security/nss/lib/freebl/mpi/mpi-priv.h

Wed, 31 Dec 2014 06:09:35 +0100

author
Michael Schloh von Bennewitz <michael@schloh.com>
date
Wed, 31 Dec 2014 06:09:35 +0100
changeset 0
6474c204b198
permissions
-rw-r--r--

Cloned upstream origin tor-browser at tor-browser-31.3.0esr-4.5-1-build1
revision ID fc1c9ff7c1b2defdbc039f12214767608f46423f for hacking purpose.

     1 /*
     2  *  mpi-priv.h	- Private header file for MPI 
     3  *  Arbitrary precision integer arithmetic library
     4  *
     5  *  NOTE WELL: the content of this header file is NOT part of the "public"
     6  *  API for the MPI library, and may change at any time.  
     7  *  Application programs that use libmpi should NOT include this header file.
     8  *
     9  * This Source Code Form is subject to the terms of the Mozilla Public
    10  * License, v. 2.0. If a copy of the MPL was not distributed with this
    11  * file, You can obtain one at http://mozilla.org/MPL/2.0/. */
    12 #ifndef _MPI_PRIV_H_
    13 #define _MPI_PRIV_H_ 1
    15 #include "mpi.h"
    16 #include <stdlib.h>
    17 #include <string.h>
    18 #include <ctype.h>
    20 #if MP_DEBUG
    21 #include <stdio.h>
    23 #define DIAG(T,V) {fprintf(stderr,T);mp_print(V,stderr);fputc('\n',stderr);}
    24 #else
    25 #define DIAG(T,V)
    26 #endif
    28 /* If we aren't using a wired-in logarithm table, we need to include
    29    the math library to get the log() function
    30  */
    32 /* {{{ s_logv_2[] - log table for 2 in various bases */
    34 #if MP_LOGTAB
    35 /*
    36   A table of the logs of 2 for various bases (the 0 and 1 entries of
    37   this table are meaningless and should not be referenced).  
    39   This table is used to compute output lengths for the mp_toradix()
    40   function.  Since a number n in radix r takes up about log_r(n)
    41   digits, we estimate the output size by taking the least integer
    42   greater than log_r(n), where:
    44   log_r(n) = log_2(n) * log_r(2)
    46   This table, therefore, is a table of log_r(2) for 2 <= r <= 36,
    47   which are the output bases supported.  
    48  */
    50 extern const float s_logv_2[];
    51 #define LOG_V_2(R)  s_logv_2[(R)]
    53 #else
    55 /* 
    56    If MP_LOGTAB is not defined, use the math library to compute the
    57    logarithms on the fly.  Otherwise, use the table.
    58    Pick which works best for your system.
    59  */
    61 #include <math.h>
    62 #define LOG_V_2(R)  (log(2.0)/log(R))
    64 #endif /* if MP_LOGTAB */
    66 /* }}} */
    68 /* {{{ Digit arithmetic macros */
    70 /*
    71   When adding and multiplying digits, the results can be larger than
    72   can be contained in an mp_digit.  Thus, an mp_word is used.  These
    73   macros mask off the upper and lower digits of the mp_word (the
    74   mp_word may be more than 2 mp_digits wide, but we only concern
    75   ourselves with the low-order 2 mp_digits)
    76  */
    78 #define  CARRYOUT(W)  (mp_digit)((W)>>DIGIT_BIT)
    79 #define  ACCUM(W)     (mp_digit)(W)
    81 #define MP_MIN(a,b)   (((a) < (b)) ? (a) : (b))
    82 #define MP_MAX(a,b)   (((a) > (b)) ? (a) : (b))
    83 #define MP_HOWMANY(a,b) (((a) + (b) - 1)/(b))
    84 #define MP_ROUNDUP(a,b) (MP_HOWMANY(a,b) * (b))
    86 /* }}} */
    88 /* {{{ Comparison constants */
    90 #define  MP_LT       -1
    91 #define  MP_EQ        0
    92 #define  MP_GT        1
    94 /* }}} */
    96 /* {{{ private function declarations */
    98 /* 
    99    If MP_MACRO is false, these will be defined as actual functions;
   100    otherwise, suitable macro definitions will be used.  This works
   101    around the fact that ANSI C89 doesn't support an 'inline' keyword
   102    (although I hear C9x will ... about bloody time).  At present, the
   103    macro definitions are identical to the function bodies, but they'll
   104    expand in place, instead of generating a function call.
   106    I chose these particular functions to be made into macros because
   107    some profiling showed they are called a lot on a typical workload,
   108    and yet they are primarily housekeeping.
   109  */
   110 #if MP_MACRO == 0
   111  void     s_mp_setz(mp_digit *dp, mp_size count); /* zero digits           */
