Sat, 03 Jan 2015 20:18:00 +0100
Conditionally enable double key logic according to:
private browsing mode or privacy.thirdparty.isolate preference and
implement in GetCookieStringCommon and FindCookie where it counts...
With some reservations of how to convince FindCookie users to test
condition and pass a nullptr when disabling double key logic.
michael@0 | 1 | |
michael@0 | 2 | /* |
michael@0 | 3 | * Copyright 2008 The Android Open Source Project |
michael@0 | 4 | * |
michael@0 | 5 | * Use of this source code is governed by a BSD-style license that can be |
michael@0 | 6 | * found in the LICENSE file. |
michael@0 | 7 | */ |
michael@0 | 8 | |
michael@0 | 9 | |
michael@0 | 10 | #include "SkPoint.h" |
michael@0 | 11 | |
michael@0 | 12 | void SkIPoint::rotateCW(SkIPoint* dst) const { |
michael@0 | 13 | SkASSERT(dst); |
michael@0 | 14 | |
michael@0 | 15 | // use a tmp in case this == dst |
michael@0 | 16 | int32_t tmp = fX; |
michael@0 | 17 | dst->fX = -fY; |
michael@0 | 18 | dst->fY = tmp; |
michael@0 | 19 | } |
michael@0 | 20 | |
michael@0 | 21 | void SkIPoint::rotateCCW(SkIPoint* dst) const { |
michael@0 | 22 | SkASSERT(dst); |
michael@0 | 23 | |
michael@0 | 24 | // use a tmp in case this == dst |
michael@0 | 25 | int32_t tmp = fX; |
michael@0 | 26 | dst->fX = fY; |
michael@0 | 27 | dst->fY = -tmp; |
michael@0 | 28 | } |
michael@0 | 29 | |
michael@0 | 30 | /////////////////////////////////////////////////////////////////////////////// |
michael@0 | 31 | |
michael@0 | 32 | void SkPoint::setIRectFan(int l, int t, int r, int b, size_t stride) { |
michael@0 | 33 | SkASSERT(stride >= sizeof(SkPoint)); |
michael@0 | 34 | |
michael@0 | 35 | ((SkPoint*)((intptr_t)this + 0 * stride))->set(SkIntToScalar(l), |
michael@0 | 36 | SkIntToScalar(t)); |
michael@0 | 37 | ((SkPoint*)((intptr_t)this + 1 * stride))->set(SkIntToScalar(l), |
michael@0 | 38 | SkIntToScalar(b)); |
michael@0 | 39 | ((SkPoint*)((intptr_t)this + 2 * stride))->set(SkIntToScalar(r), |
michael@0 | 40 | SkIntToScalar(b)); |
michael@0 | 41 | ((SkPoint*)((intptr_t)this + 3 * stride))->set(SkIntToScalar(r), |
michael@0 | 42 | SkIntToScalar(t)); |
michael@0 | 43 | } |
michael@0 | 44 | |
michael@0 | 45 | void SkPoint::setRectFan(SkScalar l, SkScalar t, SkScalar r, SkScalar b, |
michael@0 | 46 | size_t stride) { |
michael@0 | 47 | SkASSERT(stride >= sizeof(SkPoint)); |
michael@0 | 48 | |
michael@0 | 49 | ((SkPoint*)((intptr_t)this + 0 * stride))->set(l, t); |
michael@0 | 50 | ((SkPoint*)((intptr_t)this + 1 * stride))->set(l, b); |
michael@0 | 51 | ((SkPoint*)((intptr_t)this + 2 * stride))->set(r, b); |
michael@0 | 52 | ((SkPoint*)((intptr_t)this + 3 * stride))->set(r, t); |
michael@0 | 53 | } |
michael@0 | 54 | |
michael@0 | 55 | void SkPoint::rotateCW(SkPoint* dst) const { |
michael@0 | 56 | SkASSERT(dst); |
michael@0 | 57 | |
michael@0 | 58 | // use a tmp in case this == dst |
michael@0 | 59 | SkScalar tmp = fX; |
michael@0 | 60 | dst->fX = -fY; |
michael@0 | 61 | dst->fY = tmp; |
michael@0 | 62 | } |
michael@0 | 63 | |
michael@0 | 64 | void SkPoint::rotateCCW(SkPoint* dst) const { |
michael@0 | 65 | SkASSERT(dst); |
