Wed, 31 Dec 2014 06:09:35 +0100
Cloned upstream origin tor-browser at tor-browser-31.3.0esr-4.5-1-build1
revision ID fc1c9ff7c1b2defdbc039f12214767608f46423f for hacking purpose.
1 // Copyright 2010 the V8 project authors. All rights reserved.
2 // Redistribution and use in source and binary forms, with or without
3 // modification, are permitted provided that the following conditions are
4 // met:
5 //
6 // * Redistributions of source code must retain the above copyright
7 // notice, this list of conditions and the following disclaimer.
8 // * Redistributions in binary form must reproduce the above
9 // copyright notice, this list of conditions and the following
10 // disclaimer in the documentation and/or other materials provided
11 // with the distribution.
12 // * Neither the name of Google Inc. nor the names of its
13 // contributors may be used to endorse or promote products derived
14 // from this software without specific prior written permission.
15 //
16 // THIS SOFTWARE IS PROVIDED BY THE COPYRIGHT HOLDERS AND CONTRIBUTORS
17 // "AS IS" AND ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT
18 // LIMITED TO, THE IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR
19 // A PARTICULAR PURPOSE ARE DISCLAIMED. IN NO EVENT SHALL THE COPYRIGHT
20 // OWNER OR CONTRIBUTORS BE LIABLE FOR ANY DIRECT, INDIRECT, INCIDENTAL,
21 // SPECIAL, EXEMPLARY, OR CONSEQUENTIAL DAMAGES (INCLUDING, BUT NOT
22 // LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS OR SERVICES; LOSS OF USE,
23 // DATA, OR PROFITS; OR BUSINESS INTERRUPTION) HOWEVER CAUSED AND ON ANY
24 // THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT LIABILITY, OR TORT
25 // (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY OUT OF THE USE
26 // OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF SUCH DAMAGE.
28 #include <math.h>
30 #include "bignum-dtoa.h"
32 #include "bignum.h"
33 #include "ieee.h"
35 namespace double_conversion {
37 static int NormalizedExponent(uint64_t significand, int exponent) {
38 ASSERT(significand != 0);
39 while ((significand & Double::kHiddenBit) == 0) {
40 significand = significand << 1;
41 exponent = exponent - 1;
42 }
43 return exponent;
44 }
47 // Forward declarations:
48 // Returns an estimation of k such that 10^(k-1) <= v < 10^k.
49 static int EstimatePower(int exponent);
50 // Computes v / 10^estimated_power exactly, as a ratio of two bignums, numerator
51 // and denominator.
52 static void InitialScaledStartValues(uint64_t significand,
53 int exponent,
54 bool lower_boundary_is_closer,
55 int estimated_power,
56 bool need_boundary_deltas,
57 Bignum* numerator,
58 Bignum* denominator,
59 Bignum* delta_minus,
60 Bignum* delta_plus);
61 // Multiplies numerator/denominator so that its values lies in the range 1-10.
62 // Returns decimal_point s.t.
63 // v = numerator'/denominator' * 10^(decimal_point-1)
64 // where numerator' and denominator' are the values of numerator and
65 // denominator after the call to this function.
66 static void FixupMultiply10(int estimated_power, bool is_even,
67 int* decimal_point,
68 Bignum* numerator, Bignum* denominator,
69 Bignum* delta_minus, Bignum* delta_plus);
70 // Generates digits from the left to the right and stops when the generated
71 // digits yield the shortest decimal representation of v.
72 static void GenerateShortestDigits(Bignum* numerator, Bignum* denominator,
73 Bignum* delta_minus, Bignum* delta_plus,
74 bool is_even,
75 Vector<char> buffer, int* length);
76 // Generates 'requested_digits' after the decimal point.
77 static void BignumToFixed(int requested_digits, int* decimal_point,
78 Bignum* numerator, Bignum* denominator,
79 Vector<char>(buffer), int* length);
80 // Generates 'count' digits of numerator/denominator.
81 // Once 'count' digits have been produced rounds the result depending on the
82 // remainder (remainders of exactly .5 round upwards). Might update the
83 // decimal_point when rounding up (for example for 0.9999).
