Wed, 31 Dec 2014 06:09:35 +0100
Cloned upstream origin tor-browser at tor-browser-31.3.0esr-4.5-1-build1
revision ID fc1c9ff7c1b2defdbc039f12214767608f46423f for hacking purpose.
michael@0 | 1 | /* |
michael@0 | 2 | * mpi-priv.h - Private header file for MPI |
michael@0 | 3 | * Arbitrary precision integer arithmetic library |
michael@0 | 4 | * |
michael@0 | 5 | * NOTE WELL: the content of this header file is NOT part of the "public" |
michael@0 | 6 | * API for the MPI library, and may change at any time. |
michael@0 | 7 | * Application programs that use libmpi should NOT include this header file. |
michael@0 | 8 | * |
michael@0 | 9 | * This Source Code Form is subject to the terms of the Mozilla Public |
michael@0 | 10 | * License, v. 2.0. If a copy of the MPL was not distributed with this |
michael@0 | 11 | * file, You can obtain one at http://mozilla.org/MPL/2.0/. */ |
michael@0 | 12 | #ifndef _MPI_PRIV_H_ |
michael@0 | 13 | #define _MPI_PRIV_H_ 1 |
michael@0 | 14 | |
michael@0 | 15 | #include "mpi.h" |
michael@0 | 16 | #include <stdlib.h> |
michael@0 | 17 | #include <string.h> |
michael@0 | 18 | #include <ctype.h> |
michael@0 | 19 | |
michael@0 | 20 | #if MP_DEBUG |
michael@0 | 21 | #include <stdio.h> |
michael@0 | 22 | |
michael@0 | 23 | #define DIAG(T,V) {fprintf(stderr,T);mp_print(V,stderr);fputc('\n',stderr);} |
michael@0 | 24 | #else |
michael@0 | 25 | #define DIAG(T,V) |
michael@0 | 26 | #endif |
michael@0 | 27 | |
michael@0 | 28 | /* If we aren't using a wired-in logarithm table, we need to include |
michael@0 | 29 | the math library to get the log() function |
michael@0 | 30 | */ |
michael@0 | 31 | |
michael@0 | 32 | /* {{{ s_logv_2[] - log table for 2 in various bases */ |
michael@0 | 33 | |
michael@0 | 34 | #if MP_LOGTAB |
michael@0 | 35 | /* |
michael@0 | 36 | A table of the logs of 2 for various bases (the 0 and 1 entries of |
michael@0 | 37 | this table are meaningless and should not be referenced). |
michael@0 | 38 | |
michael@0 | 39 | This table is used to compute output lengths for the mp_toradix() |
michael@0 | 40 | function. Since a number n in radix r takes up about log_r(n) |
michael@0 | 41 | digits, we estimate the output size by taking the least integer |
michael@0 | 42 | greater than log_r(n), where: |
michael@0 | 43 | |
michael@0 | 44 | log_r(n) = log_2(n) * log_r(2) |
michael@0 | 45 | |
michael@0 | 46 | This table, therefore, is a table of log_r(2) for 2 <= r <= 36, |
michael@0 | 47 | which are the output bases supported. |
michael@0 | 48 | */ |
michael@0 | 49 | |
michael@0 | 50 | extern const float s_logv_2[]; |
michael@0 | 51 | #define LOG_V_2(R) s_logv_2[(R)] |
michael@0 | 52 | |
michael@0 | 53 | #else |
michael@0 | 54 | |
michael@0 | 55 | /* |
michael@0 | 56 | If MP_LOGTAB is not defined, use the math library to compute the |
michael@0 | 57 | logarithms on the fly. Otherwise, use the table. |
michael@0 | 58 | Pick which works best for your system. |
michael@0 | 59 | */ |
michael@0 | 60 | |
michael@0 | 61 | #include <math.h> |
michael@0 | 62 | #define LOG_V_2(R) (log(2.0)/log(R)) |
