   162                             &numerator, &denominator,
   163                             buffer, length);
   164       break;
   165     default:
   166       UNREACHABLE();
   167   }
   168   buffer[*length] = '\0';
   169 }
   172 // The procedure starts generating digits from the left to the right and stops
   173 // when the generated digits yield the shortest decimal representation of v. A
   174 // decimal representation of v is a number lying closer to v than to any other
   175 // double, so it converts to v when read.
   176 //
   177 // This is true if d, the decimal representation, is between m- and m+, the
   178 // upper and lower boundaries. d must be strictly between them if !is_even.
   179 //           m- := (numerator - delta_minus) / denominator
   180 //           m+ := (numerator + delta_plus) / denominator
   181 //
   182 // Precondition: 0 <= (numerator+delta_plus) / denominator < 10.
   183 //   If 1 <= (numerator+delta_plus) / denominator < 10 then no leading 0 digit
   184 //   will be produced. This should be the standard precondition.
   185 static void GenerateShortestDigits(Bignum* numerator, Bignum* denominator,
   186                                    Bignum* delta_minus, Bignum* delta_plus,
   187                                    bool is_even,
   188                                    Vector<char> buffer, int* length) {
   189   // Small optimization: if delta_minus and delta_plus are the same just reuse
   190   // one of the two bignums.
   191   if (Bignum::Equal(*delta_minus, *delta_plus)) {
   192     delta_plus = delta_minus;
   193   }
   194   *length = 0;
   195   while (true) {
   196     uint16_t digit;
   197     digit = numerator->DivideModuloIntBignum(*denominator);
   198     ASSERT(digit <= 9);  // digit is a uint16_t and therefore always positive.
   199     // digit = numerator / denominator (integer division).
   200     // numerator = numerator % denominator.
   201     buffer[(*length)++] = digit + '0';
   203     // Can we stop already?
   204     // If the remainder of the division is less than the distance to the lower
   205     // boundary we can stop. In this case we simply round down (discarding the
   206     // remainder).
   207     // Similarly we test if we can round up (using the upper boundary).
   208     bool in_delta_room_minus;
   209     bool in_delta_room_plus;
   210     if (is_even) {
   211       in_delta_room_minus = Bignum::LessEqual(*numerator, *delta_minus);
   212     } else {
   213       in_delta_room_minus = Bignum::Less(*numerator, *delta_minus);
   214     }
   215     if (is_even) {
   216       in_delta_room_plus =
   217           Bignum::PlusCompare(*numerator, *delta_plus, *denominator) >= 0;
   218     } else {
   219       in_delta_room_plus =
   220           Bignum::PlusCompare(*numerator, *delta_plus, *denominator) > 0;
   221     }
   222     if (!in_delta_room_minus && !in_delta_room_plus) {
   223       // Prepare for next iteration.
   224       numerator->Times10();
   225       delta_minus->Times10();
   226       // We optimized delta_plus to be equal to delta_minus (if they share the
   227       // same value). So don't multiply delta_plus if they point to the same
   228       // object.
   229       if (delta_minus != delta_plus) {
   230         delta_plus->Times10();
   231       }
   232     } else if (in_delta_room_minus && in_delta_room_plus) {
   233       // Let's see if 2*numerator < denominator.
   234       // If yes, then the next digit would be < 5 and we can round down.
   235       int compare = Bignum::PlusCompare(*numerator, *numerator, *denominator);
   236       if (compare < 0) {
   237         // Remaining digits are less than .5. -> Round down (== do nothing).
   238       } else if (compare > 0) {
   239         // Remaining digits are more than .5 of denominator. -> Round up.
   240         // Note that the last digit could not be a '9' as otherwise the whole
   241         // loop would have stopped earlier.
   242         // We still have an assert here in case the preconditions were not
   243         // satisfied.
   244         ASSERT(buffer[(*length) - 1] != '9');
   245         buffer[(*length) - 1]++;
   246       } else {
   247         // Halfway case.
   248         // TODO(floitsch): need a way to solve half-way cases.
   249         //   For now let's round towards even (since this is what Gay seems to
   250         //   do).
   252         if ((buffer[(*length) - 1] - '0') % 2 == 0) {
   253           // Round down => Do nothing.
   254         } else {
   255           ASSERT(buffer[(*length) - 1] != '9');
   256           buffer[(*length) - 1]++;
   257         }
   258       }
   259       return;
   260     } else if (in_delta_room_minus) {
   261       // Round down (== do nothing).