michael@0 | 66 | |
michael@0 | 67 | // use a tmp in case this == dst |
michael@0 | 68 | SkScalar tmp = fX; |
michael@0 | 69 | dst->fX = fY; |
michael@0 | 70 | dst->fY = -tmp; |
michael@0 | 71 | } |
michael@0 | 72 | |
michael@0 | 73 | void SkPoint::scale(SkScalar scale, SkPoint* dst) const { |
michael@0 | 74 | SkASSERT(dst); |
michael@0 | 75 | dst->set(SkScalarMul(fX, scale), SkScalarMul(fY, scale)); |
michael@0 | 76 | } |
michael@0 | 77 | |
michael@0 | 78 | bool SkPoint::normalize() { |
michael@0 | 79 | return this->setLength(fX, fY, SK_Scalar1); |
michael@0 | 80 | } |
michael@0 | 81 | |
michael@0 | 82 | bool SkPoint::setNormalize(SkScalar x, SkScalar y) { |
michael@0 | 83 | return this->setLength(x, y, SK_Scalar1); |
michael@0 | 84 | } |
michael@0 | 85 | |
michael@0 | 86 | bool SkPoint::setLength(SkScalar length) { |
michael@0 | 87 | return this->setLength(fX, fY, length); |
michael@0 | 88 | } |
michael@0 | 89 | |
michael@0 | 90 | // Returns the square of the Euclidian distance to (dx,dy). |
michael@0 | 91 | static inline float getLengthSquared(float dx, float dy) { |
michael@0 | 92 | return dx * dx + dy * dy; |
michael@0 | 93 | } |
michael@0 | 94 | |
michael@0 | 95 | // Calculates the square of the Euclidian distance to (dx,dy) and stores it in |
michael@0 | 96 | // *lengthSquared. Returns true if the distance is judged to be "nearly zero". |
michael@0 | 97 | // |
michael@0 | 98 | // This logic is encapsulated in a helper method to make it explicit that we |
michael@0 | 99 | // always perform this check in the same manner, to avoid inconsistencies |
michael@0 | 100 | // (see http://code.google.com/p/skia/issues/detail?id=560 ). |
michael@0 | 101 | static inline bool isLengthNearlyZero(float dx, float dy, |
michael@0 | 102 | float *lengthSquared) { |
michael@0 | 103 | *lengthSquared = getLengthSquared(dx, dy); |
michael@0 | 104 | return *lengthSquared <= (SK_ScalarNearlyZero * SK_ScalarNearlyZero); |
michael@0 | 105 | } |
michael@0 | 106 | |
michael@0 | 107 | SkScalar SkPoint::Normalize(SkPoint* pt) { |
michael@0 | 108 | float x = pt->fX; |
michael@0 | 109 | float y = pt->fY; |
michael@0 | 110 | float mag2; |
michael@0 | 111 | if (isLengthNearlyZero(x, y, &mag2)) { |
michael@0 | 112 | return 0; |
michael@0 | 113 | } |
michael@0 | 114 | |
michael@0 | 115 | float mag, scale; |
michael@0 | 116 | if (SkScalarIsFinite(mag2)) { |
michael@0 | 117 | mag = sk_float_sqrt(mag2); |
michael@0 | 118 | scale = 1 / mag; |
michael@0 | 119 | } else { |
michael@0 | 120 | // our mag2 step overflowed to infinity, so use doubles instead. |
michael@0 | 121 | // much slower, but needed when x or y are very large, other wise we |
michael@0 | 122 | // divide by inf. and return (0,0) vector. |
michael@0 | 123 | double xx = x; |
michael@0 | 124 | double yy = y; |
michael@0 | 125 | double magmag = sqrt(xx * xx + yy * yy); |
michael@0 | 126 | mag = (float)magmag; |
michael@0 | 127 | // we perform the divide with the double magmag, to stay exactly the |
michael@0 | 128 | // same as setLength. It would be faster to perform the divide with |
