Wed, 31 Dec 2014 06:09:35 +0100
Cloned upstream origin tor-browser at tor-browser-31.3.0esr-4.5-1-build1
revision ID fc1c9ff7c1b2defdbc039f12214767608f46423f for hacking purpose.
michael@0 | 1 | // Copyright 2010 the V8 project authors. All rights reserved. |
michael@0 | 2 | // Redistribution and use in source and binary forms, with or without |
michael@0 | 3 | // modification, are permitted provided that the following conditions are |
michael@0 | 4 | // met: |
michael@0 | 5 | // |
michael@0 | 6 | // * Redistributions of source code must retain the above copyright |
michael@0 | 7 | // notice, this list of conditions and the following disclaimer. |
michael@0 | 8 | // * Redistributions in binary form must reproduce the above |
michael@0 | 9 | // copyright notice, this list of conditions and the following |
michael@0 | 10 | // disclaimer in the documentation and/or other materials provided |
michael@0 | 11 | // with the distribution. |
michael@0 | 12 | // * Neither the name of Google Inc. nor the names of its |
michael@0 | 13 | // contributors may be used to endorse or promote products derived |
michael@0 | 14 | // from this software without specific prior written permission. |
michael@0 | 15 | // |
michael@0 | 16 | // THIS SOFTWARE IS PROVIDED BY THE COPYRIGHT HOLDERS AND CONTRIBUTORS |
michael@0 | 17 | // "AS IS" AND ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT |
michael@0 | 18 | // LIMITED TO, THE IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR |
michael@0 | 19 | // A PARTICULAR PURPOSE ARE DISCLAIMED. IN NO EVENT SHALL THE COPYRIGHT |
michael@0 | 20 | // OWNER OR CONTRIBUTORS BE LIABLE FOR ANY DIRECT, INDIRECT, INCIDENTAL, |
michael@0 | 21 | // SPECIAL, EXEMPLARY, OR CONSEQUENTIAL DAMAGES (INCLUDING, BUT NOT |
michael@0 | 22 | // LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS OR SERVICES; LOSS OF USE, |
michael@0 | 23 | // DATA, OR PROFITS; OR BUSINESS INTERRUPTION) HOWEVER CAUSED AND ON ANY |
michael@0 | 24 | // THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT LIABILITY, OR TORT |
michael@0 | 25 | // (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY OUT OF THE USE |
michael@0 | 26 | // OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF SUCH DAMAGE. |
michael@0 | 27 | |
michael@0 | 28 | #include <math.h> |
michael@0 | 29 | |
michael@0 | 30 | #include "bignum-dtoa.h" |
michael@0 | 31 | |
michael@0 | 32 | #include "bignum.h" |
michael@0 | 33 | #include "ieee.h" |
michael@0 | 34 | |
michael@0 | 35 | namespace double_conversion { |
michael@0 | 36 | |
michael@0 | 37 | static int NormalizedExponent(uint64_t significand, int exponent) { |
michael@0 | 38 | ASSERT(significand != 0); |
michael@0 | 39 | while ((significand & Double::kHiddenBit) == 0) { |
michael@0 | 40 | significand = significand << 1; |
michael@0 | 41 | exponent = exponent - 1; |
michael@0 | 42 | } |
michael@0 | 43 | return exponent; |
michael@0 | 44 | } |
michael@0 | 45 | |
michael@0 | 46 | |
michael@0 | 47 | // Forward declarations: |
michael@0 | 48 | // Returns an estimation of k such that 10^(k-1) <= v < 10^k. |
michael@0 | 49 | static int EstimatePower(int exponent); |
michael@0 | 50 | // Computes v / 10^estimated_power exactly, as a ratio of two bignums, numerator |
michael@0 | 51 | // and denominator. |
michael@0 | 52 | static void InitialScaledStartValues(uint64_t significand, |
michael@0 | 53 | int exponent, |
michael@0 | 54 | bool lower_boundary_is_closer, |
michael@0 | 55 | int estimated_power, |
michael@0 | 56 | bool need_boundary_deltas, |
michael@0 | 57 | Bignum* numerator, |
michael@0 | 58 | Bignum* denominator, |
michael@0 | 59 | Bignum* delta_minus, |
michael@0 | 60 | Bignum* delta_plus); |
michael@0 | 61 | // Multiplies numerator/denominator so that its values lies in the range 1-10. |
michael@0 | 62 | // Returns decimal_point s.t. |
michael@0 | 63 | // v = numerator'/denominator' * 10^(decimal_point-1) |
michael@0 | 64 | // where numerator' and denominator' are the values of numerator and |
michael@0 | 65 | // denominator after the call to this function. |
michael@0 | 66 | static void FixupMultiply10(int estimated_power, bool is_even, |
michael@0 | 67 | int* decimal_point, |
michael@0 | 68 | Bignum* numerator, Bignum* denominator, |
michael@0 | 69 | Bignum* delta_minus, Bignum* delta_plus); |
michael@0 | 70 | // Generates digits from the left to the right and stops when the generated |
michael@0 | 71 | // digits yield the shortest decimal representation of v. |
michael@0 | 72 | static void GenerateShortestDigits(Bignum* numerator, Bignum* denominator, |
michael@0 | 73 | Bignum* delta_minus, Bignum* delta_plus, |
