gfx/skia/trunk/src/gpu/GrAAHairLinePathRenderer.cpp

Sat, 03 Jan 2015 20:18:00 +0100

author
Michael Schloh von Bennewitz <michael@schloh.com>
date
Sat, 03 Jan 2015 20:18:00 +0100
branch
TOR_BUG_3246
changeset 7
129ffea94266
permissions
-rw-r--r--

Conditionally enable double key logic according to:
private browsing mode or privacy.thirdparty.isolate preference and
implement in GetCookieStringCommon and FindCookie where it counts...
With some reservations of how to convince FindCookie users to test
condition and pass a nullptr when disabling double key logic.

     1 /*
     2  * Copyright 2011 Google Inc.
     3  *
     4  * Use of this source code is governed by a BSD-style license that can be
     5  * found in the LICENSE file.
     6  */
     8 #include "GrAAHairLinePathRenderer.h"
    10 #include "GrContext.h"
    11 #include "GrDrawState.h"
    12 #include "GrDrawTargetCaps.h"
    13 #include "GrEffect.h"
    14 #include "GrGpu.h"
    15 #include "GrIndexBuffer.h"
    16 #include "GrPathUtils.h"
    17 #include "GrTBackendEffectFactory.h"
    18 #include "SkGeometry.h"
    19 #include "SkStroke.h"
    20 #include "SkTemplates.h"
    22 #include "effects/GrBezierEffect.h"
    24 namespace {
    25 // quadratics are rendered as 5-sided polys in order to bound the
    26 // AA stroke around the center-curve. See comments in push_quad_index_buffer and
    27 // bloat_quad. Quadratics and conics share an index buffer
    28 static const int kVertsPerQuad = 5;
    29 static const int kIdxsPerQuad = 9;
    31 // lines are rendered as:
    32 //      *______________*
    33 //      |\ -_______   /|
    34 //      | \        \ / |
    35 //      |  *--------*  |
    36 //      | /  ______/ \ |
    37 //      */_-__________\*
    38 // For: 6 vertices and 18 indices (for 6 triangles)
    39 static const int kVertsPerLineSeg = 6;
    40 static const int kIdxsPerLineSeg = 18;
    42 static const int kNumQuadsInIdxBuffer = 256;
    43 static const size_t kQuadIdxSBufize = kIdxsPerQuad *
    44                                       sizeof(uint16_t) *
    45                                       kNumQuadsInIdxBuffer;
    47 static const int kNumLineSegsInIdxBuffer = 256;
    48 static const size_t kLineSegIdxSBufize = kIdxsPerLineSeg *
    49                                          sizeof(uint16_t) *
    50                                          kNumLineSegsInIdxBuffer;
    52 static bool push_quad_index_data(GrIndexBuffer* qIdxBuffer) {
    53     uint16_t* data = (uint16_t*) qIdxBuffer->lock();
    54     bool tempData = NULL == data;
    55     if (tempData) {
    56         data = SkNEW_ARRAY(uint16_t, kNumQuadsInIdxBuffer * kIdxsPerQuad);
    57     }
    58     for (int i = 0; i < kNumQuadsInIdxBuffer; ++i) {
    60         // Each quadratic is rendered as a five sided polygon. This poly bounds
    61         // the quadratic's bounding triangle but has been expanded so that the
    62         // 1-pixel wide area around the curve is inside the poly.
    63         // If a,b,c are the original control points then the poly a0,b0,c0,c1,a1
    64         // that is rendered would look like this:
    65         //              b0
    66         //              b
    67         //
    68         //     a0              c0
    69         //      a            c
    70         //       a1       c1
    71         // Each is drawn as three triangles specified by these 9 indices:
    72         int baseIdx = i * kIdxsPerQuad;
    73         uint16_t baseVert = (uint16_t)(i * kVertsPerQuad);
    74         data[0 + baseIdx] = baseVert + 0; // a0
    75         data[1 + baseIdx] = baseVert + 1; // a1
    76         data[2 + baseIdx] = baseVert + 2; // b0
    77         data[3 + baseIdx] = baseVert + 2; // b0
    78         data[4 + baseIdx] = baseVert + 4; // c1
    79         data[5 + baseIdx] = baseVert + 3; // c0
    80         data[6 + baseIdx] = baseVert + 1; // a1
    81         data[7 + baseIdx] = baseVert + 4; // c1
    82         data[8 + baseIdx] = baseVert + 2; // b0
    83     }
    84     if (tempData) {
    85         bool ret = qIdxBuffer->updateData(data, kQuadIdxSBufize);
    86         delete[] data;
    87         return ret;
    88     } else {
    89         qIdxBuffer->unlock();
    90         return true;
    91     }
    92 }
    94 static bool push_line_index_data(GrIndexBuffer* lIdxBuffer) {
    95     uint16_t* data = (uint16_t*) lIdxBuffer->lock();
    96     bool tempData = NULL == data;
    97     if (tempData) {
    98         data = SkNEW_ARRAY(uint16_t, kNumLineSegsInIdxBuffer * kIdxsPerLineSeg);
    99     }
   100     for (int i = 0; i < kNumLineSegsInIdxBuffer; ++i) {
   101         // Each line segment is rendered as two quads and two triangles.
   102         // p0 and p1 have alpha = 1 while all other points have alpha = 0.
   103         // The four external points are offset 1 pixel perpendicular to the
   104         // line and half a pixel parallel to the line.
