gfx/skia/trunk/src/gpu/GrAAHairLinePathRenderer.cpp

Sat, 03 Jan 2015 20:18:00 +0100

author
Michael Schloh von Bennewitz <michael@schloh.com>
date
Sat, 03 Jan 2015 20:18:00 +0100
branch
TOR_BUG_3246
changeset 7
129ffea94266
permissions
-rw-r--r--

Conditionally enable double key logic according to:
private browsing mode or privacy.thirdparty.isolate preference and
implement in GetCookieStringCommon and FindCookie where it counts...
With some reservations of how to convince FindCookie users to test
condition and pass a nullptr when disabling double key logic.

michael@0 1 /*
michael@0 2 * Copyright 2011 Google Inc.
michael@0 3 *
michael@0 4 * Use of this source code is governed by a BSD-style license that can be
michael@0 5 * found in the LICENSE file.
michael@0 6 */
michael@0 7
michael@0 8 #include "GrAAHairLinePathRenderer.h"
michael@0 9
michael@0 10 #include "GrContext.h"
michael@0 11 #include "GrDrawState.h"
michael@0 12 #include "GrDrawTargetCaps.h"
michael@0 13 #include "GrEffect.h"
michael@0 14 #include "GrGpu.h"
michael@0 15 #include "GrIndexBuffer.h"
michael@0 16 #include "GrPathUtils.h"
michael@0 17 #include "GrTBackendEffectFactory.h"
michael@0 18 #include "SkGeometry.h"
michael@0 19 #include "SkStroke.h"
michael@0 20 #include "SkTemplates.h"
michael@0 21
michael@0 22 #include "effects/GrBezierEffect.h"
michael@0 23
michael@0 24 namespace {
michael@0 25 // quadratics are rendered as 5-sided polys in order to bound the
michael@0 26 // AA stroke around the center-curve. See comments in push_quad_index_buffer and
michael@0 27 // bloat_quad. Quadratics and conics share an index buffer
michael@0 28 static const int kVertsPerQuad = 5;
michael@0 29 static const int kIdxsPerQuad = 9;
michael@0 30
michael@0 31 // lines are rendered as:
michael@0 32 // *______________*
michael@0 33 // |\ -_______ /|
michael@0 34 // | \ \ / |
michael@0 35 // | *--------* |
michael@0 36 // | / ______/ \ |
michael@0 37 // */_-__________\*
michael@0 38 // For: 6 vertices and 18 indices (for 6 triangles)
michael@0 39 static const int kVertsPerLineSeg = 6;
michael@0 40 static const int kIdxsPerLineSeg = 18;
michael@0 41
michael@0 42 static const int kNumQuadsInIdxBuffer = 256;
michael@0 43 static const size_t kQuadIdxSBufize = kIdxsPerQuad *
michael@0 44 sizeof(uint16_t) *
michael@0 45 kNumQuadsInIdxBuffer;
michael@0 46
michael@0 47 static const int kNumLineSegsInIdxBuffer = 256;
michael@0 48 static const size_t kLineSegIdxSBufize = kIdxsPerLineSeg *
michael@0 49 sizeof(uint16_t) *
michael@0 50 kNumLineSegsInIdxBuffer;
michael@0 51
michael@0 52 static bool push_quad_index_data(GrIndexBuffer* qIdxBuffer) {
michael@0 53 uint16_t* data = (uint16_t*) qIdxBuffer->lock();
michael@0 54 bool tempData = NULL == data;
michael@0 55 if (tempData) {
michael@0 56 data = SkNEW_ARRAY(uint16_t, kNumQuadsInIdxBuffer * kIdxsPerQuad);
michael@0 57 }
michael@0 58 for (int i = 0; i < kNumQuadsInIdxBuffer; ++i) {
michael@0 59
michael@0 60 // Each quadratic is rendered as a five sided polygon. This poly bounds
michael@0 61 // the quadratic's bounding triangle but has been expanded so that the
michael@0 62 // 1-pixel wide area around the curve is inside the poly.
michael@0 63 // If a,b,c are the original control points then the poly a0,b0,c0,c1,a1
michael@0 64 // that is rendered would look like this:
michael@0 65 // b0
michael@0 66 // b
michael@0 67 //
michael@0 68 // a0 c0
michael@0 69 // a c
michael@0 70 // a1 c1
michael@0 71 // Each is drawn as three triangles specified by these 9 indices:
michael@0 72 int baseIdx = i * kIdxsPerQuad;
michael@0 73 uint16_t baseVert = (uint16_t)(i * kVertsPerQuad);
michael@0 74 data[0 + baseIdx] = baseVert + 0; // a0
michael@0 75 data[1 + baseIdx] = baseVert + 1; // a1
michael@0 76 data[2 + baseIdx] = baseVert + 2; // b0
michael@0 77 data[3 + baseIdx] = baseVert + 2; // b0
michael@0 78 data[4 + baseIdx] = baseVert + 4; // c1
michael@0 79 data[5 + baseIdx] = baseVert + 3; // c0
michael@0 80 data[6 + baseIdx] = baseVert + 1; // a1
michael@0 81 data[7 + baseIdx] = baseVert + 4; // c1
michael@0 82 data[8 + baseIdx] = baseVert + 2; // b0
michael@0 83 }
michael@0 84 if (tempData) {
michael@0 85 bool ret = qIdxBuffer->updateData(data, kQuadIdxSBufize);
michael@0 86 delete[] data;
michael@0 87 return ret;
michael@0 88 } else {
michael@0 89 qIdxBuffer->unlock();
michael@0 90 return true;
michael@0 91 }
michael@0 92 }
michael@0 93
michael@0 94 static bool push_line_index_data(GrIndexBuffer* lIdxBuffer) {
michael@0 95 uint16_t* data = (uint16_t*) lIdxBuffer->lock();
michael@0 96 bool tempData = NULL == data;
michael@0 97 if (tempData) {
michael@0 98 data = SkNEW_ARRAY(uint16_t, kNumLineSegsInIdxBuffer * kIdxsPerLineSeg);
michael@0 99 }
michael@0 100 for (int i = 0; i < kNumLineSegsInIdxBuffer; ++i) {
michael@0 101 // Each line segment is rendered as two quads and two triangles.
michael@0 102 // p0 and p1 have alpha = 1 while all other points have alpha = 0.
michael@0 103 // The four external points are offset 1 pixel perpendicular to the
michael@0 104 // line and half a pixel parallel to the line.