michael@0 | 74 | bool is_even, |
michael@0 | 75 | Vector<char> buffer, int* length); |
michael@0 | 76 | // Generates 'requested_digits' after the decimal point. |
michael@0 | 77 | static void BignumToFixed(int requested_digits, int* decimal_point, |
michael@0 | 78 | Bignum* numerator, Bignum* denominator, |
michael@0 | 79 | Vector<char>(buffer), int* length); |
michael@0 | 80 | // Generates 'count' digits of numerator/denominator. |
michael@0 | 81 | // Once 'count' digits have been produced rounds the result depending on the |
michael@0 | 82 | // remainder (remainders of exactly .5 round upwards). Might update the |
michael@0 | 83 | // decimal_point when rounding up (for example for 0.9999). |
michael@0 | 84 | static void GenerateCountedDigits(int count, int* decimal_point, |
michael@0 | 85 | Bignum* numerator, Bignum* denominator, |
michael@0 | 86 | Vector<char>(buffer), int* length); |
michael@0 | 87 | |
michael@0 | 88 | |
michael@0 | 89 | void BignumDtoa(double v, BignumDtoaMode mode, int requested_digits, |
michael@0 | 90 | Vector<char> buffer, int* length, int* decimal_point) { |
michael@0 | 91 | ASSERT(v > 0); |
michael@0 | 92 | ASSERT(!Double(v).IsSpecial()); |
michael@0 | 93 | uint64_t significand; |
michael@0 | 94 | int exponent; |
michael@0 | 95 | bool lower_boundary_is_closer; |
michael@0 | 96 | if (mode == BIGNUM_DTOA_SHORTEST_SINGLE) { |
michael@0 | 97 | float f = static_cast<float>(v); |
michael@0 | 98 | ASSERT(f == v); |
michael@0 | 99 | significand = Single(f).Significand(); |
michael@0 | 100 | exponent = Single(f).Exponent(); |
michael@0 | 101 | lower_boundary_is_closer = Single(f).LowerBoundaryIsCloser(); |
michael@0 | 102 | } else { |
michael@0 | 103 | significand = Double(v).Significand(); |
michael@0 | 104 | exponent = Double(v).Exponent(); |
michael@0 | 105 | lower_boundary_is_closer = Double(v).LowerBoundaryIsCloser(); |
michael@0 | 106 | } |
michael@0 | 107 | bool need_boundary_deltas = |
michael@0 | 108 | (mode == BIGNUM_DTOA_SHORTEST || mode == BIGNUM_DTOA_SHORTEST_SINGLE); |
michael@0 | 109 | |
michael@0 | 110 | bool is_even = (significand & 1) == 0; |
michael@0 | 111 | int normalized_exponent = NormalizedExponent(significand, exponent); |
michael@0 | 112 | // estimated_power might be too low by 1. |
michael@0 | 113 | int estimated_power = EstimatePower(normalized_exponent); |
michael@0 | 114 | |
michael@0 | 115 | // Shortcut for Fixed. |
michael@0 | 116 | // The requested digits correspond to the digits after the point. If the |
michael@0 | 117 | // number is much too small, then there is no need in trying to get any |
michael@0 | 118 | // digits. |
michael@0 | 119 | if (mode == BIGNUM_DTOA_FIXED && -estimated_power - 1 > requested_digits) { |
michael@0 | 120 | buffer[0] = '\0'; |
michael@0 | 121 | *length = 0; |
michael@0 | 122 | // Set decimal-point to -requested_digits. This is what Gay does. |
michael@0 | 123 | // Note that it should not have any effect anyways since the string is |
michael@0 | 124 | // empty. |
michael@0 | 125 | *decimal_point = -requested_digits; |
michael@0 | 126 | return; |
michael@0 | 127 | } |
michael@0 | 128 | |
michael@0 | 129 | Bignum numerator; |
michael@0 | 130 | Bignum denominator; |
michael@0 | 131 | Bignum delta_minus; |
michael@0 | 132 | Bignum delta_plus; |
michael@0 | 133 | // Make sure the bignum can grow large enough. The smallest double equals |
michael@0 | 134 | // 4e-324. In this case the denominator needs fewer than 324*4 binary digits. |
michael@0 | 135 | // The maximum double is 1.7976931348623157e308 which needs fewer than |
michael@0 | 136 | // 308*4 binary digits. |
michael@0 | 137 | ASSERT(Bignum::kMaxSignificantBits >= 324*4); |
michael@0 | 138 | InitialScaledStartValues(significand, exponent, lower_boundary_is_closer, |
michael@0 | 139 | estimated_power, need_boundary_deltas, |
michael@0 | 140 | &numerator, &denominator, |
michael@0 | 141 | &delta_minus, &delta_plus); |
michael@0 | 142 | // We now have v = (numerator / denominator) * 10^estimated_power. |
michael@0 | 143 | FixupMultiply10(estimated_power, is_even, decimal_point, |
michael@0 | 144 | &numerator, &denominator, |
michael@0 | 145 | &delta_minus, &delta_plus); |
michael@0 | 146 | // We now have v = (numerator / denominator) * 10^(decimal_point-1), and |
michael@0 | 147 | // 1 <= (numerator + delta_plus) / denominator < 10 |
michael@0 | 148 | switch (mode) { |
michael@0 | 149 | case BIGNUM_DTOA_SHORTEST: |
michael@0 | 150 | case BIGNUM_DTOA_SHORTEST_SINGLE: |
michael@0 | 151 | GenerateShortestDigits(&numerator, &denominator, |
michael@0 | 152 | &delta_minus, &delta_plus, |