   262       return;
   263     } else {  // in_delta_room_plus
   264       // Round up.
   265       // Note again that the last digit could not be '9' since this would have
   266       // stopped the loop earlier.
   267       // We still have an ASSERT here, in case the preconditions were not
   268       // satisfied.
   269       ASSERT(buffer[(*length) -1] != '9');
   270       buffer[(*length) - 1]++;
   271       return;
   272     }
   273   }
   274 }
   277 // Let v = numerator / denominator < 10.
   278 // Then we generate 'count' digits of d = x.xxxxx... (without the decimal point)
   279 // from left to right. Once 'count' digits have been produced we decide wether
   280 // to round up or down. Remainders of exactly .5 round upwards. Numbers such
   281 // as 9.999999 propagate a carry all the way, and change the
   282 // exponent (decimal_point), when rounding upwards.
   283 static void GenerateCountedDigits(int count, int* decimal_point,
   284                                   Bignum* numerator, Bignum* denominator,
   285                                   Vector<char>(buffer), int* length) {
   286   ASSERT(count >= 0);
   287   for (int i = 0; i < count - 1; ++i) {
   288     uint16_t digit;
   289     digit = numerator->DivideModuloIntBignum(*denominator);
   290     ASSERT(digit <= 9);  // digit is a uint16_t and therefore always positive.
   291     // digit = numerator / denominator (integer division).
   292     // numerator = numerator % denominator.
   293     buffer[i] = digit + '0';
   294     // Prepare for next iteration.
   295     numerator->Times10();
   296   }
   297   // Generate the last digit.
   298   uint16_t digit;
   299   digit = numerator->DivideModuloIntBignum(*denominator);
   300   if (Bignum::PlusCompare(*numerator, *numerator, *denominator) >= 0) {
   301     digit++;
   302   }
   303   buffer[count - 1] = digit + '0';
   304   // Correct bad digits (in case we had a sequence of '9's). Propagate the
   305   // carry until we hat a non-'9' or til we reach the first digit.
   306   for (int i = count - 1; i > 0; --i) {
   307     if (buffer[i] != '0' + 10) break;
   308     buffer[i] = '0';
   309     buffer[i - 1]++;
   310   }
   311   if (buffer[0] == '0' + 10) {
   312     // Propagate a carry past the top place.
   313     buffer[0] = '1';
   314     (*decimal_point)++;
   315   }
   316   *length = count;
   317 }
   320 // Generates 'requested_digits' after the decimal point. It might omit
   321 // trailing '0's. If the input number is too small then no digits at all are
   322 // generated (ex.: 2 fixed digits for 0.00001).
   323 //
   324 // Input verifies:  1 <= (numerator + delta) / denominator < 10.
   325 static void BignumToFixed(int requested_digits, int* decimal_point,
   326                           Bignum* numerator, Bignum* denominator,
   327                           Vector<char>(buffer), int* length) {
   328   // Note that we have to look at more than just the requested_digits, since
   329   // a number could be rounded up. Example: v=0.5 with requested_digits=0.
   330   // Even though the power of v equals 0 we can't just stop here.
   331   if (-(*decimal_point) > requested_digits) {
   332     // The number is definitively too small.
   333     // Ex: 0.001 with requested_digits == 1.
   334     // Set decimal-point to -requested_digits. This is what Gay does.
   335     // Note that it should not have any effect anyways since the string is
   336     // empty.
   337     *decimal_point = -requested_digits;
   338     *length = 0;
   339     return;
   340   } else if (-(*decimal_point) == requested_digits) {
   341     // We only need to verify if the number rounds down or up.
   342     // Ex: 0.04 and 0.06 with requested_digits == 1.
   343     ASSERT(*decimal_point == -requested_digits);
   344     // Initially the fraction lies in range (1, 10]. Multiply the denominator
   345     // by 10 so that we can compare more easily.
   346     denominator->Times10();
   347     if (Bignum::PlusCompare(*numerator, *numerator, *denominator) >= 0) {
   348       // If the fraction is >= 0.5 then we have to include the rounded
   349       // digit.
   350       buffer[0] = '1';
   351       *length = 1;
   352       (*decimal_point)++;
   353     } else {
   354       // Note that we caught most of similar cases earlier.
   355       *length = 0;
   356     }
   357     return;
   358   } else {
   359     // The requested digits correspond to the digits after the point.
   360     // The variable 'needed_digits' includes the digits before the point.