michael@0 105 //
michael@0 106 // p4 p5
michael@0 107 // p0 p1
michael@0 108 // p2 p3
michael@0 109 //
michael@0 110 // Each is drawn as six triangles specified by these 18 indices:
michael@0 111 int baseIdx = i * kIdxsPerLineSeg;
michael@0 112 uint16_t baseVert = (uint16_t)(i * kVertsPerLineSeg);
michael@0 113 data[0 + baseIdx] = baseVert + 0;
michael@0 114 data[1 + baseIdx] = baseVert + 1;
michael@0 115 data[2 + baseIdx] = baseVert + 3;
michael@0 116
michael@0 117 data[3 + baseIdx] = baseVert + 0;
michael@0 118 data[4 + baseIdx] = baseVert + 3;
michael@0 119 data[5 + baseIdx] = baseVert + 2;
michael@0 120
michael@0 121 data[6 + baseIdx] = baseVert + 0;
michael@0 122 data[7 + baseIdx] = baseVert + 4;
michael@0 123 data[8 + baseIdx] = baseVert + 5;
michael@0 124
michael@0 125 data[9 + baseIdx] = baseVert + 0;
michael@0 126 data[10+ baseIdx] = baseVert + 5;
michael@0 127 data[11+ baseIdx] = baseVert + 1;
michael@0 128
michael@0 129 data[12 + baseIdx] = baseVert + 0;
michael@0 130 data[13 + baseIdx] = baseVert + 2;
michael@0 131 data[14 + baseIdx] = baseVert + 4;
michael@0 132
michael@0 133 data[15 + baseIdx] = baseVert + 1;
michael@0 134 data[16 + baseIdx] = baseVert + 5;
michael@0 135 data[17 + baseIdx] = baseVert + 3;
michael@0 136 }
michael@0 137 if (tempData) {
michael@0 138 bool ret = lIdxBuffer->updateData(data, kLineSegIdxSBufize);
michael@0 139 delete[] data;
michael@0 140 return ret;
michael@0 141 } else {
michael@0 142 lIdxBuffer->unlock();
michael@0 143 return true;
michael@0 144 }
michael@0 145 }
michael@0 146 }
michael@0 147
michael@0 148 GrPathRenderer* GrAAHairLinePathRenderer::Create(GrContext* context) {
michael@0 149 GrGpu* gpu = context->getGpu();
michael@0 150 GrIndexBuffer* qIdxBuf = gpu->createIndexBuffer(kQuadIdxSBufize, false);
michael@0 151 SkAutoTUnref<GrIndexBuffer> qIdxBuffer(qIdxBuf);
michael@0 152 if (NULL == qIdxBuf || !push_quad_index_data(qIdxBuf)) {
michael@0 153 return NULL;
michael@0 154 }
michael@0 155 GrIndexBuffer* lIdxBuf = gpu->createIndexBuffer(kLineSegIdxSBufize, false);
michael@0 156 SkAutoTUnref<GrIndexBuffer> lIdxBuffer(lIdxBuf);
michael@0 157 if (NULL == lIdxBuf || !push_line_index_data(lIdxBuf)) {
michael@0 158 return NULL;
michael@0 159 }
michael@0 160 return SkNEW_ARGS(GrAAHairLinePathRenderer,
michael@0 161 (context, lIdxBuf, qIdxBuf));
michael@0 162 }
michael@0 163
michael@0 164 GrAAHairLinePathRenderer::GrAAHairLinePathRenderer(
michael@0 165 const GrContext* context,
michael@0 166 const GrIndexBuffer* linesIndexBuffer,
michael@0 167 const GrIndexBuffer* quadsIndexBuffer) {
michael@0 168 fLinesIndexBuffer = linesIndexBuffer;
michael@0 169 linesIndexBuffer->ref();
michael@0 170 fQuadsIndexBuffer = quadsIndexBuffer;
michael@0 171 quadsIndexBuffer->ref();
michael@0 172 }
michael@0 173
michael@0 174 GrAAHairLinePathRenderer::~GrAAHairLinePathRenderer() {
michael@0 175 fLinesIndexBuffer->unref();
michael@0 176 fQuadsIndexBuffer->unref();
michael@0 177 }
michael@0 178
michael@0 179 namespace {
michael@0 180
michael@0 181 #define PREALLOC_PTARRAY(N) SkSTArray<(N),SkPoint, true>
michael@0 182
michael@0 183 // Takes 178th time of logf on Z600 / VC2010
michael@0 184 int get_float_exp(float x) {
michael@0 185 GR_STATIC_ASSERT(sizeof(int) == sizeof(float));
michael@0 186 #ifdef SK_DEBUG
michael@0 187 static bool tested;
michael@0 188 if (!tested) {
michael@0 189 tested = true;
michael@0 190 SkASSERT(get_float_exp(0.25f) == -2);
michael@0 191 SkASSERT(get_float_exp(0.3f) == -2);
michael@0 192 SkASSERT(get_float_exp(0.5f) == -1);
michael@0 193 SkASSERT(get_float_exp(1.f) == 0);
michael@0 194 SkASSERT(get_float_exp(2.f) == 1);
michael@0 195 SkASSERT(get_float_exp(2.5f) == 1);
michael@0 196 SkASSERT(get_float_exp(8.f) == 3);
michael@0 197 SkASSERT(get_float_exp(100.f) == 6);
michael@0 198 SkASSERT(get_float_exp(1000.f) == 9);
michael@0 199 SkASSERT(get_float_exp(1024.f) == 10);
michael@0 200 SkASSERT(get_float_exp(3000000.f) == 21);
michael@0 201 }
michael@0 202 #endif
michael@0 203 const int* iptr = (const int*)&x;
michael@0 204 return (((*iptr) & 0x7f800000) >> 23) - 127;
michael@0 205 }
michael@0 206
michael@0 207 // Uses the max curvature function for quads to estimate
michael@0 208 // where to chop the conic. If the max curvature is not
michael@0 209 // found along the curve segment it will return 1 and
michael@0 210 // dst[0] is the original conic. If it returns 2 the dst[0]
michael@0 211 // and dst[1] are the two new conics.
michael@0 212 int split_conic(const SkPoint src[3], SkConic dst[2], const SkScalar weight) {
michael@0 213 SkScalar t = SkFindQuadMaxCurvature(src);
michael@0 214 if (t == 0) {
michael@0 215 if (dst) {
michael@0 216 dst[0].set(src, weight);
michael@0 217 }
michael@0 218 return 1;
michael@0 219 } else {
michael@0 220 if (dst) {
michael@0 221 SkConic conic;
michael@0 222 conic.set(src, weight);
michael@0 223 conic.chopAt(t, dst);
michael@0 224 }
michael@0 225 return 2;
michael@0 226 }
michael@0 227 }
michael@0 228
michael@0 229 // Calls split_conic on the entire conic and then once more on each subsection.
michael@0 230 // Most cases will result in either 1 conic (chop point is not within t range)
michael@0 231 // or 3 points (split once and then one subsection is split again).