   112  void     s_mp_copy(const mp_digit *sp, mp_digit *dp, mp_size count); /* copy */
   113  void    *s_mp_alloc(size_t nb, size_t ni);       /* general allocator     */
   114  void     s_mp_free(void *ptr);                   /* general free function */
   115 extern unsigned long mp_allocs;
   116 extern unsigned long mp_frees;
   117 extern unsigned long mp_copies;
   118 #else
   120  /* Even if these are defined as macros, we need to respect the settings
   121     of the MP_MEMSET and MP_MEMCPY configuration options...
   122   */
   123  #if MP_MEMSET == 0
   124   #define  s_mp_setz(dp, count) \
   125        {int ix;for(ix=0;ix<(count);ix++)(dp)[ix]=0;}
   126  #else
   127   #define  s_mp_setz(dp, count) memset(dp, 0, (count) * sizeof(mp_digit))
   128  #endif /* MP_MEMSET */
   130  #if MP_MEMCPY == 0
   131   #define  s_mp_copy(sp, dp, count) \
   132        {int ix;for(ix=0;ix<(count);ix++)(dp)[ix]=(sp)[ix];}
   133  #else
   134   #define  s_mp_copy(sp, dp, count) memcpy(dp, sp, (count) * sizeof(mp_digit))
   135  #endif /* MP_MEMCPY */
   137  #define  s_mp_alloc(nb, ni)  calloc(nb, ni)
   138  #define  s_mp_free(ptr) {if(ptr) free(ptr);}
   139 #endif /* MP_MACRO */
   141 mp_err   s_mp_grow(mp_int *mp, mp_size min);   /* increase allocated size */
   142 mp_err   s_mp_pad(mp_int *mp, mp_size min);    /* left pad with zeroes    */
   144 #if MP_MACRO == 0
   145  void     s_mp_clamp(mp_int *mp);               /* clip leading zeroes     */
   146 #else
   147  #define  s_mp_clamp(mp)\
   148   { mp_size used = MP_USED(mp); \
   149     while (used > 1 && DIGIT(mp, used - 1) == 0) --used; \
   150     MP_USED(mp) = used; \
   151   } 
   152 #endif /* MP_MACRO */
   154 void     s_mp_exch(mp_int *a, mp_int *b);      /* swap a and b in place   */
   156 mp_err   s_mp_lshd(mp_int *mp, mp_size p);     /* left-shift by p digits  */
   157 void     s_mp_rshd(mp_int *mp, mp_size p);     /* right-shift by p digits */
   158 mp_err   s_mp_mul_2d(mp_int *mp, mp_digit d);  /* multiply by 2^d in place */
   159 void     s_mp_div_2d(mp_int *mp, mp_digit d);  /* divide by 2^d in place  */
   160 void     s_mp_mod_2d(mp_int *mp, mp_digit d);  /* modulo 2^d in place     */
   161 void     s_mp_div_2(mp_int *mp);               /* divide by 2 in place    */
   162 mp_err   s_mp_mul_2(mp_int *mp);               /* multiply by 2 in place  */
   163 mp_err   s_mp_norm(mp_int *a, mp_int *b, mp_digit *pd); 
   164                                                /* normalize for division  */
   165 mp_err   s_mp_add_d(mp_int *mp, mp_digit d);   /* unsigned digit addition */
   166 mp_err   s_mp_sub_d(mp_int *mp, mp_digit d);   /* unsigned digit subtract */
   167 mp_err   s_mp_mul_d(mp_int *mp, mp_digit d);   /* unsigned digit multiply */
   168 mp_err   s_mp_div_d(mp_int *mp, mp_digit d, mp_digit *r);
   169 		                               /* unsigned digit divide   */
   170 mp_err   s_mp_reduce(mp_int *x, const mp_int *m, const mp_int *mu);
   171                                                /* Barrett reduction       */
   172 mp_err   s_mp_add(mp_int *a, const mp_int *b); /* magnitude addition      */
   173 mp_err   s_mp_add_3arg(const mp_int *a, const mp_int *b, mp_int *c);
   174 mp_err   s_mp_sub(mp_int *a, const mp_int *b); /* magnitude subtract      */
   175 mp_err   s_mp_sub_3arg(const mp_int *a, const mp_int *b, mp_int *c);
   176 mp_err   s_mp_add_offset(mp_int *a, mp_int *b, mp_size offset);
   177                                                /* a += b * RADIX^offset   */
   178 mp_err   s_mp_mul(mp_int *a, const mp_int *b); /* magnitude multiply      */
   179 #if MP_SQUARE
   180 mp_err   s_mp_sqr(mp_int *a);                  /* magnitude square        */
   181 #else
   182 #define  s_mp_sqr(a) s_mp_mul(a, a)
   183 #endif
   184 mp_err   s_mp_div(mp_int *rem, mp_int *div, mp_int *quot); /* magnitude div */
   185 mp_err   s_mp_exptmod(const mp_int *a, const mp_int *b, const mp_int *m, mp_int *c);
   186 mp_err   s_mp_2expt(mp_int *a, mp_digit k);    /* a = 2^k                 */
   187 int      s_mp_cmp(const mp_int *a, const mp_int *b); /* magnitude comparison */