84 static void GenerateCountedDigits(int count, int* decimal_point,
85 Bignum* numerator, Bignum* denominator,
86 Vector<char>(buffer), int* length);
89 void BignumDtoa(double v, BignumDtoaMode mode, int requested_digits,
90 Vector<char> buffer, int* length, int* decimal_point) {
91 ASSERT(v > 0);
92 ASSERT(!Double(v).IsSpecial());
93 uint64_t significand;
94 int exponent;
95 bool lower_boundary_is_closer;
96 if (mode == BIGNUM_DTOA_SHORTEST_SINGLE) {
97 float f = static_cast<float>(v);
98 ASSERT(f == v);
99 significand = Single(f).Significand();
100 exponent = Single(f).Exponent();
101 lower_boundary_is_closer = Single(f).LowerBoundaryIsCloser();
102 } else {
103 significand = Double(v).Significand();
104 exponent = Double(v).Exponent();
105 lower_boundary_is_closer = Double(v).LowerBoundaryIsCloser();
106 }
107 bool need_boundary_deltas =
108 (mode == BIGNUM_DTOA_SHORTEST || mode == BIGNUM_DTOA_SHORTEST_SINGLE);
110 bool is_even = (significand & 1) == 0;
111 int normalized_exponent = NormalizedExponent(significand, exponent);
112 // estimated_power might be too low by 1.
113 int estimated_power = EstimatePower(normalized_exponent);
115 // Shortcut for Fixed.
116 // The requested digits correspond to the digits after the point. If the
117 // number is much too small, then there is no need in trying to get any
118 // digits.
119 if (mode == BIGNUM_DTOA_FIXED && -estimated_power - 1 > requested_digits) {
120 buffer[0] = '\0';
121 *length = 0;
122 // Set decimal-point to -requested_digits. This is what Gay does.
123 // Note that it should not have any effect anyways since the string is
124 // empty.
125 *decimal_point = -requested_digits;
126 return;
127 }
129 Bignum numerator;
130 Bignum denominator;
131 Bignum delta_minus;
132 Bignum delta_plus;
133 // Make sure the bignum can grow large enough. The smallest double equals
134 // 4e-324. In this case the denominator needs fewer than 324*4 binary digits.
135 // The maximum double is 1.7976931348623157e308 which needs fewer than
136 // 308*4 binary digits.
137 ASSERT(Bignum::kMaxSignificantBits >= 324*4);
138 InitialScaledStartValues(significand, exponent, lower_boundary_is_closer,
139 estimated_power, need_boundary_deltas,
140 &numerator, &denominator,
141 &delta_minus, &delta_plus);
142 // We now have v = (numerator / denominator) * 10^estimated_power.
143 FixupMultiply10(estimated_power, is_even, decimal_point,
144 &numerator, &denominator,
145 &delta_minus, &delta_plus);
146 // We now have v = (numerator / denominator) * 10^(decimal_point-1), and
147 // 1 <= (numerator + delta_plus) / denominator < 10
148 switch (mode) {
149 case BIGNUM_DTOA_SHORTEST:
150 case BIGNUM_DTOA_SHORTEST_SINGLE:
151 GenerateShortestDigits(&numerator, &denominator,
152 &delta_minus, &delta_plus,
153 is_even, buffer, length);
154 break;
155 case BIGNUM_DTOA_FIXED:
156 BignumToFixed(requested_digits, decimal_point,
157 &numerator, &denominator,
158 buffer, length);
159 break;
160 case BIGNUM_DTOA_PRECISION:
161 GenerateCountedDigits(requested_digits, decimal_point,
162 &numerator, &denominator,
163 buffer, length);
164 break;
165 default:
166 UNREACHABLE();
167 }
168 buffer[*length] = '\0';
169 }
172 // The procedure starts generating digits from the left to the right and stops
173 // when the generated digits yield the shortest decimal representation of v. A
174 // decimal representation of v is a number lying closer to v than to any other
175 // double, so it converts to v when read.
176 //
177 // This is true if d, the decimal representation, is between m- and m+, the
178 // upper and lower boundaries. d must be strictly between them if !is_even.