   361     int needed_digits = (*decimal_point) + requested_digits;
   362     GenerateCountedDigits(needed_digits, decimal_point,
   363                           numerator, denominator,
   364                           buffer, length);
   365   }
   366 }
   369 // Returns an estimation of k such that 10^(k-1) <= v < 10^k where
   370 // v = f * 2^exponent and 2^52 <= f < 2^53.
   371 // v is hence a normalized double with the given exponent. The output is an
   372 // approximation for the exponent of the decimal approimation .digits * 10^k.
   373 //
   374 // The result might undershoot by 1 in which case 10^k <= v < 10^k+1.
   375 // Note: this property holds for v's upper boundary m+ too.
   376 //    10^k <= m+ < 10^k+1.
   377 //   (see explanation below).
   378 //
   379 // Examples:
   380 //  EstimatePower(0)   => 16
   381 //  EstimatePower(-52) => 0
   382 //
   383 // Note: e >= 0 => EstimatedPower(e) > 0. No similar claim can be made for e<0.
   384 static int EstimatePower(int exponent) {
   385   // This function estimates log10 of v where v = f*2^e (with e == exponent).
   386   // Note that 10^floor(log10(v)) <= v, but v <= 10^ceil(log10(v)).
   387   // Note that f is bounded by its container size. Let p = 53 (the double's
   388   // significand size). Then 2^(p-1) <= f < 2^p.
   389   //
   390   // Given that log10(v) == log2(v)/log2(10) and e+(len(f)-1) is quite close
   391   // to log2(v) the function is simplified to (e+(len(f)-1)/log2(10)).
   392   // The computed number undershoots by less than 0.631 (when we compute log3
   393   // and not log10).
   394   //
   395   // Optimization: since we only need an approximated result this computation
   396   // can be performed on 64 bit integers. On x86/x64 architecture the speedup is
   397   // not really measurable, though.
   398   //
   399   // Since we want to avoid overshooting we decrement by 1e10 so that
   400   // floating-point imprecisions don't affect us.
   401   //
   402   // Explanation for v's boundary m+: the computation takes advantage of
   403   // the fact that 2^(p-1) <= f < 2^p. Boundaries still satisfy this requirement
   404   // (even for denormals where the delta can be much more important).
   406   const double k1Log10 = 0.30102999566398114;  // 1/lg(10)
   408   // For doubles len(f) == 53 (don't forget the hidden bit).
   409   const int kSignificandSize = Double::kSignificandSize;
   410   double estimate = ceil((exponent + kSignificandSize - 1) * k1Log10 - 1e-10);
   411   return static_cast<int>(estimate);
   412 }
   415 // See comments for InitialScaledStartValues.
   416 static void InitialScaledStartValuesPositiveExponent(
   417     uint64_t significand, int exponent,
   418     int estimated_power, bool need_boundary_deltas,
   419     Bignum* numerator, Bignum* denominator,
   420     Bignum* delta_minus, Bignum* delta_plus) {
   421   // A positive exponent implies a positive power.
   422   ASSERT(estimated_power >= 0);
   423   // Since the estimated_power is positive we simply multiply the denominator
   424   // by 10^estimated_power.
   426   // numerator = v.
   427   numerator->AssignUInt64(significand);
   428   numerator->ShiftLeft(exponent);
   429   // denominator = 10^estimated_power.
   430   denominator->AssignPowerUInt16(10, estimated_power);
   432   if (need_boundary_deltas) {
   433     // Introduce a common denominator so that the deltas to the boundaries are
   434     // integers.
   435     denominator->ShiftLeft(1);
   436     numerator->ShiftLeft(1);
   437     // Let v = f * 2^e, then m+ - v = 1/2 * 2^e; With the common
   438     // denominator (of 2) delta_plus equals 2^e.
   439     delta_plus->AssignUInt16(1);
   440     delta_plus->ShiftLeft(exponent);
   441     // Same for delta_minus. The adjustments if f == 2^p-1 are done later.
   442     delta_minus->AssignUInt16(1);
   443     delta_minus->ShiftLeft(exponent);
   444   }
   445 }
   448 // See comments for InitialScaledStartValues
   449 static void InitialScaledStartValuesNegativeExponentPositivePower(
   450     uint64_t significand, int exponent,
   451     int estimated_power, bool need_boundary_deltas,
   452     Bignum* numerator, Bignum* denominator,
   453     Bignum* delta_minus, Bignum* delta_plus) {
   454   // v = f * 2^e with e < 0, and with estimated_power >= 0.
