|
1 |
|
2 /* |
|
3 * Copyright 2008 The Android Open Source Project |
|
4 * |
|
5 * Use of this source code is governed by a BSD-style license that can be |
|
6 * found in the LICENSE file. |
|
7 */ |
|
8 |
|
9 |
|
10 #include "SkPoint.h" |
|
11 |
|
12 void SkIPoint::rotateCW(SkIPoint* dst) const { |
|
13 SkASSERT(dst); |
|
14 |
|
15 // use a tmp in case this == dst |
|
16 int32_t tmp = fX; |
|
17 dst->fX = -fY; |
|
18 dst->fY = tmp; |
|
19 } |
|
20 |
|
21 void SkIPoint::rotateCCW(SkIPoint* dst) const { |
|
22 SkASSERT(dst); |
|
23 |
|
24 // use a tmp in case this == dst |
|
25 int32_t tmp = fX; |
|
26 dst->fX = fY; |
|
27 dst->fY = -tmp; |
|
28 } |
|
29 |
|
30 /////////////////////////////////////////////////////////////////////////////// |
|
31 |
|
32 void SkPoint::setIRectFan(int l, int t, int r, int b, size_t stride) { |
|
33 SkASSERT(stride >= sizeof(SkPoint)); |
|
34 |
|
35 ((SkPoint*)((intptr_t)this + 0 * stride))->set(SkIntToScalar(l), |
|
36 SkIntToScalar(t)); |
|
37 ((SkPoint*)((intptr_t)this + 1 * stride))->set(SkIntToScalar(l), |
|
38 SkIntToScalar(b)); |
|
39 ((SkPoint*)((intptr_t)this + 2 * stride))->set(SkIntToScalar(r), |
|
40 SkIntToScalar(b)); |
|
41 ((SkPoint*)((intptr_t)this + 3 * stride))->set(SkIntToScalar(r), |
|
42 SkIntToScalar(t)); |
|
43 } |
|
44 |
|
45 void SkPoint::setRectFan(SkScalar l, SkScalar t, SkScalar r, SkScalar b, |
|
46 size_t stride) { |
|
47 SkASSERT(stride >= sizeof(SkPoint)); |
|
48 |
|
49 ((SkPoint*)((intptr_t)this + 0 * stride))->set(l, t); |
|
50 ((SkPoint*)((intptr_t)this + 1 * stride))->set(l, b); |
|
51 ((SkPoint*)((intptr_t)this + 2 * stride))->set(r, b); |
|
52 ((SkPoint*)((intptr_t)this + 3 * stride))->set(r, t); |
|
53 } |
|
54 |
|
55 void SkPoint::rotateCW(SkPoint* dst) const { |
|
56 SkASSERT(dst); |
|
57 |
|
58 // use a tmp in case this == dst |
|
59 SkScalar tmp = fX; |
|
60 dst->fX = -fY; |
|
61 dst->fY = tmp; |
|
62 } |
|
63 |
|
64 void SkPoint::rotateCCW(SkPoint* dst) const { |
|
65 SkASSERT(dst); |
|
66 |
|
67 // use a tmp in case this == dst |
|
68 SkScalar tmp = fX; |
|
69 dst->fX = fY; |
|
70 dst->fY = -tmp; |
|
71 } |
|
72 |
|
73 void SkPoint::scale(SkScalar scale, SkPoint* dst) const { |
|
74 SkASSERT(dst); |
|
75 dst->set(SkScalarMul(fX, scale), SkScalarMul(fY, scale)); |
|
76 } |
|
77 |
|
78 bool SkPoint::normalize() { |
|
79 return this->setLength(fX, fY, SK_Scalar1); |
|
80 } |
|
81 |
|
82 bool SkPoint::setNormalize(SkScalar x, SkScalar y) { |
|
83 return this->setLength(x, y, SK_Scalar1); |
|
84 } |
|
85 |
|
86 bool SkPoint::setLength(SkScalar length) { |
|
87 return this->setLength(fX, fY, length); |
|
88 } |
|
89 |
|
90 // Returns the square of the Euclidian distance to (dx,dy). |
|
91 static inline float getLengthSquared(float dx, float dy) { |
|
92 return dx * dx + dy * dy; |
|
93 } |
|
94 |
|
95 // Calculates the square of the Euclidian distance to (dx,dy) and stores it in |
|
96 // *lengthSquared. Returns true if the distance is judged to be "nearly zero". |
|
97 // |
|