179 // m- := (numerator - delta_minus) / denominator
180 // m+ := (numerator + delta_plus) / denominator
181 //
182 // Precondition: 0 <= (numerator+delta_plus) / denominator < 10.
183 // If 1 <= (numerator+delta_plus) / denominator < 10 then no leading 0 digit
184 // will be produced. This should be the standard precondition.
185 static void GenerateShortestDigits(Bignum* numerator, Bignum* denominator,
186 Bignum* delta_minus, Bignum* delta_plus,
187 bool is_even,
188 Vector<char> buffer, int* length) {
189 // Small optimization: if delta_minus and delta_plus are the same just reuse
190 // one of the two bignums.
191 if (Bignum::Equal(*delta_minus, *delta_plus)) {
192 delta_plus = delta_minus;
193 }
194 *length = 0;
195 while (true) {
196 uint16_t digit;
197 digit = numerator->DivideModuloIntBignum(*denominator);
198 ASSERT(digit <= 9); // digit is a uint16_t and therefore always positive.
199 // digit = numerator / denominator (integer division).
200 // numerator = numerator % denominator.
201 buffer[(*length)++] = digit + '0';
203 // Can we stop already?
204 // If the remainder of the division is less than the distance to the lower
205 // boundary we can stop. In this case we simply round down (discarding the
206 // remainder).
207 // Similarly we test if we can round up (using the upper boundary).
208 bool in_delta_room_minus;
209 bool in_delta_room_plus;
210 if (is_even) {
211 in_delta_room_minus = Bignum::LessEqual(*numerator, *delta_minus);
212 } else {
213 in_delta_room_minus = Bignum::Less(*numerator, *delta_minus);
214 }
215 if (is_even) {
216 in_delta_room_plus =
217 Bignum::PlusCompare(*numerator, *delta_plus, *denominator) >= 0;
218 } else {
219 in_delta_room_plus =
220 Bignum::PlusCompare(*numerator, *delta_plus, *denominator) > 0;
221 }
222 if (!in_delta_room_minus && !in_delta_room_plus) {
223 // Prepare for next iteration.
224 numerator->Times10();
225 delta_minus->Times10();
226 // We optimized delta_plus to be equal to delta_minus (if they share the
227 // same value). So don't multiply delta_plus if they point to the same
228 // object.
229 if (delta_minus != delta_plus) {
230 delta_plus->Times10();
231 }
232 } else if (in_delta_room_minus && in_delta_room_plus) {
233 // Let's see if 2*numerator < denominator.
234 // If yes, then the next digit would be < 5 and we can round down.
235 int compare = Bignum::PlusCompare(*numerator, *numerator, *denominator);
236 if (compare < 0) {
237 // Remaining digits are less than .5. -> Round down (== do nothing).
238 } else if (compare > 0) {
239 // Remaining digits are more than .5 of denominator. -> Round up.
240 // Note that the last digit could not be a '9' as otherwise the whole
241 // loop would have stopped earlier.
242 // We still have an assert here in case the preconditions were not
243 // satisfied.
244 ASSERT(buffer[(*length) - 1] != '9');
245 buffer[(*length) - 1]++;
246 } else {
247 // Halfway case.
248 // TODO(floitsch): need a way to solve half-way cases.
249 // For now let's round towards even (since this is what Gay seems to
250 // do).
252 if ((buffer[(*length) - 1] - '0') % 2 == 0) {
253 // Round down => Do nothing.
254 } else {
255 ASSERT(buffer[(*length) - 1] != '9');
256 buffer[(*length) - 1]++;
257 }
258 }
259 return;
260 } else if (in_delta_room_minus) {
261 // Round down (== do nothing).
262 return;
263 } else { // in_delta_room_plus
264 // Round up.
265 // Note again that the last digit could not be '9' since this would have
266 // stopped the loop earlier.
267 // We still have an ASSERT here, in case the preconditions were not
268 // satisfied.
269 ASSERT(buffer[(*length) -1] != '9');
270 buffer[(*length) - 1]++;
271 return;
272 }
273 }
274 }
277 // Let v = numerator / denominator < 10.