   455   // This means that e is close to 0 (have a look at how estimated_power is
   456   // computed).
   458   // numerator = significand
   459   //  since v = significand * 2^exponent this is equivalent to
   460   //  numerator = v * / 2^-exponent
   461   numerator->AssignUInt64(significand);
   462   // denominator = 10^estimated_power * 2^-exponent (with exponent < 0)
   463   denominator->AssignPowerUInt16(10, estimated_power);
   464   denominator->ShiftLeft(-exponent);
   466   if (need_boundary_deltas) {
   467     // Introduce a common denominator so that the deltas to the boundaries are
   468     // integers.
   469     denominator->ShiftLeft(1);
   470     numerator->ShiftLeft(1);
   471     // Let v = f * 2^e, then m+ - v = 1/2 * 2^e; With the common
   472     // denominator (of 2) delta_plus equals 2^e.
   473     // Given that the denominator already includes v's exponent the distance
   474     // to the boundaries is simply 1.
   475     delta_plus->AssignUInt16(1);
   476     // Same for delta_minus. The adjustments if f == 2^p-1 are done later.
   477     delta_minus->AssignUInt16(1);
   478   }
   479 }
   482 // See comments for InitialScaledStartValues
   483 static void InitialScaledStartValuesNegativeExponentNegativePower(
   484     uint64_t significand, int exponent,
   485     int estimated_power, bool need_boundary_deltas,
   486     Bignum* numerator, Bignum* denominator,
   487     Bignum* delta_minus, Bignum* delta_plus) {
   488   // Instead of multiplying the denominator with 10^estimated_power we
   489   // multiply all values (numerator and deltas) by 10^-estimated_power.
   491   // Use numerator as temporary container for power_ten.
   492   Bignum* power_ten = numerator;
   493   power_ten->AssignPowerUInt16(10, -estimated_power);
   495   if (need_boundary_deltas) {
   496     // Since power_ten == numerator we must make a copy of 10^estimated_power
   497     // before we complete the computation of the numerator.
   498     // delta_plus = delta_minus = 10^estimated_power
   499     delta_plus->AssignBignum(*power_ten);
   500     delta_minus->AssignBignum(*power_ten);
   501   }
   503   // numerator = significand * 2 * 10^-estimated_power
   504   //  since v = significand * 2^exponent this is equivalent to
   505   // numerator = v * 10^-estimated_power * 2 * 2^-exponent.
   506   // Remember: numerator has been abused as power_ten. So no need to assign it
   507   //  to itself.
   508   ASSERT(numerator == power_ten);
   509   numerator->MultiplyByUInt64(significand);
   511   // denominator = 2 * 2^-exponent with exponent < 0.
   512   denominator->AssignUInt16(1);
   513   denominator->ShiftLeft(-exponent);
   515   if (need_boundary_deltas) {
   516     // Introduce a common denominator so that the deltas to the boundaries are
   517     // integers.
   518     numerator->ShiftLeft(1);
   519     denominator->ShiftLeft(1);
   520     // With this shift the boundaries have their correct value, since
   521     // delta_plus = 10^-estimated_power, and
   522     // delta_minus = 10^-estimated_power.
   523     // These assignments have been done earlier.
   524     // The adjustments if f == 2^p-1 (lower boundary is closer) are done later.
   525   }
   526 }
   529 // Let v = significand * 2^exponent.
   530 // Computes v / 10^estimated_power exactly, as a ratio of two bignums, numerator
   531 // and denominator. The functions GenerateShortestDigits and
   532 // GenerateCountedDigits will then convert this ratio to its decimal
   533 // representation d, with the required accuracy.
   534 // Then d * 10^estimated_power is the representation of v.
   535 // (Note: the fraction and the estimated_power might get adjusted before
   536 // generating the decimal representation.)
   537 //
   538 // The initial start values consist of:
   539 //  - a scaled numerator: s.t. numerator/denominator == v / 10^estimated_power.
   540 //  - a scaled (common) denominator.
   541 //  optionally (used by GenerateShortestDigits to decide if it has the shortest
   542 //  decimal converting back to v):
   543 //  - v - m-: the distance to the lower boundary.
   544 //  - m+ - v: the distance to the upper boundary.
   545 //
   546 // v, m+, m-, and therefore v - m- and m+ - v all share the same denominator.
   547 //
   548 // Let ep == estimated_power, then the returned values will satisfy:
   549 //  v / 10^ep = numerator / denominator.