   105         //
   106         // p4                  p5
   107         //      p0         p1
   108         // p2                  p3
   109         //
   110         // Each is drawn as six triangles specified by these 18 indices:
   111         int baseIdx = i * kIdxsPerLineSeg;
   112         uint16_t baseVert = (uint16_t)(i * kVertsPerLineSeg);
   113         data[0 + baseIdx] = baseVert + 0;
   114         data[1 + baseIdx] = baseVert + 1;
   115         data[2 + baseIdx] = baseVert + 3;
   117         data[3 + baseIdx] = baseVert + 0;
   118         data[4 + baseIdx] = baseVert + 3;
   119         data[5 + baseIdx] = baseVert + 2;
   121         data[6 + baseIdx] = baseVert + 0;
   122         data[7 + baseIdx] = baseVert + 4;
   123         data[8 + baseIdx] = baseVert + 5;
   125         data[9 + baseIdx] = baseVert + 0;
   126         data[10+ baseIdx] = baseVert + 5;
   127         data[11+ baseIdx] = baseVert + 1;
   129         data[12 + baseIdx] = baseVert + 0;
   130         data[13 + baseIdx] = baseVert + 2;
   131         data[14 + baseIdx] = baseVert + 4;
   133         data[15 + baseIdx] = baseVert + 1;
   134         data[16 + baseIdx] = baseVert + 5;
   135         data[17 + baseIdx] = baseVert + 3;
   136     }
   137     if (tempData) {
   138         bool ret = lIdxBuffer->updateData(data, kLineSegIdxSBufize);
   139         delete[] data;
   140         return ret;
   141     } else {
   142         lIdxBuffer->unlock();
   143         return true;
   144     }
   145 }
   146 }
   148 GrPathRenderer* GrAAHairLinePathRenderer::Create(GrContext* context) {
   149     GrGpu* gpu = context->getGpu();
   150     GrIndexBuffer* qIdxBuf = gpu->createIndexBuffer(kQuadIdxSBufize, false);
   151     SkAutoTUnref<GrIndexBuffer> qIdxBuffer(qIdxBuf);
   152     if (NULL == qIdxBuf || !push_quad_index_data(qIdxBuf)) {
   153         return NULL;
   154     }
   155     GrIndexBuffer* lIdxBuf = gpu->createIndexBuffer(kLineSegIdxSBufize, false);
   156     SkAutoTUnref<GrIndexBuffer> lIdxBuffer(lIdxBuf);
   157     if (NULL == lIdxBuf || !push_line_index_data(lIdxBuf)) {
   158         return NULL;
   159     }
   160     return SkNEW_ARGS(GrAAHairLinePathRenderer,
   161                       (context, lIdxBuf, qIdxBuf));
   162 }
   164 GrAAHairLinePathRenderer::GrAAHairLinePathRenderer(
   165                                         const GrContext* context,
   166                                         const GrIndexBuffer* linesIndexBuffer,
   167                                         const GrIndexBuffer* quadsIndexBuffer) {
   168     fLinesIndexBuffer = linesIndexBuffer;
   169     linesIndexBuffer->ref();
   170     fQuadsIndexBuffer = quadsIndexBuffer;
   171     quadsIndexBuffer->ref();
   172 }
   174 GrAAHairLinePathRenderer::~GrAAHairLinePathRenderer() {
   175     fLinesIndexBuffer->unref();
   176     fQuadsIndexBuffer->unref();
   177 }
   179 namespace {
   181 #define PREALLOC_PTARRAY(N) SkSTArray<(N),SkPoint, true>
   183 // Takes 178th time of logf on Z600 / VC2010
   184 int get_float_exp(float x) {
   185     GR_STATIC_ASSERT(sizeof(int) == sizeof(float));
   186 #ifdef SK_DEBUG
   187     static bool tested;
   188     if (!tested) {
   189         tested = true;
   190         SkASSERT(get_float_exp(0.25f) == -2);
   191         SkASSERT(get_float_exp(0.3f) == -2);
   192         SkASSERT(get_float_exp(0.5f) == -1);
   193         SkASSERT(get_float_exp(1.f) == 0);
   194         SkASSERT(get_float_exp(2.f) == 1);
   195         SkASSERT(get_float_exp(2.5f) == 1);
   196         SkASSERT(get_float_exp(8.f) == 3);
   197         SkASSERT(get_float_exp(100.f) == 6);
   198         SkASSERT(get_float_exp(1000.f) == 9);
   199         SkASSERT(get_float_exp(1024.f) == 10);
   200         SkASSERT(get_float_exp(3000000.f) == 21);
   201     }
   202 #endif
   203     const int* iptr = (const int*)&x;
   204     return (((*iptr) & 0x7f800000) >> 23) - 127;
   205 }
   207 // Uses the max curvature function for quads to estimate
   208 // where to chop the conic. If the max curvature is not
   209 // found along the curve segment it will return 1 and
   210 // dst[0] is the original conic. If it returns 2 the dst[0]
   211 // and dst[1] are the two new conics.
   212 int split_conic(const SkPoint src[3], SkConic dst[2], const SkScalar weight) {
   213     SkScalar t = SkFindQuadMaxCurvature(src);
   214     if (t == 0) {
   215         if (dst) {
   216             dst[0].set(src, weight);
   217         }
   218         return 1;
   219     } else {
   220         if (dst) {
   221             SkConic conic;
   222             conic.set(src, weight);
   223             conic.chopAt(t, dst);
   224         }
   225         return 2;
   226     }
   227 }
   229 // Calls split_conic on the entire conic and then once more on each subsection.
   230 // Most cases will result in either 1 conic (chop point is not within t range)
   231 // or 3 points (split once and then one subsection is split again).
