gfx/skia/trunk/src/core/SkPoint.cpp

Sat, 03 Jan 2015 20:18:00 +0100

author
Michael Schloh von Bennewitz <michael@schloh.com>
date
Sat, 03 Jan 2015 20:18:00 +0100
branch
TOR_BUG_3246
changeset 7
129ffea94266
permissions
-rw-r--r--

Conditionally enable double key logic according to:
private browsing mode or privacy.thirdparty.isolate preference and
implement in GetCookieStringCommon and FindCookie where it counts...
With some reservations of how to convince FindCookie users to test
condition and pass a nullptr when disabling double key logic.

     2 /*
     3  * Copyright 2008 The Android Open Source Project
     4  *
     5  * Use of this source code is governed by a BSD-style license that can be
     6  * found in the LICENSE file.
     7  */
    10 #include "SkPoint.h"
    12 void SkIPoint::rotateCW(SkIPoint* dst) const {
    13     SkASSERT(dst);
    15     // use a tmp in case this == dst
    16     int32_t tmp = fX;
    17     dst->fX = -fY;
    18     dst->fY = tmp;
    19 }
    21 void SkIPoint::rotateCCW(SkIPoint* dst) const {
    22     SkASSERT(dst);
    24     // use a tmp in case this == dst
    25     int32_t tmp = fX;
    26     dst->fX = fY;
    27     dst->fY = -tmp;
    28 }
    30 ///////////////////////////////////////////////////////////////////////////////
    32 void SkPoint::setIRectFan(int l, int t, int r, int b, size_t stride) {
    33     SkASSERT(stride >= sizeof(SkPoint));
    35     ((SkPoint*)((intptr_t)this + 0 * stride))->set(SkIntToScalar(l),
    36                                                    SkIntToScalar(t));
    37     ((SkPoint*)((intptr_t)this + 1 * stride))->set(SkIntToScalar(l),
    38                                                    SkIntToScalar(b));
    39     ((SkPoint*)((intptr_t)this + 2 * stride))->set(SkIntToScalar(r),
    40                                                    SkIntToScalar(b));
    41     ((SkPoint*)((intptr_t)this + 3 * stride))->set(SkIntToScalar(r),
    42                                                    SkIntToScalar(t));
    43 }
    45 void SkPoint::setRectFan(SkScalar l, SkScalar t, SkScalar r, SkScalar b,
    46                          size_t stride) {
    47     SkASSERT(stride >= sizeof(SkPoint));
    49     ((SkPoint*)((intptr_t)this + 0 * stride))->set(l, t);
    50     ((SkPoint*)((intptr_t)this + 1 * stride))->set(l, b);
    51     ((SkPoint*)((intptr_t)this + 2 * stride))->set(r, b);
    52     ((SkPoint*)((intptr_t)this + 3 * stride))->set(r, t);
    53 }
    55 void SkPoint::rotateCW(SkPoint* dst) const {
    56     SkASSERT(dst);
    58     // use a tmp in case this == dst
    59     SkScalar tmp = fX;
    60     dst->fX = -fY;
    61     dst->fY = tmp;
    62 }
    64 void SkPoint::rotateCCW(SkPoint* dst) const {
    65     SkASSERT(dst);
    67     // use a tmp in case this == dst
    68     SkScalar tmp = fX;
    69     dst->fX = fY;
    70     dst->fY = -tmp;
    71 }
    73 void SkPoint::scale(SkScalar scale, SkPoint* dst) const {
    74     SkASSERT(dst);
    75     dst->set(SkScalarMul(fX, scale), SkScalarMul(fY, scale));
    76 }
    78 bool SkPoint::normalize() {
    79     return this->setLength(fX, fY, SK_Scalar1);
    80 }
    82 bool SkPoint::setNormalize(SkScalar x, SkScalar y) {
    83     return this->setLength(x, y, SK_Scalar1);
    84 }
    86 bool SkPoint::setLength(SkScalar length) {
    87     return this->setLength(fX, fY, length);
    88 }
    90 // Returns the square of the Euclidian distance to (dx,dy).
    91 static inline float getLengthSquared(float dx, float dy) {
    92     return dx * dx + dy * dy;
    93 }
    95 // Calculates the square of the Euclidian distance to (dx,dy) and stores it in
    96 // *lengthSquared.  Returns true if the distance is judged to be "nearly zero".
    97 //
    98 // This logic is encapsulated in a helper method to make it explicit that we
    99 // always perform this check in the same manner, to avoid inconsistencies
   100 // (see http://code.google.com/p/skia/issues/detail?id=560 ).
   101 static inline bool isLengthNearlyZero(float dx, float dy,
   102                                       float *lengthSquared) {
   103     *lengthSquared = getLengthSquared(dx, dy);
   104     return *lengthSquared <= (SK_ScalarNearlyZero * SK_ScalarNearlyZero);
   105 }
   107 SkScalar SkPoint::Normalize(SkPoint* pt) {
   108     float x = pt->fX;
   109     float y = pt->fY;
   110     float mag2;
   111     if (isLengthNearlyZero(x, y, &mag2)) {
   112         return 0;
   113     }
   115     float mag, scale;
   116     if (SkScalarIsFinite(mag2)) {
   117         mag = sk_float_sqrt(mag2);
   118         scale = 1 / mag;
   119     } else {
   120         // our mag2 step overflowed to infinity, so use doubles instead.
   121         // much slower, but needed when x or y are very large, other wise we
   122         // divide by inf. and return (0,0) vector.
   123         double xx = x;
   124         double yy = y;
   125         double magmag = sqrt(xx * xx + yy * yy);
   126         mag = (float)magmag;
   127         // we perform the divide with the double magmag, to stay exactly the
   128         // same as setLength. It would be faster to perform the divide with