   550 //  v's boundarys m- and m+:
   551 //    m- / 10^ep == v / 10^ep - delta_minus / denominator
   552 //    m+ / 10^ep == v / 10^ep + delta_plus / denominator
   553 //  Or in other words:
   554 //    m- == v - delta_minus * 10^ep / denominator;
   555 //    m+ == v + delta_plus * 10^ep / denominator;
   556 //
   557 // Since 10^(k-1) <= v < 10^k    (with k == estimated_power)
   558 //  or       10^k <= v < 10^(k+1)
   559 //  we then have 0.1 <= numerator/denominator < 1
   560 //           or    1 <= numerator/denominator < 10
   561 //
   562 // It is then easy to kickstart the digit-generation routine.
   563 //
   564 // The boundary-deltas are only filled if the mode equals BIGNUM_DTOA_SHORTEST
   565 // or BIGNUM_DTOA_SHORTEST_SINGLE.
   567 static void InitialScaledStartValues(uint64_t significand,
   568                                      int exponent,
   569                                      bool lower_boundary_is_closer,
   570                                      int estimated_power,
   571                                      bool need_boundary_deltas,
   572                                      Bignum* numerator,
   573                                      Bignum* denominator,
   574                                      Bignum* delta_minus,
   575                                      Bignum* delta_plus) {
   576   if (exponent >= 0) {
   577     InitialScaledStartValuesPositiveExponent(
   578         significand, exponent, estimated_power, need_boundary_deltas,
   579         numerator, denominator, delta_minus, delta_plus);
   580   } else if (estimated_power >= 0) {
   581     InitialScaledStartValuesNegativeExponentPositivePower(
   582         significand, exponent, estimated_power, need_boundary_deltas,
   583         numerator, denominator, delta_minus, delta_plus);
   584   } else {
   585     InitialScaledStartValuesNegativeExponentNegativePower(
   586         significand, exponent, estimated_power, need_boundary_deltas,
   587         numerator, denominator, delta_minus, delta_plus);
   588   }
   590   if (need_boundary_deltas && lower_boundary_is_closer) {
   591     // The lower boundary is closer at half the distance of "normal" numbers.
   592     // Increase the common denominator and adapt all but the delta_minus.
   593     denominator->ShiftLeft(1);  // *2
   594     numerator->ShiftLeft(1);    // *2
   595     delta_plus->ShiftLeft(1);   // *2
   596   }
   597 }
   600 // This routine multiplies numerator/denominator so that its values lies in the
   601 // range 1-10. That is after a call to this function we have:
   602 //    1 <= (numerator + delta_plus) /denominator < 10.
   603 // Let numerator the input before modification and numerator' the argument
   604 // after modification, then the output-parameter decimal_point is such that
   605 //  numerator / denominator * 10^estimated_power ==
   606 //    numerator' / denominator' * 10^(decimal_point - 1)
   607 // In some cases estimated_power was too low, and this is already the case. We
   608 // then simply adjust the power so that 10^(k-1) <= v < 10^k (with k ==
   609 // estimated_power) but do not touch the numerator or denominator.
   610 // Otherwise the routine multiplies the numerator and the deltas by 10.
   611 static void FixupMultiply10(int estimated_power, bool is_even,
   612                             int* decimal_point,
   613                             Bignum* numerator, Bignum* denominator,
   614                             Bignum* delta_minus, Bignum* delta_plus) {
   615   bool in_range;
   616   if (is_even) {
   617     // For IEEE doubles half-way cases (in decimal system numbers ending with 5)
   618     // are rounded to the closest floating-point number with even significand.
   619     in_range = Bignum::PlusCompare(*numerator, *delta_plus, *denominator) >= 0;
   620   } else {
   621     in_range = Bignum::PlusCompare(*numerator, *delta_plus, *denominator) > 0;
   622   }
   623   if (in_range) {
   624     // Since numerator + delta_plus >= denominator we already have
   625     // 1 <= numerator/denominator < 10. Simply update the estimated_power.
   626     *decimal_point = estimated_power + 1;
   627   } else {
   628     *decimal_point = estimated_power;
   629     numerator->Times10();
   630     if (Bignum::Equal(*delta_minus, *delta_plus)) {
   631       delta_minus->Times10();
   632       delta_plus->AssignBignum(*delta_minus);
   633     } else {
   634       delta_minus->Times10();
   635       delta_plus->Times10();
   636     }
   637   }
   638 }
   640 }  // namespace double_conversion

mercurial