   232 int chop_conic(const SkPoint src[3], SkConic dst[4], const SkScalar weight) {
   233     SkConic dstTemp[2];
   234     int conicCnt = split_conic(src, dstTemp, weight);
   235     if (2 == conicCnt) {
   236         int conicCnt2 = split_conic(dstTemp[0].fPts, dst, dstTemp[0].fW);
   237         conicCnt = conicCnt2 + split_conic(dstTemp[1].fPts, &dst[conicCnt2], dstTemp[1].fW);
   238     } else {
   239         dst[0] = dstTemp[0];
   240     }
   241     return conicCnt;
   242 }
   244 // returns 0 if quad/conic is degen or close to it
   245 // in this case approx the path with lines
   246 // otherwise returns 1
   247 int is_degen_quad_or_conic(const SkPoint p[3]) {
   248     static const SkScalar gDegenerateToLineTol = SK_Scalar1;
   249     static const SkScalar gDegenerateToLineTolSqd =
   250         SkScalarMul(gDegenerateToLineTol, gDegenerateToLineTol);
   252     if (p[0].distanceToSqd(p[1]) < gDegenerateToLineTolSqd ||
   253         p[1].distanceToSqd(p[2]) < gDegenerateToLineTolSqd) {
   254         return 1;
   255     }
   257     SkScalar dsqd = p[1].distanceToLineBetweenSqd(p[0], p[2]);
   258     if (dsqd < gDegenerateToLineTolSqd) {
   259         return 1;
   260     }
   262     if (p[2].distanceToLineBetweenSqd(p[1], p[0]) < gDegenerateToLineTolSqd) {
   263         return 1;
   264     }
   265     return 0;
   266 }
   268 // we subdivide the quads to avoid huge overfill
   269 // if it returns -1 then should be drawn as lines
   270 int num_quad_subdivs(const SkPoint p[3]) {
   271     static const SkScalar gDegenerateToLineTol = SK_Scalar1;
   272     static const SkScalar gDegenerateToLineTolSqd =
   273         SkScalarMul(gDegenerateToLineTol, gDegenerateToLineTol);
   275     if (p[0].distanceToSqd(p[1]) < gDegenerateToLineTolSqd ||
   276         p[1].distanceToSqd(p[2]) < gDegenerateToLineTolSqd) {
   277         return -1;
   278     }
   280     SkScalar dsqd = p[1].distanceToLineBetweenSqd(p[0], p[2]);
   281     if (dsqd < gDegenerateToLineTolSqd) {
   282         return -1;
   283     }
   285     if (p[2].distanceToLineBetweenSqd(p[1], p[0]) < gDegenerateToLineTolSqd) {
   286         return -1;
   287     }
   289     // tolerance of triangle height in pixels
   290     // tuned on windows  Quadro FX 380 / Z600
   291     // trade off of fill vs cpu time on verts
   292     // maybe different when do this using gpu (geo or tess shaders)
   293     static const SkScalar gSubdivTol = 175 * SK_Scalar1;
   295     if (dsqd <= SkScalarMul(gSubdivTol, gSubdivTol)) {
   296         return 0;
   297     } else {
   298         static const int kMaxSub = 4;
   299         // subdividing the quad reduces d by 4. so we want x = log4(d/tol)
   300         // = log4(d*d/tol*tol)/2
   301         // = log2(d*d/tol*tol)
   303         // +1 since we're ignoring the mantissa contribution.
   304         int log = get_float_exp(dsqd/(gSubdivTol*gSubdivTol)) + 1;
   305         log = GrMin(GrMax(0, log), kMaxSub);
   306         return log;
   307     }
   308 }
   310 /**
   311  * Generates the lines and quads to be rendered. Lines are always recorded in
   312  * device space. We will do a device space bloat to account for the 1pixel
   313  * thickness.
   314  * Quads are recorded in device space unless m contains
   315  * perspective, then in they are in src space. We do this because we will
   316  * subdivide large quads to reduce over-fill. This subdivision has to be
   317  * performed before applying the perspective matrix.
   318  */
   319 int generate_lines_and_quads(const SkPath& path,
   320                              const SkMatrix& m,
   321                              const SkIRect& devClipBounds,
   322                              GrAAHairLinePathRenderer::PtArray* lines,
   323                              GrAAHairLinePathRenderer::PtArray* quads,
   324                              GrAAHairLinePathRenderer::PtArray* conics,
   325                              GrAAHairLinePathRenderer::IntArray* quadSubdivCnts,
   326                              GrAAHairLinePathRenderer::FloatArray* conicWeights) {
   327     SkPath::Iter iter(path, false);
   329     int totalQuadCount = 0;
   330     SkRect bounds;
   331     SkIRect ibounds;
   333     bool persp = m.hasPerspective();
   335     for (;;) {
   336         GrPoint pathPts[4];
   337         GrPoint devPts[4];
   338         SkPath::Verb verb = iter.next(pathPts);
   339         switch (verb) {
   340             case SkPath::kConic_Verb: {
   341                 SkConic dst[4];
   342                 // We chop the conics to create tighter clipping to hide error
   343                 // that appears near max curvature of very thin conics. Thin
   344                 // hyperbolas with high weight still show error.