278 // Then we generate 'count' digits of d = x.xxxxx... (without the decimal point)
279 // from left to right. Once 'count' digits have been produced we decide wether
280 // to round up or down. Remainders of exactly .5 round upwards. Numbers such
281 // as 9.999999 propagate a carry all the way, and change the
282 // exponent (decimal_point), when rounding upwards.
283 static void GenerateCountedDigits(int count, int* decimal_point,
284 Bignum* numerator, Bignum* denominator,
285 Vector<char>(buffer), int* length) {
286 ASSERT(count >= 0);
287 for (int i = 0; i < count - 1; ++i) {
288 uint16_t digit;
289 digit = numerator->DivideModuloIntBignum(*denominator);
290 ASSERT(digit <= 9); // digit is a uint16_t and therefore always positive.
291 // digit = numerator / denominator (integer division).
292 // numerator = numerator % denominator.
293 buffer[i] = digit + '0';
294 // Prepare for next iteration.
295 numerator->Times10();
296 }
297 // Generate the last digit.
298 uint16_t digit;
299 digit = numerator->DivideModuloIntBignum(*denominator);
300 if (Bignum::PlusCompare(*numerator, *numerator, *denominator) >= 0) {
301 digit++;
302 }
303 buffer[count - 1] = digit + '0';
304 // Correct bad digits (in case we had a sequence of '9's). Propagate the
305 // carry until we hat a non-'9' or til we reach the first digit.
306 for (int i = count - 1; i > 0; --i) {
307 if (buffer[i] != '0' + 10) break;
308 buffer[i] = '0';
309 buffer[i - 1]++;
310 }
311 if (buffer[0] == '0' + 10) {
312 // Propagate a carry past the top place.
313 buffer[0] = '1';
314 (*decimal_point)++;
315 }
316 *length = count;
317 }
320 // Generates 'requested_digits' after the decimal point. It might omit
321 // trailing '0's. If the input number is too small then no digits at all are
322 // generated (ex.: 2 fixed digits for 0.00001).
323 //
324 // Input verifies: 1 <= (numerator + delta) / denominator < 10.
325 static void BignumToFixed(int requested_digits, int* decimal_point,
326 Bignum* numerator, Bignum* denominator,
327 Vector<char>(buffer), int* length) {
328 // Note that we have to look at more than just the requested_digits, since
329 // a number could be rounded up. Example: v=0.5 with requested_digits=0.
330 // Even though the power of v equals 0 we can't just stop here.
331 if (-(*decimal_point) > requested_digits) {
332 // The number is definitively too small.
333 // Ex: 0.001 with requested_digits == 1.
334 // Set decimal-point to -requested_digits. This is what Gay does.
335 // Note that it should not have any effect anyways since the string is
336 // empty.
337 *decimal_point = -requested_digits;
338 *length = 0;
339 return;
340 } else if (-(*decimal_point) == requested_digits) {
341 // We only need to verify if the number rounds down or up.
342 // Ex: 0.04 and 0.06 with requested_digits == 1.
343 ASSERT(*decimal_point == -requested_digits);
344 // Initially the fraction lies in range (1, 10]. Multiply the denominator
345 // by 10 so that we can compare more easily.
346 denominator->Times10();
347 if (Bignum::PlusCompare(*numerator, *numerator, *denominator) >= 0) {
348 // If the fraction is >= 0.5 then we have to include the rounded
349 // digit.
350 buffer[0] = '1';
351 *length = 1;
352 (*decimal_point)++;
353 } else {
354 // Note that we caught most of similar cases earlier.
355 *length = 0;
356 }
357 return;
358 } else {
359 // The requested digits correspond to the digits after the point.
360 // The variable 'needed_digits' includes the digits before the point.
361 int needed_digits = (*decimal_point) + requested_digits;
362 GenerateCountedDigits(needed_digits, decimal_point,
363 numerator, denominator,
364 buffer, length);
365 }
366 }
369 // Returns an estimation of k such that 10^(k-1) <= v < 10^k where
370 // v = f * 2^exponent and 2^52 <= f < 2^53.