michael@0 | 153 | is_even, buffer, length); |
michael@0 | 154 | break; |
michael@0 | 155 | case BIGNUM_DTOA_FIXED: |
michael@0 | 156 | BignumToFixed(requested_digits, decimal_point, |
michael@0 | 157 | &numerator, &denominator, |
michael@0 | 158 | buffer, length); |
michael@0 | 159 | break; |
michael@0 | 160 | case BIGNUM_DTOA_PRECISION: |
michael@0 | 161 | GenerateCountedDigits(requested_digits, decimal_point, |
michael@0 | 162 | &numerator, &denominator, |
michael@0 | 163 | buffer, length); |
michael@0 | 164 | break; |
michael@0 | 165 | default: |
michael@0 | 166 | UNREACHABLE(); |
michael@0 | 167 | } |
michael@0 | 168 | buffer[*length] = '\0'; |
michael@0 | 169 | } |
michael@0 | 170 | |
michael@0 | 171 | |
michael@0 | 172 | // The procedure starts generating digits from the left to the right and stops |
michael@0 | 173 | // when the generated digits yield the shortest decimal representation of v. A |
michael@0 | 174 | // decimal representation of v is a number lying closer to v than to any other |
michael@0 | 175 | // double, so it converts to v when read. |
michael@0 | 176 | // |
michael@0 | 177 | // This is true if d, the decimal representation, is between m- and m+, the |
michael@0 | 178 | // upper and lower boundaries. d must be strictly between them if !is_even. |
michael@0 | 179 | // m- := (numerator - delta_minus) / denominator |
michael@0 | 180 | // m+ := (numerator + delta_plus) / denominator |
michael@0 | 181 | // |
michael@0 | 182 | // Precondition: 0 <= (numerator+delta_plus) / denominator < 10. |
michael@0 | 183 | // If 1 <= (numerator+delta_plus) / denominator < 10 then no leading 0 digit |
michael@0 | 184 | // will be produced. This should be the standard precondition. |
michael@0 | 185 | static void GenerateShortestDigits(Bignum* numerator, Bignum* denominator, |
michael@0 | 186 | Bignum* delta_minus, Bignum* delta_plus, |
michael@0 | 187 | bool is_even, |
michael@0 | 188 | Vector<char> buffer, int* length) { |
michael@0 | 189 | // Small optimization: if delta_minus and delta_plus are the same just reuse |
michael@0 | 190 | // one of the two bignums. |
michael@0 | 191 | if (Bignum::Equal(*delta_minus, *delta_plus)) { |
michael@0 | 192 | delta_plus = delta_minus; |
michael@0 | 193 | } |
michael@0 | 194 | *length = 0; |
michael@0 | 195 | while (true) { |
michael@0 | 196 | uint16_t digit; |
michael@0 | 197 | digit = numerator->DivideModuloIntBignum(*denominator); |
michael@0 | 198 | ASSERT(digit <= 9); // digit is a uint16_t and therefore always positive. |
michael@0 | 199 | // digit = numerator / denominator (integer division). |
michael@0 | 200 | // numerator = numerator % denominator. |
michael@0 | 201 | buffer[(*length)++] = digit + '0'; |
michael@0 | 202 | |
michael@0 | 203 | // Can we stop already? |
michael@0 | 204 | // If the remainder of the division is less than the distance to the lower |
michael@0 | 205 | // boundary we can stop. In this case we simply round down (discarding the |
michael@0 | 206 | // remainder). |
michael@0 | 207 | // Similarly we test if we can round up (using the upper boundary). |
michael@0 | 208 | bool in_delta_room_minus; |
michael@0 | 209 | bool in_delta_room_plus; |
michael@0 | 210 | if (is_even) { |
michael@0 | 211 | in_delta_room_minus = Bignum::LessEqual(*numerator, *delta_minus); |
michael@0 | 212 | } else { |
michael@0 | 213 | in_delta_room_minus = Bignum::Less(*numerator, *delta_minus); |
michael@0 | 214 | } |
michael@0 | 215 | if (is_even) { |
michael@0 | 216 | in_delta_room_plus = |
michael@0 | 217 | Bignum::PlusCompare(*numerator, *delta_plus, *denominator) >= 0; |
michael@0 | 218 | } else { |
michael@0 | 219 | in_delta_room_plus = |
michael@0 | 220 | Bignum::PlusCompare(*numerator, *delta_plus, *denominator) > 0; |
michael@0 | 221 | } |
michael@0 | 222 | if (!in_delta_room_minus && !in_delta_room_plus) { |
michael@0 | 223 | // Prepare for next iteration. |
michael@0 | 224 | numerator->Times10(); |
michael@0 | 225 | delta_minus->Times10(); |
michael@0 | 226 | // We optimized delta_plus to be equal to delta_minus (if they share the |
michael@0 | 227 | // same value). So don't multiply delta_plus if they point to the same |
michael@0 | 228 | // object. |
michael@0 | 229 | if (delta_minus != delta_plus) { |
michael@0 | 230 | delta_plus->Times10(); |
michael@0 | 231 | } |
michael@0 | 232 | } else if (in_delta_room_minus && in_delta_room_plus) { |
michael@0 | 233 | // Let's see if 2*numerator < denominator. |
michael@0 | 234 | // If yes, then the next digit would be < 5 and we can round down. |
michael@0 | 235 | int compare = Bignum::PlusCompare(*numerator, *numerator, *denominator); |