   345                 int conicCnt = chop_conic(pathPts, dst, iter.conicWeight());
   346                 for (int i = 0; i < conicCnt; ++i) {
   347                     SkPoint* chopPnts = dst[i].fPts;
   348                     m.mapPoints(devPts, chopPnts, 3);
   349                     bounds.setBounds(devPts, 3);
   350                     bounds.outset(SK_Scalar1, SK_Scalar1);
   351                     bounds.roundOut(&ibounds);
   352                     if (SkIRect::Intersects(devClipBounds, ibounds)) {
   353                         if (is_degen_quad_or_conic(devPts)) {
   354                             SkPoint* pts = lines->push_back_n(4);
   355                             pts[0] = devPts[0];
   356                             pts[1] = devPts[1];
   357                             pts[2] = devPts[1];
   358                             pts[3] = devPts[2];
   359                         } else {
   360                             // when in perspective keep conics in src space
   361                             SkPoint* cPts = persp ? chopPnts : devPts;
   362                             SkPoint* pts = conics->push_back_n(3);
   363                             pts[0] = cPts[0];
   364                             pts[1] = cPts[1];
   365                             pts[2] = cPts[2];
   366                             conicWeights->push_back() = dst[i].fW;
   367                         }
   368                     }
   369                 }
   370                 break;
   371             }
   372             case SkPath::kMove_Verb:
   373                 break;
   374             case SkPath::kLine_Verb:
   375                 m.mapPoints(devPts, pathPts, 2);
   376                 bounds.setBounds(devPts, 2);
   377                 bounds.outset(SK_Scalar1, SK_Scalar1);
   378                 bounds.roundOut(&ibounds);
   379                 if (SkIRect::Intersects(devClipBounds, ibounds)) {
   380                     SkPoint* pts = lines->push_back_n(2);
   381                     pts[0] = devPts[0];
   382                     pts[1] = devPts[1];
   383                 }
   384                 break;
   385             case SkPath::kQuad_Verb: {
   386                 SkPoint choppedPts[5];
   387                 // Chopping the quad helps when the quad is either degenerate or nearly degenerate.
   388                 // When it is degenerate it allows the approximation with lines to work since the
   389                 // chop point (if there is one) will be at the parabola's vertex. In the nearly
   390                 // degenerate the QuadUVMatrix computed for the points is almost singular which
   391                 // can cause rendering artifacts.
   392                 int n = SkChopQuadAtMaxCurvature(pathPts, choppedPts);
   393                 for (int i = 0; i < n; ++i) {
   394                     SkPoint* quadPts = choppedPts + i * 2;
   395                     m.mapPoints(devPts, quadPts, 3);
   396                     bounds.setBounds(devPts, 3);
   397                     bounds.outset(SK_Scalar1, SK_Scalar1);
   398                     bounds.roundOut(&ibounds);
   400                     if (SkIRect::Intersects(devClipBounds, ibounds)) {
   401                         int subdiv = num_quad_subdivs(devPts);
   402                         SkASSERT(subdiv >= -1);
   403                         if (-1 == subdiv) {
   404                             SkPoint* pts = lines->push_back_n(4);
   405                             pts[0] = devPts[0];
   406                             pts[1] = devPts[1];
   407                             pts[2] = devPts[1];
   408                             pts[3] = devPts[2];
   409                         } else {
   410                             // when in perspective keep quads in src space
   411                             SkPoint* qPts = persp ? quadPts : devPts;
   412                             SkPoint* pts = quads->push_back_n(3);
   413                             pts[0] = qPts[0];
   414                             pts[1] = qPts[1];
   415                             pts[2] = qPts[2];
   416                             quadSubdivCnts->push_back() = subdiv;
   417                             totalQuadCount += 1 << subdiv;
   418                         }
   419                     }
   420                 }
   421                 break;
   422             }
   423             case SkPath::kCubic_Verb:
   424                 m.mapPoints(devPts, pathPts, 4);
   425                 bounds.setBounds(devPts, 4);
   426                 bounds.outset(SK_Scalar1, SK_Scalar1);
   427                 bounds.roundOut(&ibounds);
   428                 if (SkIRect::Intersects(devClipBounds, ibounds)) {
   429                     PREALLOC_PTARRAY(32) q;
   430                     // we don't need a direction if we aren't constraining the subdivision
   431                     static const SkPath::Direction kDummyDir = SkPath::kCCW_Direction;
   432                     // We convert cubics to quadratics (for now).
   433                     // In perspective have to do conversion in src space.
   434                     if (persp) {
   435                         SkScalar tolScale =
   436                             GrPathUtils::scaleToleranceToSrc(SK_Scalar1, m,
   437                                                              path.getBounds());
   438                         GrPathUtils::convertCubicToQuads(pathPts, tolScale, false, kDummyDir, &q);
   439                     } else {
   440                         GrPathUtils::convertCubicToQuads(devPts, SK_Scalar1, false, kDummyDir, &q);
   441                     }
   442                     for (int i = 0; i < q.count(); i += 3) {
   443                         SkPoint* qInDevSpace;
   444                         // bounds has to be calculated in device space, but q is
   445                         // in src space when there is perspective.
   446                         if (persp) {
   447                             m.mapPoints(devPts, &q[i], 3);
   448                             bounds.setBounds(devPts, 3);
   449                             qInDevSpace = devPts;
   450                         } else {
   451                             bounds.setBounds(&q[i], 3);
   452                             qInDevSpace = &q[i];
   453                         }
   454                         bounds.outset(SK_Scalar1, SK_Scalar1);
   455                         bounds.roundOut(&ibounds);
   456                         if (SkIRect::Intersects(devClipBounds, ibounds)) {
   457                             int subdiv = num_quad_subdivs(qInDevSpace);
   458                             SkASSERT(subdiv >= -1);
   459                             if (-1 == subdiv) {
   460                                 SkPoint* pts = lines->push_back_n(4);
   461                                 // lines should always be in device coords
   462                                 pts[0] = qInDevSpace[0];
   463                                 pts[1] = qInDevSpace[1];
   464                                 pts[2] = qInDevSpace[1];
   465                                 pts[3] = qInDevSpace[2];
   466                             } else {
   467                                 SkPoint* pts = quads->push_back_n(3);
   468                                 // q is already in src space when there is no
   469                                 // perspective and dev coords otherwise.