michael@0 232 int chop_conic(const SkPoint src[3], SkConic dst[4], const SkScalar weight) {
michael@0 233 SkConic dstTemp[2];
michael@0 234 int conicCnt = split_conic(src, dstTemp, weight);
michael@0 235 if (2 == conicCnt) {
michael@0 236 int conicCnt2 = split_conic(dstTemp[0].fPts, dst, dstTemp[0].fW);
michael@0 237 conicCnt = conicCnt2 + split_conic(dstTemp[1].fPts, &dst[conicCnt2], dstTemp[1].fW);
michael@0 238 } else {
michael@0 239 dst[0] = dstTemp[0];
michael@0 240 }
michael@0 241 return conicCnt;
michael@0 242 }
michael@0 243
michael@0 244 // returns 0 if quad/conic is degen or close to it
michael@0 245 // in this case approx the path with lines
michael@0 246 // otherwise returns 1
michael@0 247 int is_degen_quad_or_conic(const SkPoint p[3]) {
michael@0 248 static const SkScalar gDegenerateToLineTol = SK_Scalar1;
michael@0 249 static const SkScalar gDegenerateToLineTolSqd =
michael@0 250 SkScalarMul(gDegenerateToLineTol, gDegenerateToLineTol);
michael@0 251
michael@0 252 if (p[0].distanceToSqd(p[1]) < gDegenerateToLineTolSqd ||
michael@0 253 p[1].distanceToSqd(p[2]) < gDegenerateToLineTolSqd) {
michael@0 254 return 1;
michael@0 255 }
michael@0 256
michael@0 257 SkScalar dsqd = p[1].distanceToLineBetweenSqd(p[0], p[2]);
michael@0 258 if (dsqd < gDegenerateToLineTolSqd) {
michael@0 259 return 1;
michael@0 260 }
michael@0 261
michael@0 262 if (p[2].distanceToLineBetweenSqd(p[1], p[0]) < gDegenerateToLineTolSqd) {
michael@0 263 return 1;
michael@0 264 }
michael@0 265 return 0;
michael@0 266 }
michael@0 267
michael@0 268 // we subdivide the quads to avoid huge overfill
michael@0 269 // if it returns -1 then should be drawn as lines
michael@0 270 int num_quad_subdivs(const SkPoint p[3]) {
michael@0 271 static const SkScalar gDegenerateToLineTol = SK_Scalar1;
michael@0 272 static const SkScalar gDegenerateToLineTolSqd =
michael@0 273 SkScalarMul(gDegenerateToLineTol, gDegenerateToLineTol);
michael@0 274
michael@0 275 if (p[0].distanceToSqd(p[1]) < gDegenerateToLineTolSqd ||
michael@0 276 p[1].distanceToSqd(p[2]) < gDegenerateToLineTolSqd) {
michael@0 277 return -1;
michael@0 278 }
michael@0 279
michael@0 280 SkScalar dsqd = p[1].distanceToLineBetweenSqd(p[0], p[2]);
michael@0 281 if (dsqd < gDegenerateToLineTolSqd) {
michael@0 282 return -1;
michael@0 283 }
michael@0 284
michael@0 285 if (p[2].distanceToLineBetweenSqd(p[1], p[0]) < gDegenerateToLineTolSqd) {
michael@0 286 return -1;
michael@0 287 }
michael@0 288
michael@0 289 // tolerance of triangle height in pixels
michael@0 290 // tuned on windows Quadro FX 380 / Z600
michael@0 291 // trade off of fill vs cpu time on verts
michael@0 292 // maybe different when do this using gpu (geo or tess shaders)
michael@0 293 static const SkScalar gSubdivTol = 175 * SK_Scalar1;
michael@0 294
michael@0 295 if (dsqd <= SkScalarMul(gSubdivTol, gSubdivTol)) {
michael@0 296 return 0;
michael@0 297 } else {
michael@0 298 static const int kMaxSub = 4;
michael@0 299 // subdividing the quad reduces d by 4. so we want x = log4(d/tol)
michael@0 300 // = log4(d*d/tol*tol)/2
michael@0 301 // = log2(d*d/tol*tol)
michael@0 302
michael@0 303 // +1 since we're ignoring the mantissa contribution.
michael@0 304 int log = get_float_exp(dsqd/(gSubdivTol*gSubdivTol)) + 1;
michael@0 305 log = GrMin(GrMax(0, log), kMaxSub);
michael@0 306 return log;
michael@0 307 }
michael@0 308 }
michael@0 309
michael@0 310 /**
michael@0 311 * Generates the lines and quads to be rendered. Lines are always recorded in
michael@0 312 * device space. We will do a device space bloat to account for the 1pixel
michael@0 313 * thickness.
michael@0 314 * Quads are recorded in device space unless m contains
michael@0 315 * perspective, then in they are in src space. We do this because we will
michael@0 316 * subdivide large quads to reduce over-fill. This subdivision has to be
michael@0 317 * performed before applying the perspective matrix.
michael@0 318 */
michael@0 319 int generate_lines_and_quads(const SkPath& path,
michael@0 320 const SkMatrix& m,
michael@0 321 const SkIRect& devClipBounds,
michael@0 322 GrAAHairLinePathRenderer::PtArray* lines,
michael@0 323 GrAAHairLinePathRenderer::PtArray* quads,
michael@0 324 GrAAHairLinePathRenderer::PtArray* conics,
michael@0 325 GrAAHairLinePathRenderer::IntArray* quadSubdivCnts,
michael@0 326 GrAAHairLinePathRenderer::FloatArray* conicWeights) {
michael@0 327 SkPath::Iter iter(path, false);
michael@0 328
michael@0 329 int totalQuadCount = 0;
michael@0 330 SkRect bounds;
michael@0 331 SkIRect ibounds;
michael@0 332
michael@0 333 bool persp = m.hasPerspective();
michael@0 334
michael@0 335 for (;;) {
michael@0 336 GrPoint pathPts[4];
michael@0 337 GrPoint devPts[4];
michael@0 338 SkPath::Verb verb = iter.next(pathPts);
michael@0 339 switch (verb) {
michael@0 340 case SkPath::kConic_Verb: {
michael@0 341 SkConic dst[4];
michael@0 342 // We chop the conics to create tighter clipping to hide error
michael@0 343 // that appears near max curvature of very thin conics. Thin
michael@0 344 // hyperbolas with high weight still show error.
michael@0 345 int conicCnt = chop_conic(pathPts, dst, iter.conicWeight());
michael@0 346 for (int i = 0; i < conicCnt; ++i) {
michael@0 347 SkPoint* chopPnts = dst[i].fPts;
michael@0 348 m.mapPoints(devPts, chopPnts, 3);
michael@0 349 bounds.setBounds(devPts, 3);
michael@0 350 bounds.outset(SK_Scalar1, SK_Scalar1);
michael@0 351 bounds.roundOut(&ibounds);
michael@0 352 if (SkIRect::Intersects(devClipBounds, ibounds)) {
michael@0 353 if (is_degen_quad_or_conic(devPts)) {
michael@0 354 SkPoint* pts = lines->push_back_n(4);
michael@0 355 pts[0] = devPts[0];
michael@0 356 pts[1] = devPts[1];
michael@0 357 pts[2] = devPts[1];
michael@0 358 pts[3] = devPts[2];
michael@0 359 } else {
michael@0 360 // when in perspective keep conics in src space
michael@0 361 SkPoint* cPts = persp ? chopPnts : devPts;
michael@0 362 SkPoint* pts = conics->push_back_n(3);
michael@0 363 pts[0] = cPts[0];
michael@0 364 pts[1] = cPts[1];
michael@0 365 pts[2] = cPts[2];
michael@0 366 conicWeights->push_back() = dst[i].fW;
michael@0 367 }
michael@0 368 }
michael@0 369 }
michael@0 370 break;
michael@0 371 }
michael@0 372 case SkPath::kMove_Verb:
michael@0 373 break;
michael@0 374 case SkPath::kLine_Verb:
michael@0 375 m.mapPoints(devPts, pathPts, 2);
michael@0 376 bounds.setBounds(devPts, 2);
michael@0 377 bounds.outset(SK_Scalar1, SK_Scalar1);
michael@0 378 bounds.roundOut(&ibounds);
michael@0 379 if (SkIRect::Intersects(devClipBounds, ibounds)) {
michael@0 380 SkPoint* pts = lines->push_back_n(2);
michael@0 381 pts[0] = devPts[0];
michael@0 382 pts[1] = devPts[1];
michael@0 383 }
michael@0 384 break;
michael@0 385 case SkPath::kQuad_Verb: {
michael@0 386 SkPoint choppedPts[5];
michael@0 387 // Chopping the quad helps when the quad is either degenerate or nearly degenerate.