371 // v is hence a normalized double with the given exponent. The output is an
372 // approximation for the exponent of the decimal approimation .digits * 10^k.
373 //
374 // The result might undershoot by 1 in which case 10^k <= v < 10^k+1.
375 // Note: this property holds for v's upper boundary m+ too.
376 // 10^k <= m+ < 10^k+1.
377 // (see explanation below).
378 //
379 // Examples:
380 // EstimatePower(0) => 16
381 // EstimatePower(-52) => 0
382 //
383 // Note: e >= 0 => EstimatedPower(e) > 0. No similar claim can be made for e<0.
384 static int EstimatePower(int exponent) {
385 // This function estimates log10 of v where v = f*2^e (with e == exponent).
386 // Note that 10^floor(log10(v)) <= v, but v <= 10^ceil(log10(v)).
387 // Note that f is bounded by its container size. Let p = 53 (the double's
388 // significand size). Then 2^(p-1) <= f < 2^p.
389 //
390 // Given that log10(v) == log2(v)/log2(10) and e+(len(f)-1) is quite close
391 // to log2(v) the function is simplified to (e+(len(f)-1)/log2(10)).
392 // The computed number undershoots by less than 0.631 (when we compute log3
393 // and not log10).
394 //
395 // Optimization: since we only need an approximated result this computation
396 // can be performed on 64 bit integers. On x86/x64 architecture the speedup is
397 // not really measurable, though.
398 //
399 // Since we want to avoid overshooting we decrement by 1e10 so that
400 // floating-point imprecisions don't affect us.
401 //
402 // Explanation for v's boundary m+: the computation takes advantage of
403 // the fact that 2^(p-1) <= f < 2^p. Boundaries still satisfy this requirement
404 // (even for denormals where the delta can be much more important).
406 const double k1Log10 = 0.30102999566398114; // 1/lg(10)
408 // For doubles len(f) == 53 (don't forget the hidden bit).
409 const int kSignificandSize = Double::kSignificandSize;
410 double estimate = ceil((exponent + kSignificandSize - 1) * k1Log10 - 1e-10);
411 return static_cast<int>(estimate);
412 }
415 // See comments for InitialScaledStartValues.
416 static void InitialScaledStartValuesPositiveExponent(
417 uint64_t significand, int exponent,
418 int estimated_power, bool need_boundary_deltas,
419 Bignum* numerator, Bignum* denominator,
420 Bignum* delta_minus, Bignum* delta_plus) {
421 // A positive exponent implies a positive power.
422 ASSERT(estimated_power >= 0);
423 // Since the estimated_power is positive we simply multiply the denominator
424 // by 10^estimated_power.
426 // numerator = v.
427 numerator->AssignUInt64(significand);
428 numerator->ShiftLeft(exponent);
429 // denominator = 10^estimated_power.
430 denominator->AssignPowerUInt16(10, estimated_power);
432 if (need_boundary_deltas) {
433 // Introduce a common denominator so that the deltas to the boundaries are
434 // integers.
435 denominator->ShiftLeft(1);
436 numerator->ShiftLeft(1);
437 // Let v = f * 2^e, then m+ - v = 1/2 * 2^e; With the common
438 // denominator (of 2) delta_plus equals 2^e.
439 delta_plus->AssignUInt16(1);
440 delta_plus->ShiftLeft(exponent);
441 // Same for delta_minus. The adjustments if f == 2^p-1 are done later.
442 delta_minus->AssignUInt16(1);
443 delta_minus->ShiftLeft(exponent);
444 }
445 }
448 // See comments for InitialScaledStartValues
449 static void InitialScaledStartValuesNegativeExponentPositivePower(
450 uint64_t significand, int exponent,
451 int estimated_power, bool need_boundary_deltas,
452 Bignum* numerator, Bignum* denominator,
453 Bignum* delta_minus, Bignum* delta_plus) {
454 // v = f * 2^e with e < 0, and with estimated_power >= 0.
455 // This means that e is close to 0 (have a look at how estimated_power is
456 // computed).