   470                                 pts[0] = q[0 + i];
   471                                 pts[1] = q[1 + i];
   472                                 pts[2] = q[2 + i];
   473                                 quadSubdivCnts->push_back() = subdiv;
   474                                 totalQuadCount += 1 << subdiv;
   475                             }
   476                         }
   477                     }
   478                 }
   479                 break;
   480             case SkPath::kClose_Verb:
   481                 break;
   482             case SkPath::kDone_Verb:
   483                 return totalQuadCount;
   484         }
   485     }
   486 }
   488 struct LineVertex {
   489     GrPoint fPos;
   490     GrColor fCoverage;
   491 };
   493 struct BezierVertex {
   494     GrPoint fPos;
   495     union {
   496         struct {
   497             SkScalar fK;
   498             SkScalar fL;
   499             SkScalar fM;
   500         } fConic;
   501         GrVec   fQuadCoord;
   502         struct {
   503             SkScalar fBogus[4];
   504         };
   505     };
   506 };
   508 GR_STATIC_ASSERT(sizeof(BezierVertex) == 3 * sizeof(GrPoint));
   510 void intersect_lines(const SkPoint& ptA, const SkVector& normA,
   511                      const SkPoint& ptB, const SkVector& normB,
   512                      SkPoint* result) {
   514     SkScalar lineAW = -normA.dot(ptA);
   515     SkScalar lineBW = -normB.dot(ptB);
   517     SkScalar wInv = SkScalarMul(normA.fX, normB.fY) -
   518         SkScalarMul(normA.fY, normB.fX);
   519     wInv = SkScalarInvert(wInv);
   521     result->fX = SkScalarMul(normA.fY, lineBW) - SkScalarMul(lineAW, normB.fY);
   522     result->fX = SkScalarMul(result->fX, wInv);
   524     result->fY = SkScalarMul(lineAW, normB.fX) - SkScalarMul(normA.fX, lineBW);
   525     result->fY = SkScalarMul(result->fY, wInv);
   526 }
   528 void set_uv_quad(const SkPoint qpts[3], BezierVertex verts[kVertsPerQuad]) {
   529     // this should be in the src space, not dev coords, when we have perspective
   530     GrPathUtils::QuadUVMatrix DevToUV(qpts);
   531     DevToUV.apply<kVertsPerQuad, sizeof(BezierVertex), sizeof(GrPoint)>(verts);
   532 }
   534 void bloat_quad(const SkPoint qpts[3], const SkMatrix* toDevice,
   535                 const SkMatrix* toSrc, BezierVertex verts[kVertsPerQuad],
   536                 SkRect* devBounds) {
   537     SkASSERT(!toDevice == !toSrc);
   538     // original quad is specified by tri a,b,c
   539     SkPoint a = qpts[0];
   540     SkPoint b = qpts[1];
   541     SkPoint c = qpts[2];
   543     if (toDevice) {
   544         toDevice->mapPoints(&a, 1);
   545         toDevice->mapPoints(&b, 1);
   546         toDevice->mapPoints(&c, 1);
   547     }
   548     // make a new poly where we replace a and c by a 1-pixel wide edges orthog
   549     // to edges ab and bc:
   550     //
   551     //   before       |        after
   552     //                |              b0
   553     //         b      |
   554     //                |
   555     //                |     a0            c0
   556     // a         c    |        a1       c1
   557     //
   558     // edges a0->b0 and b0->c0 are parallel to original edges a->b and b->c,
   559     // respectively.
   560     BezierVertex& a0 = verts[0];
   561     BezierVertex& a1 = verts[1];
   562     BezierVertex& b0 = verts[2];
   563     BezierVertex& c0 = verts[3];
   564     BezierVertex& c1 = verts[4];
   566     SkVector ab = b;
   567     ab -= a;
   568     SkVector ac = c;
   569     ac -= a;
   570     SkVector cb = b;
   571     cb -= c;
   573     // We should have already handled degenerates
   574     SkASSERT(ab.length() > 0 && cb.length() > 0);
   576     ab.normalize();
   577     SkVector abN;
   578     abN.setOrthog(ab, SkVector::kLeft_Side);
   579     if (abN.dot(ac) > 0) {
   580         abN.negate();
   581     }
   583     cb.normalize();
   584     SkVector cbN;
   585     cbN.setOrthog(cb, SkVector::kLeft_Side);
   586     if (cbN.dot(ac) < 0) {
   587         cbN.negate();
   588     }
   590     a0.fPos = a;
   591     a0.fPos += abN;
   592     a1.fPos = a;
   593     a1.fPos -= abN;
   595     c0.fPos = c;
   596     c0.fPos += cbN;
   597     c1.fPos = c;
   598     c1.fPos -= cbN;
   600     intersect_lines(a0.fPos, abN, c0.fPos, cbN, &b0.fPos);
   601     devBounds->growToInclude(&verts[0].fPos, sizeof(BezierVertex), kVertsPerQuad);
   603     if (toSrc) {
   604         toSrc->mapPointsWithStride(&verts[0].fPos, sizeof(BezierVertex), kVertsPerQuad);
   605     }
   606 }
   608 // Equations based off of Loop-Blinn Quadratic GPU Rendering
   609 // Input Parametric:
   610 // P(t) = (P0*(1-t)^2 + 2*w*P1*t*(1-t) + P2*t^2) / (1-t)^2 + 2*w*t*(1-t) + t^2)
   611 // Output Implicit:
   612 // f(x, y, w) = f(P) = K^2 - LM
   613 // K = dot(k, P), L = dot(l, P), M = dot(m, P)
   614 // k, l, m are calculated in function GrPathUtils::getConicKLM
   615 void set_conic_coeffs(const SkPoint p[3], BezierVertex verts[kVertsPerQuad],
   616                       const SkScalar weight) {
   617     SkScalar klm[9];
   619     GrPathUtils::getConicKLM(p, weight, klm);
   621     for (int i = 0; i < kVertsPerQuad; ++i) {
   622         const SkPoint pnt = verts[i].fPos;