michael@0 | 129 | // mag, but it is possible that mag has overflowed to inf. but still |
michael@0 | 130 | // have a non-zero value for scale (thanks to denormalized numbers). |
michael@0 | 131 | scale = (float)(1 / magmag); |
michael@0 | 132 | } |
michael@0 | 133 | pt->set(x * scale, y * scale); |
michael@0 | 134 | return mag; |
michael@0 | 135 | } |
michael@0 | 136 | |
michael@0 | 137 | SkScalar SkPoint::Length(SkScalar dx, SkScalar dy) { |
michael@0 | 138 | float mag2 = dx * dx + dy * dy; |
michael@0 | 139 | if (SkScalarIsFinite(mag2)) { |
michael@0 | 140 | return sk_float_sqrt(mag2); |
michael@0 | 141 | } else { |
michael@0 | 142 | double xx = dx; |
michael@0 | 143 | double yy = dy; |
michael@0 | 144 | return (float)sqrt(xx * xx + yy * yy); |
michael@0 | 145 | } |
michael@0 | 146 | } |
michael@0 | 147 | |
michael@0 | 148 | /* |
michael@0 | 149 | * We have to worry about 2 tricky conditions: |
michael@0 | 150 | * 1. underflow of mag2 (compared against nearlyzero^2) |
michael@0 | 151 | * 2. overflow of mag2 (compared w/ isfinite) |
michael@0 | 152 | * |
michael@0 | 153 | * If we underflow, we return false. If we overflow, we compute again using |
michael@0 | 154 | * doubles, which is much slower (3x in a desktop test) but will not overflow. |
michael@0 | 155 | */ |
michael@0 | 156 | bool SkPoint::setLength(float x, float y, float length) { |
michael@0 | 157 | float mag2; |
michael@0 | 158 | if (isLengthNearlyZero(x, y, &mag2)) { |
michael@0 | 159 | return false; |
michael@0 | 160 | } |
michael@0 | 161 | |
michael@0 | 162 | float scale; |
michael@0 | 163 | if (SkScalarIsFinite(mag2)) { |
michael@0 | 164 | scale = length / sk_float_sqrt(mag2); |
michael@0 | 165 | } else { |
michael@0 | 166 | // our mag2 step overflowed to infinity, so use doubles instead. |
michael@0 | 167 | // much slower, but needed when x or y are very large, other wise we |
michael@0 | 168 | // divide by inf. and return (0,0) vector. |
michael@0 | 169 | double xx = x; |
michael@0 | 170 | double yy = y; |
michael@0 | 171 | scale = (float)(length / sqrt(xx * xx + yy * yy)); |
michael@0 | 172 | } |
michael@0 | 173 | fX = x * scale; |
michael@0 | 174 | fY = y * scale; |
michael@0 | 175 | return true; |
michael@0 | 176 | } |
michael@0 | 177 | |
michael@0 | 178 | bool SkPoint::setLengthFast(float length) { |
michael@0 | 179 | return this->setLengthFast(fX, fY, length); |
michael@0 | 180 | } |
michael@0 | 181 | |
michael@0 | 182 | bool SkPoint::setLengthFast(float x, float y, float length) { |
michael@0 | 183 | float mag2; |
michael@0 | 184 | if (isLengthNearlyZero(x, y, &mag2)) { |
michael@0 | 185 | return false; |
michael@0 | 186 | } |
michael@0 | 187 | |
michael@0 | 188 | float scale; |
michael@0 | 189 | if (SkScalarIsFinite(mag2)) { |
michael@0 | 190 | scale = length * sk_float_rsqrt(mag2); // <--- this is the difference |
michael@0 | 191 | } else { |
michael@0 | 192 | // our mag2 step overflowed to infinity, so use doubles instead. |
michael@0 | 193 | // much slower, but needed when x or y are very large, other wise we |
michael@0 | 194 | // divide by inf. and return (0,0) vector. |
michael@0 | 195 | double xx = x; |