michael@0 | 63 | |
michael@0 | 64 | #endif /* if MP_LOGTAB */ |
michael@0 | 65 | |
michael@0 | 66 | /* }}} */ |
michael@0 | 67 | |
michael@0 | 68 | /* {{{ Digit arithmetic macros */ |
michael@0 | 69 | |
michael@0 | 70 | /* |
michael@0 | 71 | When adding and multiplying digits, the results can be larger than |
michael@0 | 72 | can be contained in an mp_digit. Thus, an mp_word is used. These |
michael@0 | 73 | macros mask off the upper and lower digits of the mp_word (the |
michael@0 | 74 | mp_word may be more than 2 mp_digits wide, but we only concern |
michael@0 | 75 | ourselves with the low-order 2 mp_digits) |
michael@0 | 76 | */ |
michael@0 | 77 | |
michael@0 | 78 | #define CARRYOUT(W) (mp_digit)((W)>>DIGIT_BIT) |
michael@0 | 79 | #define ACCUM(W) (mp_digit)(W) |
michael@0 | 80 | |
michael@0 | 81 | #define MP_MIN(a,b) (((a) < (b)) ? (a) : (b)) |
michael@0 | 82 | #define MP_MAX(a,b) (((a) > (b)) ? (a) : (b)) |
michael@0 | 83 | #define MP_HOWMANY(a,b) (((a) + (b) - 1)/(b)) |
michael@0 | 84 | #define MP_ROUNDUP(a,b) (MP_HOWMANY(a,b) * (b)) |
michael@0 | 85 | |
michael@0 | 86 | /* }}} */ |
michael@0 | 87 | |
michael@0 | 88 | /* {{{ Comparison constants */ |
michael@0 | 89 | |
michael@0 | 90 | #define MP_LT -1 |
michael@0 | 91 | #define MP_EQ 0 |
michael@0 | 92 | #define MP_GT 1 |
michael@0 | 93 | |
michael@0 | 94 | /* }}} */ |
michael@0 | 95 | |
michael@0 | 96 | /* {{{ private function declarations */ |
michael@0 | 97 | |
michael@0 | 98 | /* |
michael@0 | 99 | If MP_MACRO is false, these will be defined as actual functions; |
michael@0 | 100 | otherwise, suitable macro definitions will be used. This works |
michael@0 | 101 | around the fact that ANSI C89 doesn't support an 'inline' keyword |
michael@0 | 102 | (although I hear C9x will ... about bloody time). At present, the |
michael@0 | 103 | macro definitions are identical to the function bodies, but they'll |
michael@0 | 104 | expand in place, instead of generating a function call. |
michael@0 | 105 | |
michael@0 | 106 | I chose these particular functions to be made into macros because |
michael@0 | 107 | some profiling showed they are called a lot on a typical workload, |
michael@0 | 108 | and yet they are primarily housekeeping. |
michael@0 | 109 | */ |
michael@0 | 110 | #if MP_MACRO == 0 |
michael@0 | 111 | void s_mp_setz(mp_digit *dp, mp_size count); /* zero digits */ |
michael@0 | 112 | void s_mp_copy(const mp_digit *sp, mp_digit *dp, mp_size count); /* copy */ |
michael@0 | 113 | void *s_mp_alloc(size_t nb, size_t ni); /* general allocator */ |
michael@0 | 114 | void s_mp_free(void *ptr); /* general free function */ |
michael@0 | 115 | extern unsigned long mp_allocs; |
michael@0 | 116 | extern unsigned long mp_frees; |
michael@0 | 117 | extern unsigned long mp_copies; |
michael@0 | 118 | #else |
michael@0 | 119 | |
michael@0 | 120 | /* Even if these are defined as macros, we need to respect the settings |
michael@0 | 121 | of the MP_MEMSET and MP_MEMCPY configuration options... |
michael@0 | 122 | */ |
michael@0 | 123 | #if MP_MEMSET == 0 |