   623         verts[i].fConic.fK = pnt.fX * klm[0] + pnt.fY * klm[1] + klm[2];
   624         verts[i].fConic.fL = pnt.fX * klm[3] + pnt.fY * klm[4] + klm[5];
   625         verts[i].fConic.fM = pnt.fX * klm[6] + pnt.fY * klm[7] + klm[8];
   626     }
   627 }
   629 void add_conics(const SkPoint p[3],
   630                 const SkScalar weight,
   631                 const SkMatrix* toDevice,
   632                 const SkMatrix* toSrc,
   633                 BezierVertex** vert,
   634                 SkRect* devBounds) {
   635     bloat_quad(p, toDevice, toSrc, *vert, devBounds);
   636     set_conic_coeffs(p, *vert, weight);
   637     *vert += kVertsPerQuad;
   638 }
   640 void add_quads(const SkPoint p[3],
   641                int subdiv,
   642                const SkMatrix* toDevice,
   643                const SkMatrix* toSrc,
   644                BezierVertex** vert,
   645                SkRect* devBounds) {
   646     SkASSERT(subdiv >= 0);
   647     if (subdiv) {
   648         SkPoint newP[5];
   649         SkChopQuadAtHalf(p, newP);
   650         add_quads(newP + 0, subdiv-1, toDevice, toSrc, vert, devBounds);
   651         add_quads(newP + 2, subdiv-1, toDevice, toSrc, vert, devBounds);
   652     } else {
   653         bloat_quad(p, toDevice, toSrc, *vert, devBounds);
   654         set_uv_quad(p, *vert);
   655         *vert += kVertsPerQuad;
   656     }
   657 }
   659 void add_line(const SkPoint p[2],
   660               const SkMatrix* toSrc,
   661               GrColor coverage,
   662               LineVertex** vert) {
   663     const SkPoint& a = p[0];
   664     const SkPoint& b = p[1];
   666     SkVector ortho, vec = b;
   667     vec -= a;
   669     if (vec.setLength(SK_ScalarHalf)) {
   670         // Create a vector orthogonal to 'vec' and of unit length
   671         ortho.fX = 2.0f * vec.fY;
   672         ortho.fY = -2.0f * vec.fX;
   674         (*vert)[0].fPos = a;
   675         (*vert)[0].fCoverage = coverage;
   676         (*vert)[1].fPos = b;
   677         (*vert)[1].fCoverage = coverage;
   678         (*vert)[2].fPos = a - vec + ortho;
   679         (*vert)[2].fCoverage = 0;
   680         (*vert)[3].fPos = b + vec + ortho;
   681         (*vert)[3].fCoverage = 0;
   682         (*vert)[4].fPos = a - vec - ortho;
   683         (*vert)[4].fCoverage = 0;
   684         (*vert)[5].fPos = b + vec - ortho;
   685         (*vert)[5].fCoverage = 0;
   687         if (NULL != toSrc) {
   688             toSrc->mapPointsWithStride(&(*vert)->fPos,
   689                                        sizeof(LineVertex),
   690                                        kVertsPerLineSeg);
   691         }
   692     } else {
   693         // just make it degenerate and likely offscreen
   694         for (int i = 0; i < kVertsPerLineSeg; ++i) {
   695             (*vert)[i].fPos.set(SK_ScalarMax, SK_ScalarMax);
   696         }
   697     }
   699     *vert += kVertsPerLineSeg;
   700 }
   702 }
   704 ///////////////////////////////////////////////////////////////////////////////
   706 namespace {
   708 // position + edge
   709 extern const GrVertexAttrib gHairlineBezierAttribs[] = {
   710     {kVec2f_GrVertexAttribType, 0,                  kPosition_GrVertexAttribBinding},
   711     {kVec4f_GrVertexAttribType, sizeof(GrPoint),    kEffect_GrVertexAttribBinding}
   712 };
   714 // position + coverage
   715 extern const GrVertexAttrib gHairlineLineAttribs[] = {
   716     {kVec2f_GrVertexAttribType,  0,               kPosition_GrVertexAttribBinding},
   717     {kVec4ub_GrVertexAttribType, sizeof(GrPoint), kCoverage_GrVertexAttribBinding},
   718 };
   720 };
   722 bool GrAAHairLinePathRenderer::createLineGeom(const SkPath& path,
   723                                               GrDrawTarget* target,
   724                                               const PtArray& lines,
   725                                               int lineCnt,
   726                                               GrDrawTarget::AutoReleaseGeometry* arg,
   727                                               SkRect* devBounds) {
   728     GrDrawState* drawState = target->drawState();
   730     const SkMatrix& viewM = drawState->getViewMatrix();
   732     int vertCnt = kVertsPerLineSeg * lineCnt;
   734     drawState->setVertexAttribs<gHairlineLineAttribs>(SK_ARRAY_COUNT(gHairlineLineAttribs));
   735     SkASSERT(sizeof(LineVertex) == drawState->getVertexSize());
   737     if (!arg->set(target, vertCnt, 0)) {
   738         return false;
   739     }
   741     LineVertex* verts = reinterpret_cast<LineVertex*>(arg->vertices());
   743     const SkMatrix* toSrc = NULL;
   744     SkMatrix ivm;
   746     if (viewM.hasPerspective()) {
   747         if (viewM.invert(&ivm)) {
   748             toSrc = &ivm;
   749         }
   750     }
   751     devBounds->set(lines.begin(), lines.count());
   752     for (int i = 0; i < lineCnt; ++i) {
   753         add_line(&lines[2*i], toSrc, drawState->getCoverageColor(), &verts);
   754     }
   755     // All the verts computed by add_line are within sqrt(1^2 + 0.5^2) of the end points.
   756     static const SkScalar kSqrtOfOneAndAQuarter = 1.118f;
   757     // Add a little extra to account for vector normalization precision.