michael@0 | 236 | if (compare < 0) { |
michael@0 | 237 | // Remaining digits are less than .5. -> Round down (== do nothing). |
michael@0 | 238 | } else if (compare > 0) { |
michael@0 | 239 | // Remaining digits are more than .5 of denominator. -> Round up. |
michael@0 | 240 | // Note that the last digit could not be a '9' as otherwise the whole |
michael@0 | 241 | // loop would have stopped earlier. |
michael@0 | 242 | // We still have an assert here in case the preconditions were not |
michael@0 | 243 | // satisfied. |
michael@0 | 244 | ASSERT(buffer[(*length) - 1] != '9'); |
michael@0 | 245 | buffer[(*length) - 1]++; |
michael@0 | 246 | } else { |
michael@0 | 247 | // Halfway case. |
michael@0 | 248 | // TODO(floitsch): need a way to solve half-way cases. |
michael@0 | 249 | // For now let's round towards even (since this is what Gay seems to |
michael@0 | 250 | // do). |
michael@0 | 251 | |
michael@0 | 252 | if ((buffer[(*length) - 1] - '0') % 2 == 0) { |
michael@0 | 253 | // Round down => Do nothing. |
michael@0 | 254 | } else { |
michael@0 | 255 | ASSERT(buffer[(*length) - 1] != '9'); |
michael@0 | 256 | buffer[(*length) - 1]++; |
michael@0 | 257 | } |
michael@0 | 258 | } |
michael@0 | 259 | return; |
michael@0 | 260 | } else if (in_delta_room_minus) { |
michael@0 | 261 | // Round down (== do nothing). |
michael@0 | 262 | return; |
michael@0 | 263 | } else { // in_delta_room_plus |
michael@0 | 264 | // Round up. |
michael@0 | 265 | // Note again that the last digit could not be '9' since this would have |
michael@0 | 266 | // stopped the loop earlier. |
michael@0 | 267 | // We still have an ASSERT here, in case the preconditions were not |
michael@0 | 268 | // satisfied. |
michael@0 | 269 | ASSERT(buffer[(*length) -1] != '9'); |
michael@0 | 270 | buffer[(*length) - 1]++; |
michael@0 | 271 | return; |
michael@0 | 272 | } |
michael@0 | 273 | } |
michael@0 | 274 | } |
michael@0 | 275 | |
michael@0 | 276 | |
michael@0 | 277 | // Let v = numerator / denominator < 10. |
michael@0 | 278 | // Then we generate 'count' digits of d = x.xxxxx... (without the decimal point) |
michael@0 | 279 | // from left to right. Once 'count' digits have been produced we decide wether |
michael@0 | 280 | // to round up or down. Remainders of exactly .5 round upwards. Numbers such |
michael@0 | 281 | // as 9.999999 propagate a carry all the way, and change the |
michael@0 | 282 | // exponent (decimal_point), when rounding upwards. |
michael@0 | 283 | static void GenerateCountedDigits(int count, int* decimal_point, |
michael@0 | 284 | Bignum* numerator, Bignum* denominator, |
michael@0 | 285 | Vector<char>(buffer), int* length) { |
michael@0 | 286 | ASSERT(count >= 0); |
michael@0 | 287 | for (int i = 0; i < count - 1; ++i) { |
michael@0 | 288 | uint16_t digit; |
michael@0 | 289 | digit = numerator->DivideModuloIntBignum(*denominator); |
michael@0 | 290 | ASSERT(digit <= 9); // digit is a uint16_t and therefore always positive. |
michael@0 | 291 | // digit = numerator / denominator (integer division). |
michael@0 | 292 | // numerator = numerator % denominator. |
michael@0 | 293 | buffer[i] = digit + '0'; |
michael@0 | 294 | // Prepare for next iteration. |
michael@0 | 295 | numerator->Times10(); |
michael@0 | 296 | } |
michael@0 | 297 | // Generate the last digit. |
michael@0 | 298 | uint16_t digit; |
michael@0 | 299 | digit = numerator->DivideModuloIntBignum(*denominator); |
michael@0 | 300 | if (Bignum::PlusCompare(*numerator, *numerator, *denominator) >= 0) { |
michael@0 | 301 | digit++; |
michael@0 | 302 | } |
michael@0 | 303 | buffer[count - 1] = digit + '0'; |
michael@0 | 304 | // Correct bad digits (in case we had a sequence of '9's). Propagate the |
michael@0 | 305 | // carry until we hat a non-'9' or til we reach the first digit. |
michael@0 | 306 | for (int i = count - 1; i > 0; --i) { |
michael@0 | 307 | if (buffer[i] != '0' + 10) break; |
michael@0 | 308 | buffer[i] = '0'; |
michael@0 | 309 | buffer[i - 1]++; |
michael@0 | 310 | } |
michael@0 | 311 | if (buffer[0] == '0' + 10) { |
michael@0 | 312 | // Propagate a carry past the top place. |
michael@0 | 313 | buffer[0] = '1'; |
michael@0 | 314 | (*decimal_point)++; |
michael@0 | 315 | } |
michael@0 | 316 | *length = count; |
michael@0 | 317 | } |
michael@0 | 318 | |
michael@0 | 319 | |
michael@0 | 320 | // Generates 'requested_digits' after the decimal point. It might omit |
michael@0 | 321 | // trailing '0's. If the input number is too small then no digits at all are |
michael@0 | 322 | // generated (ex.: 2 fixed digits for 0.00001). |
michael@0 | 323 | // |
michael@0 | 324 | // Input verifies: 1 <= (numerator + delta) / denominator < 10. |