michael@0 | 196 | double yy = y; |
michael@0 | 197 | scale = (float)(length / sqrt(xx * xx + yy * yy)); |
michael@0 | 198 | } |
michael@0 | 199 | fX = x * scale; |
michael@0 | 200 | fY = y * scale; |
michael@0 | 201 | return true; |
michael@0 | 202 | } |
michael@0 | 203 | |
michael@0 | 204 | |
michael@0 | 205 | /////////////////////////////////////////////////////////////////////////////// |
michael@0 | 206 | |
michael@0 | 207 | SkScalar SkPoint::distanceToLineBetweenSqd(const SkPoint& a, |
michael@0 | 208 | const SkPoint& b, |
michael@0 | 209 | Side* side) const { |
michael@0 | 210 | |
michael@0 | 211 | SkVector u = b - a; |
michael@0 | 212 | SkVector v = *this - a; |
michael@0 | 213 | |
michael@0 | 214 | SkScalar uLengthSqd = u.lengthSqd(); |
michael@0 | 215 | SkScalar det = u.cross(v); |
michael@0 | 216 | if (NULL != side) { |
michael@0 | 217 | SkASSERT(-1 == SkPoint::kLeft_Side && |
michael@0 | 218 | 0 == SkPoint::kOn_Side && |
michael@0 | 219 | 1 == kRight_Side); |
michael@0 | 220 | *side = (Side) SkScalarSignAsInt(det); |
michael@0 | 221 | } |
michael@0 | 222 | return SkScalarMulDiv(det, det, uLengthSqd); |
michael@0 | 223 | } |
michael@0 | 224 | |
michael@0 | 225 | SkScalar SkPoint::distanceToLineSegmentBetweenSqd(const SkPoint& a, |
michael@0 | 226 | const SkPoint& b) const { |
michael@0 | 227 | // See comments to distanceToLineBetweenSqd. If the projection of c onto |
michael@0 | 228 | // u is between a and b then this returns the same result as that |
michael@0 | 229 | // function. Otherwise, it returns the distance to the closer of a and |
michael@0 | 230 | // b. Let the projection of v onto u be v'. There are three cases: |
michael@0 | 231 | // 1. v' points opposite to u. c is not between a and b and is closer |
michael@0 | 232 | // to a than b. |
michael@0 | 233 | // 2. v' points along u and has magnitude less than y. c is between |
michael@0 | 234 | // a and b and the distance to the segment is the same as distance |
michael@0 | 235 | // to the line ab. |
michael@0 | 236 | // 3. v' points along u and has greater magnitude than u. c is not |
michael@0 | 237 | // not between a and b and is closer to b than a. |
michael@0 | 238 | // v' = (u dot v) * u / |u|. So if (u dot v)/|u| is less than zero we're |
michael@0 | 239 | // in case 1. If (u dot v)/|u| is > |u| we are in case 3. Otherwise |
michael@0 | 240 | // we're in case 2. We actually compare (u dot v) to 0 and |u|^2 to |
michael@0 | 241 | // avoid a sqrt to compute |u|. |
michael@0 | 242 | |
michael@0 | 243 | SkVector u = b - a; |
michael@0 | 244 | SkVector v = *this - a; |
michael@0 | 245 | |
michael@0 | 246 | SkScalar uLengthSqd = u.lengthSqd(); |
michael@0 | 247 | SkScalar uDotV = SkPoint::DotProduct(u, v); |
michael@0 | 248 | |
michael@0 | 249 | if (uDotV <= 0) { |
michael@0 | 250 | return v.lengthSqd(); |
michael@0 | 251 | } else if (uDotV > uLengthSqd) { |
michael@0 | 252 | return b.distanceToSqd(*this); |
michael@0 | 253 | } else { |
michael@0 | 254 | SkScalar det = u.cross(v); |
michael@0 | 255 | return SkScalarMulDiv(det, det, uLengthSqd); |
michael@0 | 256 | } |
michael@0 | 257 | } |