   758     static const SkScalar kOutset = kSqrtOfOneAndAQuarter + SK_Scalar1 / 20;
   759     devBounds->outset(kOutset, kOutset);
   761     return true;
   762 }
   764 bool GrAAHairLinePathRenderer::createBezierGeom(
   765                                           const SkPath& path,
   766                                           GrDrawTarget* target,
   767                                           const PtArray& quads,
   768                                           int quadCnt,
   769                                           const PtArray& conics,
   770                                           int conicCnt,
   771                                           const IntArray& qSubdivs,
   772                                           const FloatArray& cWeights,
   773                                           GrDrawTarget::AutoReleaseGeometry* arg,
   774                                           SkRect* devBounds) {
   775     GrDrawState* drawState = target->drawState();
   777     const SkMatrix& viewM = drawState->getViewMatrix();
   779     int vertCnt = kVertsPerQuad * quadCnt + kVertsPerQuad * conicCnt;
   781     target->drawState()->setVertexAttribs<gHairlineBezierAttribs>(SK_ARRAY_COUNT(gHairlineBezierAttribs));
   782     SkASSERT(sizeof(BezierVertex) == target->getDrawState().getVertexSize());
   784     if (!arg->set(target, vertCnt, 0)) {
   785         return false;
   786     }
   788     BezierVertex* verts = reinterpret_cast<BezierVertex*>(arg->vertices());
   790     const SkMatrix* toDevice = NULL;
   791     const SkMatrix* toSrc = NULL;
   792     SkMatrix ivm;
   794     if (viewM.hasPerspective()) {
   795         if (viewM.invert(&ivm)) {
   796             toDevice = &viewM;
   797             toSrc = &ivm;
   798         }
   799     }
   801     // Seed the dev bounds with some pts known to be inside. Each quad and conic grows the bounding
   802     // box to include its vertices.
   803     SkPoint seedPts[2];
   804     if (quadCnt) {
   805         seedPts[0] = quads[0];
   806         seedPts[1] = quads[2];
   807     } else if (conicCnt) {
   808         seedPts[0] = conics[0];
   809         seedPts[1] = conics[2];
   810     }
   811     if (NULL != toDevice) {
   812         toDevice->mapPoints(seedPts, 2);
   813     }
   814     devBounds->set(seedPts[0], seedPts[1]);
   816     int unsubdivQuadCnt = quads.count() / 3;
   817     for (int i = 0; i < unsubdivQuadCnt; ++i) {
   818         SkASSERT(qSubdivs[i] >= 0);
   819         add_quads(&quads[3*i], qSubdivs[i], toDevice, toSrc, &verts, devBounds);
   820     }
   822     // Start Conics
   823     for (int i = 0; i < conicCnt; ++i) {
   824         add_conics(&conics[3*i], cWeights[i], toDevice, toSrc, &verts, devBounds);
   825     }
   826     return true;
   827 }
   829 bool GrAAHairLinePathRenderer::canDrawPath(const SkPath& path,
   830                                            const SkStrokeRec& stroke,
   831                                            const GrDrawTarget* target,
   832                                            bool antiAlias) const {
   833     if (!antiAlias) {
   834         return false;
   835     }
   837     if (!IsStrokeHairlineOrEquivalent(stroke,
   838                                       target->getDrawState().getViewMatrix(),
   839                                       NULL)) {
   840         return false;
   841     }
   843     if (SkPath::kLine_SegmentMask == path.getSegmentMasks() ||
   844         target->caps()->shaderDerivativeSupport()) {
   845         return true;
   846     }
   847     return false;
   848 }
   850 template <class VertexType>
   851 bool check_bounds(GrDrawState* drawState, const SkRect& devBounds, void* vertices, int vCount)
   852 {
   853     SkRect tolDevBounds = devBounds;
   854     // The bounds ought to be tight, but in perspective the below code runs the verts
   855     // through the view matrix to get back to dev coords, which can introduce imprecision.
   856     if (drawState->getViewMatrix().hasPerspective()) {
   857         tolDevBounds.outset(SK_Scalar1 / 1000, SK_Scalar1 / 1000);
   858     } else {
   859         // Non-persp matrices cause this path renderer to draw in device space.
   860         SkASSERT(drawState->getViewMatrix().isIdentity());
   861     }
   862     SkRect actualBounds;
   864     VertexType* verts = reinterpret_cast<VertexType*>(vertices);
   865     bool first = true;
   866     for (int i = 0; i < vCount; ++i) {
   867         SkPoint pos = verts[i].fPos;
   868         // This is a hack to workaround the fact that we move some degenerate segments offscreen.
   869         if (SK_ScalarMax == pos.fX) {
   870             continue;
   871         }
   872         drawState->getViewMatrix().mapPoints(&pos, 1);
   873         if (first) {
   874             actualBounds.set(pos.fX, pos.fY, pos.fX, pos.fY);
   875             first = false;
   876         } else {
   877             actualBounds.growToInclude(pos.fX, pos.fY);
   878         }
   879     }
   880     if (!first) {
   881         return tolDevBounds.contains(actualBounds);
   882     }
   884     return true;
   885 }
   887 bool GrAAHairLinePathRenderer::onDrawPath(const SkPath& path,
   888                                           const SkStrokeRec& stroke,
   889                                           GrDrawTarget* target,
   890                                           bool antiAlias) {
   891     GrDrawState* drawState = target->drawState();
   893     SkScalar hairlineCoverage;
   894     if (IsStrokeHairlineOrEquivalent(stroke,
   895                                      target->getDrawState().getViewMatrix(),
   896                                      &hairlineCoverage)) {
   897         uint8_t newCoverage = SkScalarRoundToInt(hairlineCoverage *
   898                                                  target->getDrawState().getCoverage());
   899         target->drawState()->setCoverage(newCoverage);
   900     }
   902     SkIRect devClipBounds;
   903     target->getClip()->getConservativeBounds(drawState->getRenderTarget(), &devClipBounds);
   905     int lineCnt;
   906     int quadCnt;
   907     int conicCnt;
   908     PREALLOC_PTARRAY(128) lines;
   909     PREALLOC_PTARRAY(128) quads;
   910     PREALLOC_PTARRAY(128) conics;
   911     IntArray qSubdivs;
   912     FloatArray cWeights;
   913     quadCnt = generate_lines_and_quads(path, drawState->getViewMatrix(), devClipBounds,
   914                                        &lines, &quads, &conics, &qSubdivs, &cWeights);
   915     lineCnt = lines.count() / 2;
   916     conicCnt = conics.count() / 3;
   918     // do lines first
   919     if (lineCnt) {
   920         GrDrawTarget::AutoReleaseGeometry arg;
   921         SkRect devBounds;
   923         if (!this->createLineGeom(path,
   924                                   target,
   925                                   lines,
   926                                   lineCnt,
   927                                   &arg,
   928                                   &devBounds)) {
   929             return false;
   930         }
   932         GrDrawTarget::AutoStateRestore asr;
   934         // createLineGeom transforms the geometry to device space when the matrix does not have
   935         // perspective.