michael@0 | 325 | static void BignumToFixed(int requested_digits, int* decimal_point, |
michael@0 | 326 | Bignum* numerator, Bignum* denominator, |
michael@0 | 327 | Vector<char>(buffer), int* length) { |
michael@0 | 328 | // Note that we have to look at more than just the requested_digits, since |
michael@0 | 329 | // a number could be rounded up. Example: v=0.5 with requested_digits=0. |
michael@0 | 330 | // Even though the power of v equals 0 we can't just stop here. |
michael@0 | 331 | if (-(*decimal_point) > requested_digits) { |
michael@0 | 332 | // The number is definitively too small. |
michael@0 | 333 | // Ex: 0.001 with requested_digits == 1. |
michael@0 | 334 | // Set decimal-point to -requested_digits. This is what Gay does. |
michael@0 | 335 | // Note that it should not have any effect anyways since the string is |
michael@0 | 336 | // empty. |
michael@0 | 337 | *decimal_point = -requested_digits; |
michael@0 | 338 | *length = 0; |
michael@0 | 339 | return; |
michael@0 | 340 | } else if (-(*decimal_point) == requested_digits) { |
michael@0 | 341 | // We only need to verify if the number rounds down or up. |
michael@0 | 342 | // Ex: 0.04 and 0.06 with requested_digits == 1. |
michael@0 | 343 | ASSERT(*decimal_point == -requested_digits); |
michael@0 | 344 | // Initially the fraction lies in range (1, 10]. Multiply the denominator |
michael@0 | 345 | // by 10 so that we can compare more easily. |
michael@0 | 346 | denominator->Times10(); |
michael@0 | 347 | if (Bignum::PlusCompare(*numerator, *numerator, *denominator) >= 0) { |
michael@0 | 348 | // If the fraction is >= 0.5 then we have to include the rounded |
michael@0 | 349 | // digit. |
michael@0 | 350 | buffer[0] = '1'; |
michael@0 | 351 | *length = 1; |
michael@0 | 352 | (*decimal_point)++; |
michael@0 | 353 | } else { |
michael@0 | 354 | // Note that we caught most of similar cases earlier. |
michael@0 | 355 | *length = 0; |
michael@0 | 356 | } |
michael@0 | 357 | return; |
michael@0 | 358 | } else { |
michael@0 | 359 | // The requested digits correspond to the digits after the point. |
michael@0 | 360 | // The variable 'needed_digits' includes the digits before the point. |
michael@0 | 361 | int needed_digits = (*decimal_point) + requested_digits; |
michael@0 | 362 | GenerateCountedDigits(needed_digits, decimal_point, |
michael@0 | 363 | numerator, denominator, |
michael@0 | 364 | buffer, length); |
michael@0 | 365 | } |
michael@0 | 366 | } |
michael@0 | 367 | |
michael@0 | 368 | |
michael@0 | 369 | // Returns an estimation of k such that 10^(k-1) <= v < 10^k where |
michael@0 | 370 | // v = f * 2^exponent and 2^52 <= f < 2^53. |
michael@0 | 371 | // v is hence a normalized double with the given exponent. The output is an |
michael@0 | 372 | // approximation for the exponent of the decimal approimation .digits * 10^k. |
michael@0 | 373 | // |
michael@0 | 374 | // The result might undershoot by 1 in which case 10^k <= v < 10^k+1. |
michael@0 | 375 | // Note: this property holds for v's upper boundary m+ too. |
michael@0 | 376 | // 10^k <= m+ < 10^k+1. |
michael@0 | 377 | // (see explanation below). |
michael@0 | 378 | // |
michael@0 | 379 | // Examples: |
michael@0 | 380 | // EstimatePower(0) => 16 |
michael@0 | 381 | // EstimatePower(-52) => 0 |
michael@0 | 382 | // |
michael@0 | 383 | // Note: e >= 0 => EstimatedPower(e) > 0. No similar claim can be made for e<0. |
michael@0 | 384 | static int EstimatePower(int exponent) { |
michael@0 | 385 | // This function estimates log10 of v where v = f*2^e (with e == exponent). |
michael@0 | 386 | // Note that 10^floor(log10(v)) <= v, but v <= 10^ceil(log10(v)). |
michael@0 | 387 | // Note that f is bounded by its container size. Let p = 53 (the double's |
michael@0 | 388 | // significand size). Then 2^(p-1) <= f < 2^p. |
michael@0 | 389 | // |
michael@0 | 390 | // Given that log10(v) == log2(v)/log2(10) and e+(len(f)-1) is quite close |
michael@0 | 391 | // to log2(v) the function is simplified to (e+(len(f)-1)/log2(10)). |
michael@0 | 392 | // The computed number undershoots by less than 0.631 (when we compute log3 |
michael@0 | 393 | // and not log10). |
michael@0 | 394 | // |
michael@0 | 395 | // Optimization: since we only need an approximated result this computation |
michael@0 | 396 | // can be performed on 64 bit integers. On x86/x64 architecture the speedup is |
michael@0 | 397 | // not really measurable, though. |
michael@0 | 398 | // |
michael@0 | 399 | // Since we want to avoid overshooting we decrement by 1e10 so that |
michael@0 | 400 | // floating-point imprecisions don't affect us. |