michael@0 388 // When it is degenerate it allows the approximation with lines to work since the
michael@0 389 // chop point (if there is one) will be at the parabola's vertex. In the nearly
michael@0 390 // degenerate the QuadUVMatrix computed for the points is almost singular which
michael@0 391 // can cause rendering artifacts.
michael@0 392 int n = SkChopQuadAtMaxCurvature(pathPts, choppedPts);
michael@0 393 for (int i = 0; i < n; ++i) {
michael@0 394 SkPoint* quadPts = choppedPts + i * 2;
michael@0 395 m.mapPoints(devPts, quadPts, 3);
michael@0 396 bounds.setBounds(devPts, 3);
michael@0 397 bounds.outset(SK_Scalar1, SK_Scalar1);
michael@0 398 bounds.roundOut(&ibounds);
michael@0 399
michael@0 400 if (SkIRect::Intersects(devClipBounds, ibounds)) {
michael@0 401 int subdiv = num_quad_subdivs(devPts);
michael@0 402 SkASSERT(subdiv >= -1);
michael@0 403 if (-1 == subdiv) {
michael@0 404 SkPoint* pts = lines->push_back_n(4);
michael@0 405 pts[0] = devPts[0];
michael@0 406 pts[1] = devPts[1];
michael@0 407 pts[2] = devPts[1];
michael@0 408 pts[3] = devPts[2];
michael@0 409 } else {
michael@0 410 // when in perspective keep quads in src space
michael@0 411 SkPoint* qPts = persp ? quadPts : devPts;
michael@0 412 SkPoint* pts = quads->push_back_n(3);
michael@0 413 pts[0] = qPts[0];
michael@0 414 pts[1] = qPts[1];
michael@0 415 pts[2] = qPts[2];
michael@0 416 quadSubdivCnts->push_back() = subdiv;
michael@0 417 totalQuadCount += 1 << subdiv;
michael@0 418 }
michael@0 419 }
michael@0 420 }
michael@0 421 break;
michael@0 422 }
michael@0 423 case SkPath::kCubic_Verb:
michael@0 424 m.mapPoints(devPts, pathPts, 4);
michael@0 425 bounds.setBounds(devPts, 4);
michael@0 426 bounds.outset(SK_Scalar1, SK_Scalar1);
michael@0 427 bounds.roundOut(&ibounds);
michael@0 428 if (SkIRect::Intersects(devClipBounds, ibounds)) {
michael@0 429 PREALLOC_PTARRAY(32) q;
michael@0 430 // we don't need a direction if we aren't constraining the subdivision
michael@0 431 static const SkPath::Direction kDummyDir = SkPath::kCCW_Direction;
michael@0 432 // We convert cubics to quadratics (for now).
michael@0 433 // In perspective have to do conversion in src space.
michael@0 434 if (persp) {
michael@0 435 SkScalar tolScale =
michael@0 436 GrPathUtils::scaleToleranceToSrc(SK_Scalar1, m,
michael@0 437 path.getBounds());
michael@0 438 GrPathUtils::convertCubicToQuads(pathPts, tolScale, false, kDummyDir, &q);
michael@0 439 } else {
michael@0 440 GrPathUtils::convertCubicToQuads(devPts, SK_Scalar1, false, kDummyDir, &q);
michael@0 441 }
michael@0 442 for (int i = 0; i < q.count(); i += 3) {
michael@0 443 SkPoint* qInDevSpace;
michael@0 444 // bounds has to be calculated in device space, but q is
michael@0 445 // in src space when there is perspective.
michael@0 446 if (persp) {
michael@0 447 m.mapPoints(devPts, &q[i], 3);
michael@0 448 bounds.setBounds(devPts, 3);
michael@0 449 qInDevSpace = devPts;
michael@0 450 } else {
michael@0 451 bounds.setBounds(&q[i], 3);
michael@0 452 qInDevSpace = &q[i];
michael@0 453 }
michael@0 454 bounds.outset(SK_Scalar1, SK_Scalar1);
michael@0 455 bounds.roundOut(&ibounds);
michael@0 456 if (SkIRect::Intersects(devClipBounds, ibounds)) {
michael@0 457 int subdiv = num_quad_subdivs(qInDevSpace);
michael@0 458 SkASSERT(subdiv >= -1);
michael@0 459 if (-1 == subdiv) {
michael@0 460 SkPoint* pts = lines->push_back_n(4);
michael@0 461 // lines should always be in device coords
michael@0 462 pts[0] = qInDevSpace[0];
michael@0 463 pts[1] = qInDevSpace[1];
michael@0 464 pts[2] = qInDevSpace[1];
michael@0 465 pts[3] = qInDevSpace[2];
michael@0 466 } else {
michael@0 467 SkPoint* pts = quads->push_back_n(3);
michael@0 468 // q is already in src space when there is no
michael@0 469 // perspective and dev coords otherwise.