458 // numerator = significand
459 // since v = significand * 2^exponent this is equivalent to
460 // numerator = v * / 2^-exponent
461 numerator->AssignUInt64(significand);
462 // denominator = 10^estimated_power * 2^-exponent (with exponent < 0)
463 denominator->AssignPowerUInt16(10, estimated_power);
464 denominator->ShiftLeft(-exponent);
466 if (need_boundary_deltas) {
467 // Introduce a common denominator so that the deltas to the boundaries are
468 // integers.
469 denominator->ShiftLeft(1);
470 numerator->ShiftLeft(1);
471 // Let v = f * 2^e, then m+ - v = 1/2 * 2^e; With the common
472 // denominator (of 2) delta_plus equals 2^e.
473 // Given that the denominator already includes v's exponent the distance
474 // to the boundaries is simply 1.
475 delta_plus->AssignUInt16(1);
476 // Same for delta_minus. The adjustments if f == 2^p-1 are done later.
477 delta_minus->AssignUInt16(1);
478 }
479 }
482 // See comments for InitialScaledStartValues
483 static void InitialScaledStartValuesNegativeExponentNegativePower(
484 uint64_t significand, int exponent,
485 int estimated_power, bool need_boundary_deltas,
486 Bignum* numerator, Bignum* denominator,
487 Bignum* delta_minus, Bignum* delta_plus) {
488 // Instead of multiplying the denominator with 10^estimated_power we
489 // multiply all values (numerator and deltas) by 10^-estimated_power.
491 // Use numerator as temporary container for power_ten.
492 Bignum* power_ten = numerator;
493 power_ten->AssignPowerUInt16(10, -estimated_power);
495 if (need_boundary_deltas) {
496 // Since power_ten == numerator we must make a copy of 10^estimated_power
497 // before we complete the computation of the numerator.
498 // delta_plus = delta_minus = 10^estimated_power
499 delta_plus->AssignBignum(*power_ten);
500 delta_minus->AssignBignum(*power_ten);
501 }
503 // numerator = significand * 2 * 10^-estimated_power
504 // since v = significand * 2^exponent this is equivalent to
505 // numerator = v * 10^-estimated_power * 2 * 2^-exponent.
506 // Remember: numerator has been abused as power_ten. So no need to assign it
507 // to itself.
508 ASSERT(numerator == power_ten);
509 numerator->MultiplyByUInt64(significand);
511 // denominator = 2 * 2^-exponent with exponent < 0.
512 denominator->AssignUInt16(1);
513 denominator->ShiftLeft(-exponent);
515 if (need_boundary_deltas) {
516 // Introduce a common denominator so that the deltas to the boundaries are
517 // integers.
518 numerator->ShiftLeft(1);
519 denominator->ShiftLeft(1);
520 // With this shift the boundaries have their correct value, since
521 // delta_plus = 10^-estimated_power, and
522 // delta_minus = 10^-estimated_power.
523 // These assignments have been done earlier.
524 // The adjustments if f == 2^p-1 (lower boundary is closer) are done later.
525 }
526 }
529 // Let v = significand * 2^exponent.
530 // Computes v / 10^estimated_power exactly, as a ratio of two bignums, numerator
531 // and denominator. The functions GenerateShortestDigits and
532 // GenerateCountedDigits will then convert this ratio to its decimal
533 // representation d, with the required accuracy.
534 // Then d * 10^estimated_power is the representation of v.
535 // (Note: the fraction and the estimated_power might get adjusted before
536 // generating the decimal representation.)
537 //
538 // The initial start values consist of:
539 // - a scaled numerator: s.t. numerator/denominator == v / 10^estimated_power.
540 // - a scaled (common) denominator.
541 // optionally (used by GenerateShortestDigits to decide if it has the shortest
542 // decimal converting back to v):
543 // - v - m-: the distance to the lower boundary.
544 // - m+ - v: the distance to the upper boundary.
545 //
546 // v, m+, m-, and therefore v - m- and m+ - v all share the same denominator.
547 //
548 // Let ep == estimated_power, then the returned values will satisfy:
549 // v / 10^ep = numerator / denominator.