michael@0 | 401 | // |
michael@0 | 402 | // Explanation for v's boundary m+: the computation takes advantage of |
michael@0 | 403 | // the fact that 2^(p-1) <= f < 2^p. Boundaries still satisfy this requirement |
michael@0 | 404 | // (even for denormals where the delta can be much more important). |
michael@0 | 405 | |
michael@0 | 406 | const double k1Log10 = 0.30102999566398114; // 1/lg(10) |
michael@0 | 407 | |
michael@0 | 408 | // For doubles len(f) == 53 (don't forget the hidden bit). |
michael@0 | 409 | const int kSignificandSize = Double::kSignificandSize; |
michael@0 | 410 | double estimate = ceil((exponent + kSignificandSize - 1) * k1Log10 - 1e-10); |
michael@0 | 411 | return static_cast<int>(estimate); |
michael@0 | 412 | } |
michael@0 | 413 | |
michael@0 | 414 | |
michael@0 | 415 | // See comments for InitialScaledStartValues. |
michael@0 | 416 | static void InitialScaledStartValuesPositiveExponent( |
michael@0 | 417 | uint64_t significand, int exponent, |
michael@0 | 418 | int estimated_power, bool need_boundary_deltas, |
michael@0 | 419 | Bignum* numerator, Bignum* denominator, |
michael@0 | 420 | Bignum* delta_minus, Bignum* delta_plus) { |
michael@0 | 421 | // A positive exponent implies a positive power. |
michael@0 | 422 | ASSERT(estimated_power >= 0); |
michael@0 | 423 | // Since the estimated_power is positive we simply multiply the denominator |
michael@0 | 424 | // by 10^estimated_power. |
michael@0 | 425 | |
michael@0 | 426 | // numerator = v. |
michael@0 | 427 | numerator->AssignUInt64(significand); |
michael@0 | 428 | numerator->ShiftLeft(exponent); |
michael@0 | 429 | // denominator = 10^estimated_power. |
michael@0 | 430 | denominator->AssignPowerUInt16(10, estimated_power); |
michael@0 | 431 | |
michael@0 | 432 | if (need_boundary_deltas) { |
michael@0 | 433 | // Introduce a common denominator so that the deltas to the boundaries are |
michael@0 | 434 | // integers. |
michael@0 | 435 | denominator->ShiftLeft(1); |
michael@0 | 436 | numerator->ShiftLeft(1); |
michael@0 | 437 | // Let v = f * 2^e, then m+ - v = 1/2 * 2^e; With the common |
michael@0 | 438 | // denominator (of 2) delta_plus equals 2^e. |
michael@0 | 439 | delta_plus->AssignUInt16(1); |
michael@0 | 440 | delta_plus->ShiftLeft(exponent); |
michael@0 | 441 | // Same for delta_minus. The adjustments if f == 2^p-1 are done later. |
michael@0 | 442 | delta_minus->AssignUInt16(1); |
michael@0 | 443 | delta_minus->ShiftLeft(exponent); |
michael@0 | 444 | } |
michael@0 | 445 | } |
michael@0 | 446 | |
michael@0 | 447 | |
michael@0 | 448 | // See comments for InitialScaledStartValues |
michael@0 | 449 | static void InitialScaledStartValuesNegativeExponentPositivePower( |
michael@0 | 450 | uint64_t significand, int exponent, |
michael@0 | 451 | int estimated_power, bool need_boundary_deltas, |
michael@0 | 452 | Bignum* numerator, Bignum* denominator, |
michael@0 | 453 | Bignum* delta_minus, Bignum* delta_plus) { |
michael@0 | 454 | // v = f * 2^e with e < 0, and with estimated_power >= 0. |
michael@0 | 455 | // This means that e is close to 0 (have a look at how estimated_power is |
michael@0 | 456 | // computed). |
michael@0 | 457 | |
michael@0 | 458 | // numerator = significand |
michael@0 | 459 | // since v = significand * 2^exponent this is equivalent to |
michael@0 | 460 | // numerator = v * / 2^-exponent |
michael@0 | 461 | numerator->AssignUInt64(significand); |
michael@0 | 462 | // denominator = 10^estimated_power * 2^-exponent (with exponent < 0) |
michael@0 | 463 | denominator->AssignPowerUInt16(10, estimated_power); |
michael@0 | 464 | denominator->ShiftLeft(-exponent); |
michael@0 | 465 | |
michael@0 | 466 | if (need_boundary_deltas) { |
michael@0 | 467 | // Introduce a common denominator so that the deltas to the boundaries are |
michael@0 | 468 | // integers. |
michael@0 | 469 | denominator->ShiftLeft(1); |
michael@0 | 470 | numerator->ShiftLeft(1); |
michael@0 | 471 | // Let v = f * 2^e, then m+ - v = 1/2 * 2^e; With the common |
michael@0 | 472 | // denominator (of 2) delta_plus equals 2^e. |
michael@0 | 473 | // Given that the denominator already includes v's exponent the distance |
michael@0 | 474 | // to the boundaries is simply 1. |
michael@0 | 475 | delta_plus->AssignUInt16(1); |
michael@0 | 476 | // Same for delta_minus. The adjustments if f == 2^p-1 are done later. |
michael@0 | 477 | delta_minus->AssignUInt16(1); |
michael@0 | 478 | } |
michael@0 | 479 | } |
michael@0 | 480 | |
michael@0 | 481 | |
michael@0 | 482 | // See comments for InitialScaledStartValues |
michael@0 | 483 | static void InitialScaledStartValuesNegativeExponentNegativePower( |