michael@0 470 pts[0] = q[0 + i];
michael@0 471 pts[1] = q[1 + i];
michael@0 472 pts[2] = q[2 + i];
michael@0 473 quadSubdivCnts->push_back() = subdiv;
michael@0 474 totalQuadCount += 1 << subdiv;
michael@0 475 }
michael@0 476 }
michael@0 477 }
michael@0 478 }
michael@0 479 break;
michael@0 480 case SkPath::kClose_Verb:
michael@0 481 break;
michael@0 482 case SkPath::kDone_Verb:
michael@0 483 return totalQuadCount;
michael@0 484 }
michael@0 485 }
michael@0 486 }
michael@0 487
michael@0 488 struct LineVertex {
michael@0 489 GrPoint fPos;
michael@0 490 GrColor fCoverage;
michael@0 491 };
michael@0 492
michael@0 493 struct BezierVertex {
michael@0 494 GrPoint fPos;
michael@0 495 union {
michael@0 496 struct {
michael@0 497 SkScalar fK;
michael@0 498 SkScalar fL;
michael@0 499 SkScalar fM;
michael@0 500 } fConic;
michael@0 501 GrVec fQuadCoord;
michael@0 502 struct {
michael@0 503 SkScalar fBogus[4];
michael@0 504 };
michael@0 505 };
michael@0 506 };
michael@0 507
michael@0 508 GR_STATIC_ASSERT(sizeof(BezierVertex) == 3 * sizeof(GrPoint));
michael@0 509
michael@0 510 void intersect_lines(const SkPoint& ptA, const SkVector& normA,
michael@0 511 const SkPoint& ptB, const SkVector& normB,
michael@0 512 SkPoint* result) {
michael@0 513
michael@0 514 SkScalar lineAW = -normA.dot(ptA);
michael@0 515 SkScalar lineBW = -normB.dot(ptB);
michael@0 516
michael@0 517 SkScalar wInv = SkScalarMul(normA.fX, normB.fY) -
michael@0 518 SkScalarMul(normA.fY, normB.fX);
michael@0 519 wInv = SkScalarInvert(wInv);
michael@0 520
michael@0 521 result->fX = SkScalarMul(normA.fY, lineBW) - SkScalarMul(lineAW, normB.fY);
michael@0 522 result->fX = SkScalarMul(result->fX, wInv);
michael@0 523
michael@0 524 result->fY = SkScalarMul(lineAW, normB.fX) - SkScalarMul(normA.fX, lineBW);
michael@0 525 result->fY = SkScalarMul(result->fY, wInv);
michael@0 526 }
michael@0 527
michael@0 528 void set_uv_quad(const SkPoint qpts[3], BezierVertex verts[kVertsPerQuad]) {
michael@0 529 // this should be in the src space, not dev coords, when we have perspective
michael@0 530 GrPathUtils::QuadUVMatrix DevToUV(qpts);
michael@0 531 DevToUV.apply<kVertsPerQuad, sizeof(BezierVertex), sizeof(GrPoint)>(verts);
michael@0 532 }
michael@0 533
michael@0 534 void bloat_quad(const SkPoint qpts[3], const SkMatrix* toDevice,
michael@0 535 const SkMatrix* toSrc, BezierVertex verts[kVertsPerQuad],
michael@0 536 SkRect* devBounds) {
michael@0 537 SkASSERT(!toDevice == !toSrc);
michael@0 538 // original quad is specified by tri a,b,c
michael@0 539 SkPoint a = qpts[0];
michael@0 540 SkPoint b = qpts[1];
michael@0 541 SkPoint c = qpts[2];
michael@0 542
michael@0 543 if (toDevice) {
michael@0 544 toDevice->mapPoints(&a, 1);
michael@0 545 toDevice->mapPoints(&b, 1);
michael@0 546 toDevice->mapPoints(&c, 1);
michael@0 547 }
michael@0 548 // make a new poly where we replace a and c by a 1-pixel wide edges orthog
michael@0 549 // to edges ab and bc:
michael@0 550 //
michael@0 551 // before | after
michael@0 552 // | b0
michael@0 553 // b |
michael@0 554 // |
michael@0 555 // | a0 c0
michael@0 556 // a c | a1 c1
michael@0 557 //
michael@0 558 // edges a0->b0 and b0->c0 are parallel to original edges a->b and b->c,
michael@0 559 // respectively.
michael@0 560 BezierVertex& a0 = verts[0];
michael@0 561 BezierVertex& a1 = verts[1];
michael@0 562 BezierVertex& b0 = verts[2];
michael@0 563 BezierVertex& c0 = verts[3];
michael@0 564 BezierVertex& c1 = verts[4];
michael@0 565
michael@0 566 SkVector ab = b;
michael@0 567 ab -= a;
michael@0 568 SkVector ac = c;
michael@0 569 ac -= a;
michael@0 570 SkVector cb = b;
michael@0 571 cb -= c;
michael@0 572
michael@0 573 // We should have already handled degenerates
michael@0 574 SkASSERT(ab.length() > 0 && cb.length() > 0);
michael@0 575
michael@0 576 ab.normalize();
michael@0 577 SkVector abN;
michael@0 578 abN.setOrthog(ab, SkVector::kLeft_Side);
michael@0 579 if (abN.dot(ac) > 0) {
michael@0 580 abN.negate();
michael@0 581 }
michael@0 582
michael@0 583 cb.normalize();
michael@0 584 SkVector cbN;
michael@0 585 cbN.setOrthog(cb, SkVector::kLeft_Side);
michael@0 586 if (cbN.dot(ac) < 0) {
michael@0 587 cbN.negate();
michael@0 588 }
michael@0 589
michael@0 590 a0.fPos = a;
michael@0 591 a0.fPos += abN;
michael@0 592 a1.fPos = a;
michael@0 593 a1.fPos -= abN;
michael@0 594
michael@0 595 c0.fPos = c;
michael@0 596 c0.fPos += cbN;
michael@0 597 c1.fPos = c;
michael@0 598 c1.fPos -= cbN;
michael@0 599
michael@0 600 intersect_lines(a0.fPos, abN, c0.fPos, cbN, &b0.fPos);
michael@0 601 devBounds->growToInclude(&verts[0].fPos, sizeof(BezierVertex), kVertsPerQuad);
michael@0 602
michael@0 603 if (toSrc) {
michael@0 604 toSrc->mapPointsWithStride(&verts[0].fPos, sizeof(BezierVertex), kVertsPerQuad);
michael@0 605 }
michael@0 606 }
michael@0 607
michael@0 608 // Equations based off of Loop-Blinn Quadratic GPU Rendering
michael@0 609 // Input Parametric:
michael@0 610 // P(t) = (P0*(1-t)^2 + 2*w*P1*t*(1-t) + P2*t^2) / (1-t)^2 + 2*w*t*(1-t) + t^2)
michael@0 611 // Output Implicit:
michael@0 612 // f(x, y, w) = f(P) = K^2 - LM
michael@0 613 // K = dot(k, P), L = dot(l, P), M = dot(m, P)
michael@0 614 // k, l, m are calculated in function GrPathUtils::getConicKLM
michael@0 615 void set_conic_coeffs(const SkPoint p[3], BezierVertex verts[kVertsPerQuad],
michael@0 616 const SkScalar weight) {
michael@0 617 SkScalar klm[9];
michael@0 618
michael@0 619 GrPathUtils::getConicKLM(p, weight, klm);
michael@0 620