michael@0 | 124 | #define s_mp_setz(dp, count) \ |
michael@0 | 125 | {int ix;for(ix=0;ix<(count);ix++)(dp)[ix]=0;} |
michael@0 | 126 | #else |
michael@0 | 127 | #define s_mp_setz(dp, count) memset(dp, 0, (count) * sizeof(mp_digit)) |
michael@0 | 128 | #endif /* MP_MEMSET */ |
michael@0 | 129 | |
michael@0 | 130 | #if MP_MEMCPY == 0 |
michael@0 | 131 | #define s_mp_copy(sp, dp, count) \ |
michael@0 | 132 | {int ix;for(ix=0;ix<(count);ix++)(dp)[ix]=(sp)[ix];} |
michael@0 | 133 | #else |
michael@0 | 134 | #define s_mp_copy(sp, dp, count) memcpy(dp, sp, (count) * sizeof(mp_digit)) |
michael@0 | 135 | #endif /* MP_MEMCPY */ |
michael@0 | 136 | |
michael@0 | 137 | #define s_mp_alloc(nb, ni) calloc(nb, ni) |
michael@0 | 138 | #define s_mp_free(ptr) {if(ptr) free(ptr);} |
michael@0 | 139 | #endif /* MP_MACRO */ |
michael@0 | 140 | |
michael@0 | 141 | mp_err s_mp_grow(mp_int *mp, mp_size min); /* increase allocated size */ |
michael@0 | 142 | mp_err s_mp_pad(mp_int *mp, mp_size min); /* left pad with zeroes */ |
michael@0 | 143 | |
michael@0 | 144 | #if MP_MACRO == 0 |
michael@0 | 145 | void s_mp_clamp(mp_int *mp); /* clip leading zeroes */ |
michael@0 | 146 | #else |
michael@0 | 147 | #define s_mp_clamp(mp)\ |
michael@0 | 148 | { mp_size used = MP_USED(mp); \ |
michael@0 | 149 | while (used > 1 && DIGIT(mp, used - 1) == 0) --used; \ |
michael@0 | 150 | MP_USED(mp) = used; \ |
michael@0 | 151 | } |
michael@0 | 152 | #endif /* MP_MACRO */ |
michael@0 | 153 | |
michael@0 | 154 | void s_mp_exch(mp_int *a, mp_int *b); /* swap a and b in place */ |
michael@0 | 155 | |
michael@0 | 156 | mp_err s_mp_lshd(mp_int *mp, mp_size p); /* left-shift by p digits */ |
michael@0 | 157 | void s_mp_rshd(mp_int *mp, mp_size p); /* right-shift by p digits */ |
michael@0 | 158 | mp_err s_mp_mul_2d(mp_int *mp, mp_digit d); /* multiply by 2^d in place */ |
michael@0 | 159 | void s_mp_div_2d(mp_int *mp, mp_digit d); /* divide by 2^d in place */ |
michael@0 | 160 | void s_mp_mod_2d(mp_int *mp, mp_digit d); /* modulo 2^d in place */ |
michael@0 | 161 | void s_mp_div_2(mp_int *mp); /* divide by 2 in place */ |
michael@0 | 162 | mp_err s_mp_mul_2(mp_int *mp); /* multiply by 2 in place */ |
michael@0 | 163 | mp_err s_mp_norm(mp_int *a, mp_int *b, mp_digit *pd); |
michael@0 | 164 | /* normalize for division */ |
michael@0 | 165 | mp_err s_mp_add_d(mp_int *mp, mp_digit d); /* unsigned digit addition */ |
michael@0 | 166 | mp_err s_mp_sub_d(mp_int *mp, mp_digit d); /* unsigned digit subtract */ |
michael@0 | 167 | mp_err s_mp_mul_d(mp_int *mp, mp_digit d); /* unsigned digit multiply */ |
michael@0 | 168 | mp_err s_mp_div_d(mp_int *mp, mp_digit d, mp_digit *r); |
michael@0 | 169 | /* unsigned digit divide */ |
michael@0 | 170 | mp_err s_mp_reduce(mp_int *x, const mp_int *m, const mp_int *mu); |
michael@0 | 171 | /* Barrett reduction */ |
michael@0 | 172 | mp_err s_mp_add(mp_int *a, const mp_int *b); /* magnitude addition */ |
michael@0 | 173 | mp_err s_mp_add_3arg(const mp_int *a, const mp_int *b, mp_int *c); |
michael@0 | 174 | mp_err s_mp_sub(mp_int *a, const mp_int *b); /* magnitude subtract */ |