550 // v's boundarys m- and m+:
551 // m- / 10^ep == v / 10^ep - delta_minus / denominator
552 // m+ / 10^ep == v / 10^ep + delta_plus / denominator
553 // Or in other words:
554 // m- == v - delta_minus * 10^ep / denominator;
555 // m+ == v + delta_plus * 10^ep / denominator;
556 //
557 // Since 10^(k-1) <= v < 10^k (with k == estimated_power)
558 // or 10^k <= v < 10^(k+1)
559 // we then have 0.1 <= numerator/denominator < 1
560 // or 1 <= numerator/denominator < 10
561 //
562 // It is then easy to kickstart the digit-generation routine.
563 //
564 // The boundary-deltas are only filled if the mode equals BIGNUM_DTOA_SHORTEST
565 // or BIGNUM_DTOA_SHORTEST_SINGLE.
567 static void InitialScaledStartValues(uint64_t significand,
568 int exponent,
569 bool lower_boundary_is_closer,
570 int estimated_power,
571 bool need_boundary_deltas,
572 Bignum* numerator,
573 Bignum* denominator,
574 Bignum* delta_minus,
575 Bignum* delta_plus) {
576 if (exponent >= 0) {
577 InitialScaledStartValuesPositiveExponent(
578 significand, exponent, estimated_power, need_boundary_deltas,
579 numerator, denominator, delta_minus, delta_plus);
580 } else if (estimated_power >= 0) {
581 InitialScaledStartValuesNegativeExponentPositivePower(
582 significand, exponent, estimated_power, need_boundary_deltas,
583 numerator, denominator, delta_minus, delta_plus);
584 } else {
585 InitialScaledStartValuesNegativeExponentNegativePower(
586 significand, exponent, estimated_power, need_boundary_deltas,
587 numerator, denominator, delta_minus, delta_plus);
588 }
590 if (need_boundary_deltas && lower_boundary_is_closer) {
591 // The lower boundary is closer at half the distance of "normal" numbers.
592 // Increase the common denominator and adapt all but the delta_minus.
593 denominator->ShiftLeft(1); // *2
594 numerator->ShiftLeft(1); // *2
595 delta_plus->ShiftLeft(1); // *2
596 }
597 }
600 // This routine multiplies numerator/denominator so that its values lies in the
601 // range 1-10. That is after a call to this function we have:
602 // 1 <= (numerator + delta_plus) /denominator < 10.
603 // Let numerator the input before modification and numerator' the argument
604 // after modification, then the output-parameter decimal_point is such that
605 // numerator / denominator * 10^estimated_power ==
606 // numerator' / denominator' * 10^(decimal_point - 1)
607 // In some cases estimated_power was too low, and this is already the case. We
608 // then simply adjust the power so that 10^(k-1) <= v < 10^k (with k ==
609 // estimated_power) but do not touch the numerator or denominator.
610 // Otherwise the routine multiplies the numerator and the deltas by 10.
611 static void FixupMultiply10(int estimated_power, bool is_even,
612 int* decimal_point,
613 Bignum* numerator, Bignum* denominator,
614 Bignum* delta_minus, Bignum* delta_plus) {
615 bool in_range;
616 if (is_even) {
617 // For IEEE doubles half-way cases (in decimal system numbers ending with 5)
618 // are rounded to the closest floating-point number with even significand.
619 in_range = Bignum::PlusCompare(*numerator, *delta_plus, *denominator) >= 0;
620 } else {
621 in_range = Bignum::PlusCompare(*numerator, *delta_plus, *denominator) > 0;
622 }
623 if (in_range) {
624 // Since numerator + delta_plus >= denominator we already have
625 // 1 <= numerator/denominator < 10. Simply update the estimated_power.
626 *decimal_point = estimated_power + 1;
627 } else {
628 *decimal_point = estimated_power;
629 numerator->Times10();
630 if (Bignum::Equal(*delta_minus, *delta_plus)) {
631 delta_minus->Times10();
632 delta_plus->AssignBignum(*delta_minus);
633 } else {
634 delta_minus->Times10();
635 delta_plus->Times10();
636 }
637 }
638 }
640 } // namespace double_conversion