michael@0 621 for (int i = 0; i < kVertsPerQuad; ++i) {
michael@0 622 const SkPoint pnt = verts[i].fPos;
michael@0 623 verts[i].fConic.fK = pnt.fX * klm[0] + pnt.fY * klm[1] + klm[2];
michael@0 624 verts[i].fConic.fL = pnt.fX * klm[3] + pnt.fY * klm[4] + klm[5];
michael@0 625 verts[i].fConic.fM = pnt.fX * klm[6] + pnt.fY * klm[7] + klm[8];
michael@0 626 }
michael@0 627 }
michael@0 628
michael@0 629 void add_conics(const SkPoint p[3],
michael@0 630 const SkScalar weight,
michael@0 631 const SkMatrix* toDevice,
michael@0 632 const SkMatrix* toSrc,
michael@0 633 BezierVertex** vert,
michael@0 634 SkRect* devBounds) {
michael@0 635 bloat_quad(p, toDevice, toSrc, *vert, devBounds);
michael@0 636 set_conic_coeffs(p, *vert, weight);
michael@0 637 *vert += kVertsPerQuad;
michael@0 638 }
michael@0 639
michael@0 640 void add_quads(const SkPoint p[3],
michael@0 641 int subdiv,
michael@0 642 const SkMatrix* toDevice,
michael@0 643 const SkMatrix* toSrc,
michael@0 644 BezierVertex** vert,
michael@0 645 SkRect* devBounds) {
michael@0 646 SkASSERT(subdiv >= 0);
michael@0 647 if (subdiv) {
michael@0 648 SkPoint newP[5];
michael@0 649 SkChopQuadAtHalf(p, newP);
michael@0 650 add_quads(newP + 0, subdiv-1, toDevice, toSrc, vert, devBounds);
michael@0 651 add_quads(newP + 2, subdiv-1, toDevice, toSrc, vert, devBounds);
michael@0 652 } else {
michael@0 653 bloat_quad(p, toDevice, toSrc, *vert, devBounds);
michael@0 654 set_uv_quad(p, *vert);
michael@0 655 *vert += kVertsPerQuad;
michael@0 656 }
michael@0 657 }
michael@0 658
michael@0 659 void add_line(const SkPoint p[2],
michael@0 660 const SkMatrix* toSrc,
michael@0 661 GrColor coverage,
michael@0 662 LineVertex** vert) {
michael@0 663 const SkPoint& a = p[0];
michael@0 664 const SkPoint& b = p[1];
michael@0 665
michael@0 666 SkVector ortho, vec = b;
michael@0 667 vec -= a;
michael@0 668
michael@0 669 if (vec.setLength(SK_ScalarHalf)) {
michael@0 670 // Create a vector orthogonal to 'vec' and of unit length
michael@0 671 ortho.fX = 2.0f * vec.fY;
michael@0 672 ortho.fY = -2.0f * vec.fX;
michael@0 673
michael@0 674 (*vert)[0].fPos = a;
michael@0 675 (*vert)[0].fCoverage = coverage;
michael@0 676 (*vert)[1].fPos = b;
michael@0 677 (*vert)[1].fCoverage = coverage;
michael@0 678 (*vert)[2].fPos = a - vec + ortho;
michael@0 679 (*vert)[2].fCoverage = 0;
michael@0 680 (*vert)[3].fPos = b + vec + ortho;
michael@0 681 (*vert)[3].fCoverage = 0;
michael@0 682 (*vert)[4].fPos = a - vec - ortho;
michael@0 683 (*vert)[4].fCoverage = 0;
michael@0 684 (*vert)[5].fPos = b + vec - ortho;
michael@0 685 (*vert)[5].fCoverage = 0;
michael@0 686
michael@0 687 if (NULL != toSrc) {
michael@0 688 toSrc->mapPointsWithStride(&(*vert)->fPos,
michael@0 689 sizeof(LineVertex),
michael@0 690 kVertsPerLineSeg);
michael@0 691 }
michael@0 692 } else {
michael@0 693 // just make it degenerate and likely offscreen
michael@0 694 for (int i = 0; i < kVertsPerLineSeg; ++i) {
michael@0 695 (*vert)[i].fPos.set(SK_ScalarMax, SK_ScalarMax);
michael@0 696 }
michael@0 697 }
michael@0 698
michael@0 699 *vert += kVertsPerLineSeg;
michael@0 700 }
michael@0 701
michael@0 702 }
michael@0 703
michael@0 704 ///////////////////////////////////////////////////////////////////////////////
michael@0 705
michael@0 706 namespace {
michael@0 707
michael@0 708 // position + edge
michael@0 709 extern const GrVertexAttrib gHairlineBezierAttribs[] = {
michael@0 710 {kVec2f_GrVertexAttribType, 0, kPosition_GrVertexAttribBinding},
michael@0 711 {kVec4f_GrVertexAttribType, sizeof(GrPoint), kEffect_GrVertexAttribBinding}
michael@0 712 };
michael@0 713
michael@0 714 // position + coverage
michael@0 715 extern const GrVertexAttrib gHairlineLineAttribs[] = {
michael@0 716 {kVec2f_GrVertexAttribType, 0, kPosition_GrVertexAttribBinding},
michael@0 717 {kVec4ub_GrVertexAttribType, sizeof(GrPoint), kCoverage_GrVertexAttribBinding},
michael@0 718 };
michael@0 719
michael@0 720 };
michael@0 721
michael@0 722 bool GrAAHairLinePathRenderer::createLineGeom(const SkPath& path,
michael@0 723 GrDrawTarget* target,
michael@0 724 const PtArray& lines,
michael@0 725 int lineCnt,
michael@0 726 GrDrawTarget::AutoReleaseGeometry* arg,
michael@0 727 SkRect* devBounds) {
michael@0 728 GrDrawState* drawState = target->drawState();
michael@0 729
michael@0 730 const SkMatrix& viewM = drawState->getViewMatrix();
michael@0 731
michael@0 732 int vertCnt = kVertsPerLineSeg * lineCnt;
michael@0 733
michael@0 734 drawState->setVertexAttribs<gHairlineLineAttribs>(SK_ARRAY_COUNT(gHairlineLineAttribs));
michael@0 735 SkASSERT(sizeof(LineVertex) == drawState->getVertexSize());
michael@0 736
michael@0 737 if (!arg->set(target, vertCnt, 0)) {
michael@0 738 return false;
michael@0 739 }
michael@0 740
michael@0 741 LineVertex* verts = reinterpret_cast<LineVertex*>(arg->vertices());
michael@0 742
michael@0 743 const SkMatrix* toSrc = NULL;
michael@0 744 SkMatrix ivm;
michael@0 745
michael@0 746 if (viewM.hasPerspective()) {
michael@0 747 if (viewM.invert(&ivm)) {
michael@0 748 toSrc = &ivm;
michael@0 749 }
michael@0 750 }
michael@0 751 devBounds->set(lines.begin(), lines.count());
michael@0 752 for (int i = 0; i < lineCnt; ++i) {
michael@0 753 add_line(&lines[2*i], toSrc, drawState->getCoverageColor(), &verts);
michael@0 754 }
michael@0 755 // All the verts computed by add_line are within sqrt(1^2 + 0.5^2) of the end points.
michael@0 756 static const SkScalar kSqrtOfOneAndAQuarter = 1.118f;
michael@0 757 // Add a little extra to account for vector normalization precision.