98 // This logic is encapsulated in a helper method to make it explicit that we |
|
99 // always perform this check in the same manner, to avoid inconsistencies |
|
100 // (see http://code.google.com/p/skia/issues/detail?id=560 ). |
|
101 static inline bool isLengthNearlyZero(float dx, float dy, |
|
102 float *lengthSquared) { |
|
103 *lengthSquared = getLengthSquared(dx, dy); |
|
104 return *lengthSquared <= (SK_ScalarNearlyZero * SK_ScalarNearlyZero); |
|
105 } |
|
106 |
|
107 SkScalar SkPoint::Normalize(SkPoint* pt) { |
|
108 float x = pt->fX; |
|
109 float y = pt->fY; |
|
110 float mag2; |
|
111 if (isLengthNearlyZero(x, y, &mag2)) { |
|
112 return 0; |
|
113 } |
|
114 |
|
115 float mag, scale; |
|
116 if (SkScalarIsFinite(mag2)) { |
|
117 mag = sk_float_sqrt(mag2); |
|
118 scale = 1 / mag; |
|
119 } else { |
|
120 // our mag2 step overflowed to infinity, so use doubles instead. |
|
121 // much slower, but needed when x or y are very large, other wise we |
|
122 // divide by inf. and return (0,0) vector. |
|
123 double xx = x; |
|
124 double yy = y; |
|
125 double magmag = sqrt(xx * xx + yy * yy); |
|
126 mag = (float)magmag; |
|
127 // we perform the divide with the double magmag, to stay exactly the |
|
128 // same as setLength. It would be faster to perform the divide with |
|
129 // mag, but it is possible that mag has overflowed to inf. but still |
|
130 // have a non-zero value for scale (thanks to denormalized numbers). |
|
131 scale = (float)(1 / magmag); |
|
132 } |
|
133 pt->set(x * scale, y * scale); |
|
134 return mag; |
|
135 } |
|
136 |
|
137 SkScalar SkPoint::Length(SkScalar dx, SkScalar dy) { |
|
138 float mag2 = dx * dx + dy * dy; |
|
139 if (SkScalarIsFinite(mag2)) { |
|
140 return sk_float_sqrt(mag2); |
|
141 } else { |
|
142 double xx = dx; |
|
143 double yy = dy; |
|
144 return (float)sqrt(xx * xx + yy * yy); |
|
145 } |
|
146 } |
|
147 |
|
148 /* |
|
149 * We have to worry about 2 tricky conditions: |
|
150 * 1. underflow of mag2 (compared against nearlyzero^2) |
|
151 * 2. overflow of mag2 (compared w/ isfinite) |
|
152 * |
|
153 * If we underflow, we return false. If we overflow, we compute again using |
|
154 * doubles, which is much slower (3x in a desktop test) but will not overflow. |
|
155 */ |
|
156 bool SkPoint::setLength(float x, float y, float length) { |
|
157 float mag2; |
|
158 if (isLengthNearlyZero(x, y, &mag2)) { |
|
159 return false; |
|
160 } |
|
161 |
|
162 float scale; |
|
163 if (SkScalarIsFinite(mag2)) { |
|
164 scale = length / sk_float_sqrt(mag2); |
|
165 } else { |
|
166 // our mag2 step overflowed to infinity, so use doubles instead. |
|
167 // much slower, but needed when x or y are very large, other wise we |
|
168 // divide by inf. and return (0,0) vector. |
|
169 double xx = x; |
|
170 double yy = y; |
|
171 scale = (float)(length / sqrt(xx * xx + yy * yy)); |
|
172 } |
|
173 fX = x * scale; |
|
174 fY = y * scale; |
|
175 return true; |
|
176 } |
|
177 |
|
178 bool SkPoint::setLengthFast(float length) { |