michael@0 | 484 | uint64_t significand, int exponent, |
michael@0 | 485 | int estimated_power, bool need_boundary_deltas, |
michael@0 | 486 | Bignum* numerator, Bignum* denominator, |
michael@0 | 487 | Bignum* delta_minus, Bignum* delta_plus) { |
michael@0 | 488 | // Instead of multiplying the denominator with 10^estimated_power we |
michael@0 | 489 | // multiply all values (numerator and deltas) by 10^-estimated_power. |
michael@0 | 490 | |
michael@0 | 491 | // Use numerator as temporary container for power_ten. |
michael@0 | 492 | Bignum* power_ten = numerator; |
michael@0 | 493 | power_ten->AssignPowerUInt16(10, -estimated_power); |
michael@0 | 494 | |
michael@0 | 495 | if (need_boundary_deltas) { |
michael@0 | 496 | // Since power_ten == numerator we must make a copy of 10^estimated_power |
michael@0 | 497 | // before we complete the computation of the numerator. |
michael@0 | 498 | // delta_plus = delta_minus = 10^estimated_power |
michael@0 | 499 | delta_plus->AssignBignum(*power_ten); |
michael@0 | 500 | delta_minus->AssignBignum(*power_ten); |
michael@0 | 501 | } |
michael@0 | 502 | |
michael@0 | 503 | // numerator = significand * 2 * 10^-estimated_power |
michael@0 | 504 | // since v = significand * 2^exponent this is equivalent to |
michael@0 | 505 | // numerator = v * 10^-estimated_power * 2 * 2^-exponent. |
michael@0 | 506 | // Remember: numerator has been abused as power_ten. So no need to assign it |
michael@0 | 507 | // to itself. |
michael@0 | 508 | ASSERT(numerator == power_ten); |
michael@0 | 509 | numerator->MultiplyByUInt64(significand); |
michael@0 | 510 | |
michael@0 | 511 | // denominator = 2 * 2^-exponent with exponent < 0. |
michael@0 | 512 | denominator->AssignUInt16(1); |
michael@0 | 513 | denominator->ShiftLeft(-exponent); |
michael@0 | 514 | |
michael@0 | 515 | if (need_boundary_deltas) { |
michael@0 | 516 | // Introduce a common denominator so that the deltas to the boundaries are |
michael@0 | 517 | // integers. |
michael@0 | 518 | numerator->ShiftLeft(1); |
michael@0 | 519 | denominator->ShiftLeft(1); |
michael@0 | 520 | // With this shift the boundaries have their correct value, since |
michael@0 | 521 | // delta_plus = 10^-estimated_power, and |
michael@0 | 522 | // delta_minus = 10^-estimated_power. |
michael@0 | 523 | // These assignments have been done earlier. |
michael@0 | 524 | // The adjustments if f == 2^p-1 (lower boundary is closer) are done later. |
michael@0 | 525 | } |
michael@0 | 526 | } |
michael@0 | 527 | |
michael@0 | 528 | |
michael@0 | 529 | // Let v = significand * 2^exponent. |
michael@0 | 530 | // Computes v / 10^estimated_power exactly, as a ratio of two bignums, numerator |
michael@0 | 531 | // and denominator. The functions GenerateShortestDigits and |
michael@0 | 532 | // GenerateCountedDigits will then convert this ratio to its decimal |
michael@0 | 533 | // representation d, with the required accuracy. |
michael@0 | 534 | // Then d * 10^estimated_power is the representation of v. |
michael@0 | 535 | // (Note: the fraction and the estimated_power might get adjusted before |
michael@0 | 536 | // generating the decimal representation.) |
michael@0 | 537 | // |
michael@0 | 538 | // The initial start values consist of: |
michael@0 | 539 | // - a scaled numerator: s.t. numerator/denominator == v / 10^estimated_power. |
michael@0 | 540 | // - a scaled (common) denominator. |
michael@0 | 541 | // optionally (used by GenerateShortestDigits to decide if it has the shortest |
michael@0 | 542 | // decimal converting back to v): |
michael@0 | 543 | // - v - m-: the distance to the lower boundary. |
michael@0 | 544 | // - m+ - v: the distance to the upper boundary. |
michael@0 | 545 | // |
michael@0 | 546 | // v, m+, m-, and therefore v - m- and m+ - v all share the same denominator. |
michael@0 | 547 | // |
michael@0 | 548 | // Let ep == estimated_power, then the returned values will satisfy: |
michael@0 | 549 | // v / 10^ep = numerator / denominator. |
michael@0 | 550 | // v's boundarys m- and m+: |
michael@0 | 551 | // m- / 10^ep == v / 10^ep - delta_minus / denominator |
michael@0 | 552 | // m+ / 10^ep == v / 10^ep + delta_plus / denominator |
michael@0 | 553 | // Or in other words: |
michael@0 | 554 | // m- == v - delta_minus * 10^ep / denominator; |
michael@0 | 555 | // m+ == v + delta_plus * 10^ep / denominator; |
michael@0 | 556 | // |
michael@0 | 557 | // Since 10^(k-1) <= v < 10^k (with k == estimated_power) |
michael@0 | 558 | // or 10^k <= v < 10^(k+1) |
michael@0 | 559 | // we then have 0.1 <= numerator/denominator < 1 |