michael@0 | 175 | mp_err s_mp_sub_3arg(const mp_int *a, const mp_int *b, mp_int *c); |
michael@0 | 176 | mp_err s_mp_add_offset(mp_int *a, mp_int *b, mp_size offset); |
michael@0 | 177 | /* a += b * RADIX^offset */ |
michael@0 | 178 | mp_err s_mp_mul(mp_int *a, const mp_int *b); /* magnitude multiply */ |
michael@0 | 179 | #if MP_SQUARE |
michael@0 | 180 | mp_err s_mp_sqr(mp_int *a); /* magnitude square */ |
michael@0 | 181 | #else |
michael@0 | 182 | #define s_mp_sqr(a) s_mp_mul(a, a) |
michael@0 | 183 | #endif |
michael@0 | 184 | mp_err s_mp_div(mp_int *rem, mp_int *div, mp_int *quot); /* magnitude div */ |
michael@0 | 185 | mp_err s_mp_exptmod(const mp_int *a, const mp_int *b, const mp_int *m, mp_int *c); |
michael@0 | 186 | mp_err s_mp_2expt(mp_int *a, mp_digit k); /* a = 2^k */ |
michael@0 | 187 | int s_mp_cmp(const mp_int *a, const mp_int *b); /* magnitude comparison */ |
michael@0 | 188 | int s_mp_cmp_d(const mp_int *a, mp_digit d); /* magnitude digit compare */ |
michael@0 | 189 | int s_mp_ispow2(const mp_int *v); /* is v a power of 2? */ |
michael@0 | 190 | int s_mp_ispow2d(mp_digit d); /* is d a power of 2? */ |
michael@0 | 191 | |
michael@0 | 192 | int s_mp_tovalue(char ch, int r); /* convert ch to value */ |
michael@0 | 193 | char s_mp_todigit(mp_digit val, int r, int low); /* convert val to digit */ |
michael@0 | 194 | int s_mp_outlen(int bits, int r); /* output length in bytes */ |
michael@0 | 195 | mp_digit s_mp_invmod_radix(mp_digit P); /* returns (P ** -1) mod RADIX */ |
michael@0 | 196 | mp_err s_mp_invmod_odd_m( const mp_int *a, const mp_int *m, mp_int *c); |
michael@0 | 197 | mp_err s_mp_invmod_2d( const mp_int *a, mp_size k, mp_int *c); |
michael@0 | 198 | mp_err s_mp_invmod_even_m(const mp_int *a, const mp_int *m, mp_int *c); |
michael@0 | 199 | |
michael@0 | 200 | #ifdef NSS_USE_COMBA |
michael@0 | 201 | |
michael@0 | 202 | #define IS_POWER_OF_2(a) ((a) && !((a) & ((a)-1))) |
michael@0 | 203 | |
michael@0 | 204 | void s_mp_mul_comba_4(const mp_int *A, const mp_int *B, mp_int *C); |
michael@0 | 205 | void s_mp_mul_comba_8(const mp_int *A, const mp_int *B, mp_int *C); |
michael@0 | 206 | void s_mp_mul_comba_16(const mp_int *A, const mp_int *B, mp_int *C); |
michael@0 | 207 | void s_mp_mul_comba_32(const mp_int *A, const mp_int *B, mp_int *C); |
michael@0 | 208 | |
michael@0 | 209 | void s_mp_sqr_comba_4(const mp_int *A, mp_int *B); |
michael@0 | 210 | void s_mp_sqr_comba_8(const mp_int *A, mp_int *B); |
michael@0 | 211 | void s_mp_sqr_comba_16(const mp_int *A, mp_int *B); |
michael@0 | 212 | void s_mp_sqr_comba_32(const mp_int *A, mp_int *B); |
michael@0 | 213 | |
michael@0 | 214 | #endif /* end NSS_USE_COMBA */ |
michael@0 | 215 | |
michael@0 | 216 | /* ------ mpv functions, operate on arrays of digits, not on mp_int's ------ */ |
michael@0 | 217 | #if defined (__OS2__) && defined (__IBMC__) |
michael@0 | 218 | #define MPI_ASM_DECL __cdecl |
michael@0 | 219 | #else |
michael@0 | 220 | #define MPI_ASM_DECL |
michael@0 | 221 | #endif |
michael@0 | 222 | |