   188 int      s_mp_cmp_d(const mp_int *a, mp_digit d); /* magnitude digit compare */
   189 int      s_mp_ispow2(const mp_int *v);         /* is v a power of 2?      */
   190 int      s_mp_ispow2d(mp_digit d);             /* is d a power of 2?      */
   192 int      s_mp_tovalue(char ch, int r);          /* convert ch to value    */
   193 char     s_mp_todigit(mp_digit val, int r, int low); /* convert val to digit */
   194 int      s_mp_outlen(int bits, int r);          /* output length in bytes */
   195 mp_digit s_mp_invmod_radix(mp_digit P);   /* returns (P ** -1) mod RADIX */
   196 mp_err   s_mp_invmod_odd_m( const mp_int *a, const mp_int *m, mp_int *c);
   197 mp_err   s_mp_invmod_2d(    const mp_int *a, mp_size k,       mp_int *c);
   198 mp_err   s_mp_invmod_even_m(const mp_int *a, const mp_int *m, mp_int *c);
   200 #ifdef NSS_USE_COMBA
   202 #define IS_POWER_OF_2(a) ((a) && !((a) & ((a)-1)))
   204 void s_mp_mul_comba_4(const mp_int *A, const mp_int *B, mp_int *C);
   205 void s_mp_mul_comba_8(const mp_int *A, const mp_int *B, mp_int *C);
   206 void s_mp_mul_comba_16(const mp_int *A, const mp_int *B, mp_int *C);
   207 void s_mp_mul_comba_32(const mp_int *A, const mp_int *B, mp_int *C);
   209 void s_mp_sqr_comba_4(const mp_int *A, mp_int *B);
   210 void s_mp_sqr_comba_8(const mp_int *A, mp_int *B);
   211 void s_mp_sqr_comba_16(const mp_int *A, mp_int *B);
   212 void s_mp_sqr_comba_32(const mp_int *A, mp_int *B);
   214 #endif /* end NSS_USE_COMBA */
   216 /* ------ mpv functions, operate on arrays of digits, not on mp_int's ------ */
   217 #if defined (__OS2__) && defined (__IBMC__)
   218 #define MPI_ASM_DECL __cdecl
   219 #else
   220 #define MPI_ASM_DECL
   221 #endif
   223 #ifdef MPI_AMD64
   225 mp_digit MPI_ASM_DECL s_mpv_mul_set_vec64(mp_digit*, mp_digit *, mp_size, mp_digit);
   226 mp_digit MPI_ASM_DECL s_mpv_mul_add_vec64(mp_digit*, const mp_digit*, mp_size, mp_digit);
   228 /* c = a * b */
   229 #define s_mpv_mul_d(a, a_len, b, c) \
   230 	((mp_digit *)c)[a_len] = s_mpv_mul_set_vec64(c, a, a_len, b)
   232 /* c += a * b */
   233 #define s_mpv_mul_d_add(a, a_len, b, c) \
   234 	((mp_digit *)c)[a_len] = s_mpv_mul_add_vec64(c, a, a_len, b)
   237 #else
   239 void     MPI_ASM_DECL s_mpv_mul_d(const mp_digit *a, mp_size a_len,
   240                                         mp_digit b, mp_digit *c);
   241 void     MPI_ASM_DECL s_mpv_mul_d_add(const mp_digit *a, mp_size a_len,
   242                                             mp_digit b, mp_digit *c);
   244 #endif
   246 void     MPI_ASM_DECL s_mpv_mul_d_add_prop(const mp_digit *a,
   247                                                 mp_size a_len, mp_digit b, 
   248 			                        mp_digit *c);
   249 void     MPI_ASM_DECL s_mpv_sqr_add_prop(const mp_digit *a,
   250                                                 mp_size a_len,
   251                                                 mp_digit *sqrs);
   253 mp_err   MPI_ASM_DECL s_mpv_div_2dx1d(mp_digit Nhi, mp_digit Nlo,
   254                             mp_digit divisor, mp_digit *quot, mp_digit *rem);
   256 /* c += a * b * (MP_RADIX ** offset);  */
   257 #define s_mp_mul_d_add_offset(a, b, c, off) \
   258 (s_mpv_mul_d_add_prop(MP_DIGITS(a), MP_USED(a), b, MP_DIGITS(c) + off), MP_OKAY)
   260 typedef struct {
   261   mp_int       N;	/* modulus N */
   262   mp_digit     n0prime; /* n0' = - (n0 ** -1) mod MP_RADIX */
   263 } mp_mont_modulus;
   265 mp_err s_mp_mul_mont(const mp_int *a, const mp_int *b, mp_int *c, 
   266 	               mp_mont_modulus *mmm);
   267 mp_err s_mp_redc(mp_int *T, mp_mont_modulus *mmm);
   269 /*
   270  * s_mpi_getProcessorLineSize() returns the size in bytes of the cache line
   271  * if a cache exists, or zero if there is no cache. If more than one
   272  * cache line exists, it should return the smallest line size (which is
   273  * usually the L1 cache).
   274  *
   275  * mp_modexp uses this information to make sure that private key information
   276  * isn't being leaked through the cache.
   277  *
   278  * see mpcpucache.c for the implementation.
   279  */
   280 unsigned long s_mpi_getProcessorLineSize();
   282 /* }}} */
   283 #endif

mercurial