michael@0 | 560 | // or 1 <= numerator/denominator < 10 |
michael@0 | 561 | // |
michael@0 | 562 | // It is then easy to kickstart the digit-generation routine. |
michael@0 | 563 | // |
michael@0 | 564 | // The boundary-deltas are only filled if the mode equals BIGNUM_DTOA_SHORTEST |
michael@0 | 565 | // or BIGNUM_DTOA_SHORTEST_SINGLE. |
michael@0 | 566 | |
michael@0 | 567 | static void InitialScaledStartValues(uint64_t significand, |
michael@0 | 568 | int exponent, |
michael@0 | 569 | bool lower_boundary_is_closer, |
michael@0 | 570 | int estimated_power, |
michael@0 | 571 | bool need_boundary_deltas, |
michael@0 | 572 | Bignum* numerator, |
michael@0 | 573 | Bignum* denominator, |
michael@0 | 574 | Bignum* delta_minus, |
michael@0 | 575 | Bignum* delta_plus) { |
michael@0 | 576 | if (exponent >= 0) { |
michael@0 | 577 | InitialScaledStartValuesPositiveExponent( |
michael@0 | 578 | significand, exponent, estimated_power, need_boundary_deltas, |
michael@0 | 579 | numerator, denominator, delta_minus, delta_plus); |
michael@0 | 580 | } else if (estimated_power >= 0) { |
michael@0 | 581 | InitialScaledStartValuesNegativeExponentPositivePower( |
michael@0 | 582 | significand, exponent, estimated_power, need_boundary_deltas, |
michael@0 | 583 | numerator, denominator, delta_minus, delta_plus); |
michael@0 | 584 | } else { |
michael@0 | 585 | InitialScaledStartValuesNegativeExponentNegativePower( |
michael@0 | 586 | significand, exponent, estimated_power, need_boundary_deltas, |
michael@0 | 587 | numerator, denominator, delta_minus, delta_plus); |
michael@0 | 588 | } |
michael@0 | 589 | |
michael@0 | 590 | if (need_boundary_deltas && lower_boundary_is_closer) { |
michael@0 | 591 | // The lower boundary is closer at half the distance of "normal" numbers. |
michael@0 | 592 | // Increase the common denominator and adapt all but the delta_minus. |
michael@0 | 593 | denominator->ShiftLeft(1); // *2 |
michael@0 | 594 | numerator->ShiftLeft(1); // *2 |
michael@0 | 595 | delta_plus->ShiftLeft(1); // *2 |
michael@0 | 596 | } |
michael@0 | 597 | } |
michael@0 | 598 | |
michael@0 | 599 | |
michael@0 | 600 | // This routine multiplies numerator/denominator so that its values lies in the |
michael@0 | 601 | // range 1-10. That is after a call to this function we have: |
michael@0 | 602 | // 1 <= (numerator + delta_plus) /denominator < 10. |
michael@0 | 603 | // Let numerator the input before modification and numerator' the argument |
michael@0 | 604 | // after modification, then the output-parameter decimal_point is such that |
michael@0 | 605 | // numerator / denominator * 10^estimated_power == |
michael@0 | 606 | // numerator' / denominator' * 10^(decimal_point - 1) |
michael@0 | 607 | // In some cases estimated_power was too low, and this is already the case. We |
michael@0 | 608 | // then simply adjust the power so that 10^(k-1) <= v < 10^k (with k == |
michael@0 | 609 | // estimated_power) but do not touch the numerator or denominator. |
michael@0 | 610 | // Otherwise the routine multiplies the numerator and the deltas by 10. |
michael@0 | 611 | static void FixupMultiply10(int estimated_power, bool is_even, |
michael@0 | 612 | int* decimal_point, |
michael@0 | 613 | Bignum* numerator, Bignum* denominator, |
michael@0 | 614 | Bignum* delta_minus, Bignum* delta_plus) { |
michael@0 | 615 | bool in_range; |
michael@0 | 616 | if (is_even) { |
michael@0 | 617 | // For IEEE doubles half-way cases (in decimal system numbers ending with 5) |
michael@0 | 618 | // are rounded to the closest floating-point number with even significand. |
michael@0 | 619 | in_range = Bignum::PlusCompare(*numerator, *delta_plus, *denominator) >= 0; |
michael@0 | 620 | } else { |
michael@0 | 621 | in_range = Bignum::PlusCompare(*numerator, *delta_plus, *denominator) > 0; |
michael@0 | 622 | } |
michael@0 | 623 | if (in_range) { |
michael@0 | 624 | // Since numerator + delta_plus >= denominator we already have |
michael@0 | 625 | // 1 <= numerator/denominator < 10. Simply update the estimated_power. |
michael@0 | 626 | *decimal_point = estimated_power + 1; |
michael@0 | 627 | } else { |
michael@0 | 628 | *decimal_point = estimated_power; |
michael@0 | 629 | numerator->Times10(); |
michael@0 | 630 | if (Bignum::Equal(*delta_minus, *delta_plus)) { |
michael@0 | 631 | delta_minus->Times10(); |
michael@0 | 632 | delta_plus->AssignBignum(*delta_minus); |
michael@0 | 633 | } else { |
michael@0 | 634 | delta_minus->Times10(); |
michael@0 | 635 | delta_plus->Times10(); |
michael@0 | 636 | } |
michael@0 | 637 | } |
michael@0 | 638 | } |
michael@0 | 639 | |
michael@0 | 640 | } // namespace double_conversion |