michael@0 | 223 | #ifdef MPI_AMD64 |
michael@0 | 224 | |
michael@0 | 225 | mp_digit MPI_ASM_DECL s_mpv_mul_set_vec64(mp_digit*, mp_digit *, mp_size, mp_digit); |
michael@0 | 226 | mp_digit MPI_ASM_DECL s_mpv_mul_add_vec64(mp_digit*, const mp_digit*, mp_size, mp_digit); |
michael@0 | 227 | |
michael@0 | 228 | /* c = a * b */ |
michael@0 | 229 | #define s_mpv_mul_d(a, a_len, b, c) \ |
michael@0 | 230 | ((mp_digit *)c)[a_len] = s_mpv_mul_set_vec64(c, a, a_len, b) |
michael@0 | 231 | |
michael@0 | 232 | /* c += a * b */ |
michael@0 | 233 | #define s_mpv_mul_d_add(a, a_len, b, c) \ |
michael@0 | 234 | ((mp_digit *)c)[a_len] = s_mpv_mul_add_vec64(c, a, a_len, b) |
michael@0 | 235 | |
michael@0 | 236 | |
michael@0 | 237 | #else |
michael@0 | 238 | |
michael@0 | 239 | void MPI_ASM_DECL s_mpv_mul_d(const mp_digit *a, mp_size a_len, |
michael@0 | 240 | mp_digit b, mp_digit *c); |
michael@0 | 241 | void MPI_ASM_DECL s_mpv_mul_d_add(const mp_digit *a, mp_size a_len, |
michael@0 | 242 | mp_digit b, mp_digit *c); |
michael@0 | 243 | |
michael@0 | 244 | #endif |
michael@0 | 245 | |
michael@0 | 246 | void MPI_ASM_DECL s_mpv_mul_d_add_prop(const mp_digit *a, |
michael@0 | 247 | mp_size a_len, mp_digit b, |
michael@0 | 248 | mp_digit *c); |
michael@0 | 249 | void MPI_ASM_DECL s_mpv_sqr_add_prop(const mp_digit *a, |
michael@0 | 250 | mp_size a_len, |
michael@0 | 251 | mp_digit *sqrs); |
michael@0 | 252 | |
michael@0 | 253 | mp_err MPI_ASM_DECL s_mpv_div_2dx1d(mp_digit Nhi, mp_digit Nlo, |
michael@0 | 254 | mp_digit divisor, mp_digit *quot, mp_digit *rem); |
michael@0 | 255 | |
michael@0 | 256 | /* c += a * b * (MP_RADIX ** offset); */ |
michael@0 | 257 | #define s_mp_mul_d_add_offset(a, b, c, off) \ |
michael@0 | 258 | (s_mpv_mul_d_add_prop(MP_DIGITS(a), MP_USED(a), b, MP_DIGITS(c) + off), MP_OKAY) |
michael@0 | 259 | |
michael@0 | 260 | typedef struct { |
michael@0 | 261 | mp_int N; /* modulus N */ |
michael@0 | 262 | mp_digit n0prime; /* n0' = - (n0 ** -1) mod MP_RADIX */ |
michael@0 | 263 | } mp_mont_modulus; |
michael@0 | 264 | |
michael@0 | 265 | mp_err s_mp_mul_mont(const mp_int *a, const mp_int *b, mp_int *c, |
michael@0 | 266 | mp_mont_modulus *mmm); |
michael@0 | 267 | mp_err s_mp_redc(mp_int *T, mp_mont_modulus *mmm); |
michael@0 | 268 | |
michael@0 | 269 | /* |
michael@0 | 270 | * s_mpi_getProcessorLineSize() returns the size in bytes of the cache line |
michael@0 | 271 | * if a cache exists, or zero if there is no cache. If more than one |
michael@0 | 272 | * cache line exists, it should return the smallest line size (which is |
michael@0 | 273 | * usually the L1 cache). |
michael@0 | 274 | * |
michael@0 | 275 | * mp_modexp uses this information to make sure that private key information |
michael@0 | 276 | * isn't being leaked through the cache. |
michael@0 | 277 | * |
michael@0 | 278 | * see mpcpucache.c for the implementation. |
michael@0 | 279 | */ |
michael@0 | 280 | unsigned long s_mpi_getProcessorLineSize(); |
michael@0 | 281 | |
michael@0 | 282 | /* }}} */ |
michael@0 | 283 | #endif |
michael@0 | 284 |