michael@0 758 static const SkScalar kOutset = kSqrtOfOneAndAQuarter + SK_Scalar1 / 20;
michael@0 759 devBounds->outset(kOutset, kOutset);
michael@0 760
michael@0 761 return true;
michael@0 762 }
michael@0 763
michael@0 764 bool GrAAHairLinePathRenderer::createBezierGeom(
michael@0 765 const SkPath& path,
michael@0 766 GrDrawTarget* target,
michael@0 767 const PtArray& quads,
michael@0 768 int quadCnt,
michael@0 769 const PtArray& conics,
michael@0 770 int conicCnt,
michael@0 771 const IntArray& qSubdivs,
michael@0 772 const FloatArray& cWeights,
michael@0 773 GrDrawTarget::AutoReleaseGeometry* arg,
michael@0 774 SkRect* devBounds) {
michael@0 775 GrDrawState* drawState = target->drawState();
michael@0 776
michael@0 777 const SkMatrix& viewM = drawState->getViewMatrix();
michael@0 778
michael@0 779 int vertCnt = kVertsPerQuad * quadCnt + kVertsPerQuad * conicCnt;
michael@0 780
michael@0 781 target->drawState()->setVertexAttribs<gHairlineBezierAttribs>(SK_ARRAY_COUNT(gHairlineBezierAttribs));
michael@0 782 SkASSERT(sizeof(BezierVertex) == target->getDrawState().getVertexSize());
michael@0 783
michael@0 784 if (!arg->set(target, vertCnt, 0)) {
michael@0 785 return false;
michael@0 786 }
michael@0 787
michael@0 788 BezierVertex* verts = reinterpret_cast<BezierVertex*>(arg->vertices());
michael@0 789
michael@0 790 const SkMatrix* toDevice = NULL;
michael@0 791 const SkMatrix* toSrc = NULL;
michael@0 792 SkMatrix ivm;
michael@0 793
michael@0 794 if (viewM.hasPerspective()) {
michael@0 795 if (viewM.invert(&ivm)) {
michael@0 796 toDevice = &viewM;
michael@0 797 toSrc = &ivm;
michael@0 798 }
michael@0 799 }
michael@0 800
michael@0 801 // Seed the dev bounds with some pts known to be inside. Each quad and conic grows the bounding
michael@0 802 // box to include its vertices.
michael@0 803 SkPoint seedPts[2];
michael@0 804 if (quadCnt) {
michael@0 805 seedPts[0] = quads[0];
michael@0 806 seedPts[1] = quads[2];
michael@0 807 } else if (conicCnt) {
michael@0 808 seedPts[0] = conics[0];
michael@0 809 seedPts[1] = conics[2];
michael@0 810 }
michael@0 811 if (NULL != toDevice) {
michael@0 812 toDevice->mapPoints(seedPts, 2);
michael@0 813 }
michael@0 814 devBounds->set(seedPts[0], seedPts[1]);
michael@0 815
michael@0 816 int unsubdivQuadCnt = quads.count() / 3;
michael@0 817 for (int i = 0; i < unsubdivQuadCnt; ++i) {
michael@0 818 SkASSERT(qSubdivs[i] >= 0);
michael@0 819 add_quads(&quads[3*i], qSubdivs[i], toDevice, toSrc, &verts, devBounds);
michael@0 820 }
michael@0 821
michael@0 822 // Start Conics
michael@0 823 for (int i = 0; i < conicCnt; ++i) {
michael@0 824 add_conics(&conics[3*i], cWeights[i], toDevice, toSrc, &verts, devBounds);
michael@0 825 }
michael@0 826 return true;
michael@0 827 }
michael@0 828
michael@0 829 bool GrAAHairLinePathRenderer::canDrawPath(const SkPath& path,
michael@0 830 const SkStrokeRec& stroke,
michael@0 831 const GrDrawTarget* target,
michael@0 832 bool antiAlias) const {
michael@0 833 if (!antiAlias) {
michael@0 834 return false;
michael@0 835 }
michael@0 836
michael@0 837 if (!IsStrokeHairlineOrEquivalent(stroke,
michael@0 838 target->getDrawState().getViewMatrix(),
michael@0 839 NULL)) {
michael@0 840 return false;
michael@0 841 }
michael@0 842
michael@0 843 if (SkPath::kLine_SegmentMask == path.getSegmentMasks() ||
michael@0 844 target->caps()->shaderDerivativeSupport()) {
michael@0 845 return true;
michael@0 846 }
michael@0 847 return false;
michael@0 848 }
michael@0 849
michael@0 850 template <class VertexType>
michael@0 851 bool check_bounds(GrDrawState* drawState, const SkRect& devBounds, void* vertices, int vCount)
michael@0 852 {
michael@0 853 SkRect tolDevBounds = devBounds;
michael@0 854 // The bounds ought to be tight, but in perspective the below code runs the verts
michael@0 855 // through the view matrix to get back to dev coords, which can introduce imprecision.
michael@0 856 if (drawState->getViewMatrix().hasPerspective()) {
michael@0 857 tolDevBounds.outset(SK_Scalar1 / 1000, SK_Scalar1 / 1000);
michael@0 858 } else {
michael@0 859 // Non-persp matrices cause this path renderer to draw in device space.
michael@0 860 SkASSERT(drawState->getViewMatrix().isIdentity());
michael@0 861 }
michael@0 862 SkRect actualBounds;
michael@0 863
michael@0 864 VertexType* verts = reinterpret_cast<VertexType*>(vertices);
michael@0 865 bool first = true;
michael@0 866 for (int i = 0; i < vCount; ++i) {
michael@0 867 SkPoint pos = verts[i].fPos;
michael@0 868 // This is a hack to workaround the fact that we move some degenerate segments offscreen.
michael@0 869 if (SK_ScalarMax == pos.fX) {
michael@0 870 continue;
michael@0 871 }
michael@0 872 drawState->getViewMatrix().mapPoints(&pos, 1);
michael@0 873 if (first) {
michael@0 874 actualBounds.set(pos.fX, pos.fY, pos.fX, pos.fY);
michael@0 875 first = false;
michael@0 876 } else {
michael@0 877 actualBounds.growToInclude(pos.fX, pos.fY);
michael@0 878 }
michael@0 879 }
michael@0 880 if (!first) {
michael@0 881 return tolDevBounds.contains(actualBounds);
michael@0 882 }
michael@0 883
michael@0 884 return true;
michael@0 885 }
michael@0 886
michael@0 887 bool GrAAHairLinePathRenderer::onDrawPath(const SkPath& path,
michael@0 888 const SkStrokeRec& stroke,
michael@0 889 GrDrawTarget* target,
michael@0 890 bool antiAlias) {
michael@0 891 GrDrawState* drawState = target->drawState();
michael@0 892
michael@0 893 SkScalar hairlineCoverage;
michael@0 894 if (IsStrokeHairlineOrEquivalent(stroke,
michael@0 895 target->getDrawState().getViewMatrix(),
michael@0 896 &hairlineCoverage)) {
michael@0 897 uint8_t newCoverage = SkScalarRoundToInt(hairlineCoverage *
michael@0 898 target->getDrawState().getCoverage());
michael@0 899 target->drawState()->setCoverage(newCoverage);
michael@0 900 }
michael@0 901
michael@0 902 SkIRect devClipBounds;
michael@0 903 target->getClip()->getConservativeBounds(drawState->getRenderTarget(), &devClipBounds);
michael@0 904
michael@0 905 int lineCnt;
michael@0 906 int quadCnt;
michael@0 907 int conicCnt;
michael@0 908 PREALLOC_PTARRAY(128) lines;
michael@0 909 PREALLOC_PTARRAY(128) quads;
michael@0 910 PREALLOC_PTARRAY(128) conics;
michael@0 911 IntArray qSubdivs;
michael@0 912 FloatArray cWeights;
michael@0 913 quadCnt = generate_lines_and_quads(path, drawState->getViewMatrix(), devClipBounds,
michael@0 914 &lines, &quads, &conics, &qSubdivs, &cWeights);
michael@0 915 lineCnt = lines.count() / 2;
michael@0 916 conicCnt = conics.count() / 3;
michael@0 917
michael@0 918 // do lines first
michael@0 919 if (lineCnt) {
michael@0 920 GrDrawTarget::AutoReleaseGeometry arg;
michael@0 921 SkRect devBounds;
michael@0 922
michael@0 923 if (!this->createLineGeom(path,
michael@0 924 target,
michael@0 925 lines,
michael@0 926 lineCnt,
michael@0 927 &arg,
michael@0 928 &devBounds)) {
michael@0 929 return false;
michael@0 930 }
michael@0 931
michael@0 932 GrDrawTarget::AutoStateRestore asr;
michael@0 933
michael@0 934 // createLineGeom transforms the geometry to device space when the matrix does not have
michael@0 935 // perspective.