   936         if (target->getDrawState().getViewMatrix().hasPerspective()) {
   937             asr.set(target, GrDrawTarget::kPreserve_ASRInit);
   938         } else if (!asr.setIdentity(target, GrDrawTarget::kPreserve_ASRInit)) {
   939             return false;
   940         }
   941         GrDrawState* drawState = target->drawState();
   943         // Check devBounds
   944         SkASSERT(check_bounds<LineVertex>(drawState, devBounds, arg.vertices(),
   945                                           kVertsPerLineSeg * lineCnt));
   947         {
   948             GrDrawState::AutoRestoreEffects are(drawState);
   949             target->setIndexSourceToBuffer(fLinesIndexBuffer);
   950             int lines = 0;
   951             while (lines < lineCnt) {
   952                 int n = GrMin(lineCnt - lines, kNumLineSegsInIdxBuffer);
   953                 target->drawIndexed(kTriangles_GrPrimitiveType,
   954                                     kVertsPerLineSeg*lines,     // startV
   955                                     0,                          // startI
   956                                     kVertsPerLineSeg*n,         // vCount
   957                                     kIdxsPerLineSeg*n,          // iCount
   958                                     &devBounds);
   959                 lines += n;
   960             }
   961         }
   962     }
   964     // then quadratics/conics
   965     if (quadCnt || conicCnt) {
   966         GrDrawTarget::AutoReleaseGeometry arg;
   967         SkRect devBounds;
   969         if (!this->createBezierGeom(path,
   970                                     target,
   971                                     quads,
   972                                     quadCnt,
   973                                     conics,
   974                                     conicCnt,
   975                                     qSubdivs,
   976                                     cWeights,
   977                                     &arg,
   978                                     &devBounds)) {
   979             return false;
   980         }
   982         GrDrawTarget::AutoStateRestore asr;
   984         // createGeom transforms the geometry to device space when the matrix does not have
   985         // perspective.
   986         if (target->getDrawState().getViewMatrix().hasPerspective()) {
   987             asr.set(target, GrDrawTarget::kPreserve_ASRInit);
   988         } else if (!asr.setIdentity(target, GrDrawTarget::kPreserve_ASRInit)) {
   989             return false;
   990         }
   991         GrDrawState* drawState = target->drawState();
   993         static const int kEdgeAttrIndex = 1;
   995         // Check devBounds
   996         SkASSERT(check_bounds<BezierVertex>(drawState, devBounds, arg.vertices(),
   997                                             kVertsPerQuad * quadCnt + kVertsPerQuad * conicCnt));
   999         if (quadCnt > 0) {
  1000             GrEffectRef* hairQuadEffect = GrQuadEffect::Create(kHairlineAA_GrEffectEdgeType,
  1001                                                                *target->caps());
  1002             SkASSERT(NULL != hairQuadEffect);
  1003             GrDrawState::AutoRestoreEffects are(drawState);
  1004             target->setIndexSourceToBuffer(fQuadsIndexBuffer);
  1005             drawState->addCoverageEffect(hairQuadEffect, kEdgeAttrIndex)->unref();
  1006             int quads = 0;
  1007             while (quads < quadCnt) {
  1008                 int n = GrMin(quadCnt - quads, kNumQuadsInIdxBuffer);
  1009                 target->drawIndexed(kTriangles_GrPrimitiveType,
  1010                                     kVertsPerQuad*quads,               // startV
  1011                                     0,                                 // startI
  1012                                     kVertsPerQuad*n,                   // vCount
  1013                                     kIdxsPerQuad*n,                    // iCount
  1014                                     &devBounds);
  1015                 quads += n;
  1019         if (conicCnt > 0) {
  1020             GrDrawState::AutoRestoreEffects are(drawState);
  1021             GrEffectRef* hairConicEffect = GrConicEffect::Create(kHairlineAA_GrEffectEdgeType,
  1022                                                                  *target->caps());
  1023             SkASSERT(NULL != hairConicEffect);
  1024             drawState->addCoverageEffect(hairConicEffect, 1, 2)->unref();
  1025             int conics = 0;
  1026             while (conics < conicCnt) {
  1027                 int n = GrMin(conicCnt - conics, kNumQuadsInIdxBuffer);
  1028                 target->drawIndexed(kTriangles_GrPrimitiveType,
  1029                                     kVertsPerQuad*(quadCnt + conics),  // startV
  1030                                     0,                                 // startI
  1031                                     kVertsPerQuad*n,                   // vCount
  1032                                     kIdxsPerQuad*n,                    // iCount
  1033                                     &devBounds);
  1034                 conics += n;
  1039     target->resetIndexSource();
  1041     return true;

mercurial