   129         // mag, but it is possible that mag has overflowed to inf. but still
   130         // have a non-zero value for scale (thanks to denormalized numbers).
   131         scale = (float)(1 / magmag);
   132     }
   133     pt->set(x * scale, y * scale);
   134     return mag;
   135 }
   137 SkScalar SkPoint::Length(SkScalar dx, SkScalar dy) {
   138     float mag2 = dx * dx + dy * dy;
   139     if (SkScalarIsFinite(mag2)) {
   140         return sk_float_sqrt(mag2);
   141     } else {
   142         double xx = dx;
   143         double yy = dy;
   144         return (float)sqrt(xx * xx + yy * yy);
   145     }
   146 }
   148 /*
   149  *  We have to worry about 2 tricky conditions:
   150  *  1. underflow of mag2 (compared against nearlyzero^2)
   151  *  2. overflow of mag2 (compared w/ isfinite)
   152  *
   153  *  If we underflow, we return false. If we overflow, we compute again using
   154  *  doubles, which is much slower (3x in a desktop test) but will not overflow.
   155  */
   156 bool SkPoint::setLength(float x, float y, float length) {
   157     float mag2;
   158     if (isLengthNearlyZero(x, y, &mag2)) {
   159         return false;
   160     }
   162     float scale;
   163     if (SkScalarIsFinite(mag2)) {
   164         scale = length / sk_float_sqrt(mag2);
   165     } else {
   166         // our mag2 step overflowed to infinity, so use doubles instead.
   167         // much slower, but needed when x or y are very large, other wise we
   168         // divide by inf. and return (0,0) vector.
   169         double xx = x;
   170         double yy = y;
   171         scale = (float)(length / sqrt(xx * xx + yy * yy));
   172     }
   173     fX = x * scale;
   174     fY = y * scale;
   175     return true;
   176 }
   178 bool SkPoint::setLengthFast(float length) {
   179     return this->setLengthFast(fX, fY, length);
   180 }
   182 bool SkPoint::setLengthFast(float x, float y, float length) {
   183     float mag2;
   184     if (isLengthNearlyZero(x, y, &mag2)) {
   185         return false;
   186     }
   188     float scale;
   189     if (SkScalarIsFinite(mag2)) {
   190         scale = length * sk_float_rsqrt(mag2);  // <--- this is the difference
   191     } else {
   192         // our mag2 step overflowed to infinity, so use doubles instead.
   193         // much slower, but needed when x or y are very large, other wise we
   194         // divide by inf. and return (0,0) vector.
   195         double xx = x;
   196         double yy = y;
   197         scale = (float)(length / sqrt(xx * xx + yy * yy));
   198     }
   199     fX = x * scale;
   200     fY = y * scale;
   201     return true;
   202 }
   205 ///////////////////////////////////////////////////////////////////////////////
   207 SkScalar SkPoint::distanceToLineBetweenSqd(const SkPoint& a,
   208                                            const SkPoint& b,
   209                                            Side* side) const {
   211     SkVector u = b - a;
   212     SkVector v = *this - a;
   214     SkScalar uLengthSqd = u.lengthSqd();
   215     SkScalar det = u.cross(v);
   216     if (NULL != side) {
   217         SkASSERT(-1 == SkPoint::kLeft_Side &&
   218                   0 == SkPoint::kOn_Side &&
   219                   1 == kRight_Side);
   220         *side = (Side) SkScalarSignAsInt(det);
   221     }
   222     return SkScalarMulDiv(det, det, uLengthSqd);
   223 }
   225 SkScalar SkPoint::distanceToLineSegmentBetweenSqd(const SkPoint& a,
   226                                                   const SkPoint& b) const {
   227     // See comments to distanceToLineBetweenSqd. If the projection of c onto
   228     // u is between a and b then this returns the same result as that
   229     // function. Otherwise, it returns the distance to the closer of a and
   230     // b. Let the projection of v onto u be v'.  There are three cases:
   231     //    1. v' points opposite to u. c is not between a and b and is closer
   232     //       to a than b.
   233     //    2. v' points along u and has magnitude less than y. c is between
   234     //       a and b and the distance to the segment is the same as distance
   235     //       to the line ab.
   236     //    3. v' points along u and has greater magnitude than u. c is not
   237     //       not between a and b and is closer to b than a.
   238     // v' = (u dot v) * u / |u|. So if (u dot v)/|u| is less than zero we're
   239     // in case 1. If (u dot v)/|u| is > |u| we are in case 3. Otherwise
   240     // we're in case 2. We actually compare (u dot v) to 0 and |u|^2 to
   241     // avoid a sqrt to compute |u|.
   243     SkVector u = b - a;
   244     SkVector v = *this - a;
   246     SkScalar uLengthSqd = u.lengthSqd();
   247     SkScalar uDotV = SkPoint::DotProduct(u, v);
   249     if (uDotV <= 0) {
   250         return v.lengthSqd();
   251     } else if (uDotV > uLengthSqd) {
   252         return b.distanceToSqd(*this);
   253     } else {
   254         SkScalar det = u.cross(v);
   255         return SkScalarMulDiv(det, det, uLengthSqd);
   256     }
   257 }

mercurial