michael@0 936 if (target->getDrawState().getViewMatrix().hasPerspective()) {
michael@0 937 asr.set(target, GrDrawTarget::kPreserve_ASRInit);
michael@0 938 } else if (!asr.setIdentity(target, GrDrawTarget::kPreserve_ASRInit)) {
michael@0 939 return false;
michael@0 940 }
michael@0 941 GrDrawState* drawState = target->drawState();
michael@0 942
michael@0 943 // Check devBounds
michael@0 944 SkASSERT(check_bounds<LineVertex>(drawState, devBounds, arg.vertices(),
michael@0 945 kVertsPerLineSeg * lineCnt));
michael@0 946
michael@0 947 {
michael@0 948 GrDrawState::AutoRestoreEffects are(drawState);
michael@0 949 target->setIndexSourceToBuffer(fLinesIndexBuffer);
michael@0 950 int lines = 0;
michael@0 951 while (lines < lineCnt) {
michael@0 952 int n = GrMin(lineCnt - lines, kNumLineSegsInIdxBuffer);
michael@0 953 target->drawIndexed(kTriangles_GrPrimitiveType,
michael@0 954 kVertsPerLineSeg*lines, // startV
michael@0 955 0, // startI
michael@0 956 kVertsPerLineSeg*n, // vCount
michael@0 957 kIdxsPerLineSeg*n, // iCount
michael@0 958 &devBounds);
michael@0 959 lines += n;
michael@0 960 }
michael@0 961 }
michael@0 962 }
michael@0 963
michael@0 964 // then quadratics/conics
michael@0 965 if (quadCnt || conicCnt) {
michael@0 966 GrDrawTarget::AutoReleaseGeometry arg;
michael@0 967 SkRect devBounds;
michael@0 968
michael@0 969 if (!this->createBezierGeom(path,
michael@0 970 target,
michael@0 971 quads,
michael@0 972 quadCnt,
michael@0 973 conics,
michael@0 974 conicCnt,
michael@0 975 qSubdivs,
michael@0 976 cWeights,
michael@0 977 &arg,
michael@0 978 &devBounds)) {
michael@0 979 return false;
michael@0 980 }
michael@0 981
michael@0 982 GrDrawTarget::AutoStateRestore asr;
michael@0 983
michael@0 984 // createGeom transforms the geometry to device space when the matrix does not have
michael@0 985 // perspective.
michael@0 986 if (target->getDrawState().getViewMatrix().hasPerspective()) {
michael@0 987 asr.set(target, GrDrawTarget::kPreserve_ASRInit);
michael@0 988 } else if (!asr.setIdentity(target, GrDrawTarget::kPreserve_ASRInit)) {
michael@0 989 return false;
michael@0 990 }
michael@0 991 GrDrawState* drawState = target->drawState();
michael@0 992
michael@0 993 static const int kEdgeAttrIndex = 1;
michael@0 994
michael@0 995 // Check devBounds
michael@0 996 SkASSERT(check_bounds<BezierVertex>(drawState, devBounds, arg.vertices(),
michael@0 997 kVertsPerQuad * quadCnt + kVertsPerQuad * conicCnt));
michael@0 998
michael@0 999 if (quadCnt > 0) {
michael@0 1000 GrEffectRef* hairQuadEffect = GrQuadEffect::Create(kHairlineAA_GrEffectEdgeType,
michael@0 1001 *target->caps());
michael@0 1002 SkASSERT(NULL != hairQuadEffect);
michael@0 1003 GrDrawState::AutoRestoreEffects are(drawState);
michael@0 1004 target->setIndexSourceToBuffer(fQuadsIndexBuffer);
michael@0 1005 drawState->addCoverageEffect(hairQuadEffect, kEdgeAttrIndex)->unref();
michael@0 1006 int quads = 0;
michael@0 1007 while (quads < quadCnt) {
michael@0 1008 int n = GrMin(quadCnt - quads, kNumQuadsInIdxBuffer);
michael@0 1009 target->drawIndexed(kTriangles_GrPrimitiveType,
michael@0 1010 kVertsPerQuad*quads, // startV
michael@0 1011 0, // startI
michael@0 1012 kVertsPerQuad*n, // vCount
michael@0 1013 kIdxsPerQuad*n, // iCount
michael@0 1014 &devBounds);
michael@0 1015 quads += n;
michael@0 1016 }
michael@0 1017 }
michael@0 1018
michael@0 1019 if (conicCnt > 0) {
michael@0 1020 GrDrawState::AutoRestoreEffects are(drawState);
michael@0 1021 GrEffectRef* hairConicEffect = GrConicEffect::Create(kHairlineAA_GrEffectEdgeType,
michael@0 1022 *target->caps());
michael@0 1023 SkASSERT(NULL != hairConicEffect);
michael@0 1024 drawState->addCoverageEffect(hairConicEffect, 1, 2)->unref();
michael@0 1025 int conics = 0;
michael@0 1026 while (conics < conicCnt) {
michael@0 1027 int n = GrMin(conicCnt - conics, kNumQuadsInIdxBuffer);
michael@0 1028 target->drawIndexed(kTriangles_GrPrimitiveType,
michael@0 1029 kVertsPerQuad*(quadCnt + conics), // startV
michael@0 1030 0, // startI
michael@0 1031 kVertsPerQuad*n, // vCount
michael@0 1032 kIdxsPerQuad*n, // iCount
michael@0 1033 &devBounds);
michael@0 1034 conics += n;
michael@0 1035 }
michael@0 1036 }
michael@0 1037 }
michael@0 1038
michael@0 1039 target->resetIndexSource();
michael@0 1040
michael@0 1041 return true;
michael@0 1042 }

mercurial