|
179 return this->setLengthFast(fX, fY, length); |
|
180 } |
|
181 |
|
182 bool SkPoint::setLengthFast(float x, float y, float length) { |
|
183 float mag2; |
|
184 if (isLengthNearlyZero(x, y, &mag2)) { |
|
185 return false; |
|
186 } |
|
187 |
|
188 float scale; |
|
189 if (SkScalarIsFinite(mag2)) { |
|
190 scale = length * sk_float_rsqrt(mag2); // <--- this is the difference |
|
191 } else { |
|
192 // our mag2 step overflowed to infinity, so use doubles instead. |
|
193 // much slower, but needed when x or y are very large, other wise we |
|
194 // divide by inf. and return (0,0) vector. |
|
195 double xx = x; |
|
196 double yy = y; |
|
197 scale = (float)(length / sqrt(xx * xx + yy * yy)); |
|
198 } |
|
199 fX = x * scale; |
|
200 fY = y * scale; |
|
201 return true; |
|
202 } |
|
203 |
|
204 |
|
205 /////////////////////////////////////////////////////////////////////////////// |
|
206 |
|
207 SkScalar SkPoint::distanceToLineBetweenSqd(const SkPoint& a, |
|
208 const SkPoint& b, |
|
209 Side* side) const { |
|
210 |
|
211 SkVector u = b - a; |
|
212 SkVector v = *this - a; |
|
213 |
|
214 SkScalar uLengthSqd = u.lengthSqd(); |
|
215 SkScalar det = u.cross(v); |
|
216 if (NULL != side) { |
|
217 SkASSERT(-1 == SkPoint::kLeft_Side && |
|
218 0 == SkPoint::kOn_Side && |
|
219 1 == kRight_Side); |
|
220 *side = (Side) SkScalarSignAsInt(det); |
|
221 } |
|
222 return SkScalarMulDiv(det, det, uLengthSqd); |
|
223 } |
|
224 |
|
225 SkScalar SkPoint::distanceToLineSegmentBetweenSqd(const SkPoint& a, |
|
226 const SkPoint& b) const { |
|
227 // See comments to distanceToLineBetweenSqd. If the projection of c onto |
|
228 // u is between a and b then this returns the same result as that |
|
229 // function. Otherwise, it returns the distance to the closer of a and |
|
230 // b. Let the projection of v onto u be v'. There are three cases: |
|
231 // 1. v' points opposite to u. c is not between a and b and is closer |
|
232 // to a than b. |
|
233 // 2. v' points along u and has magnitude less than y. c is between |
|
234 // a and b and the distance to the segment is the same as distance |
|
235 // to the line ab. |
|
236 // 3. v' points along u and has greater magnitude than u. c is not |
|
237 // not between a and b and is closer to b than a. |
|
238 // v' = (u dot v) * u / |u|. So if (u dot v)/|u| is less than zero we're |
|
239 // in case 1. If (u dot v)/|u| is > |u| we are in case 3. Otherwise |
|
240 // we're in case 2. We actually compare (u dot v) to 0 and |u|^2 to |
|
241 // avoid a sqrt to compute |u|. |
|
242 |
|
243 SkVector u = b - a; |
|
244 SkVector v = *this - a; |
|
245 |
|
246 SkScalar uLengthSqd = u.lengthSqd(); |
|
247 SkScalar uDotV = SkPoint::DotProduct(u, v); |
|
248 |
|
249 if (uDotV <= 0) { |
|
250 return v.lengthSqd(); |
|
251 } else if (uDotV > uLengthSqd) { |
|
252 return b.distanceToSqd(*this); |
|
253 } else { |
|
254 SkScalar det = u.cross(v); |
|
255 return SkScalarMulDiv(det, det, uLengthSqd); |
|
256 } |
|
257 } |