|
1 /* |
|
2 * Copyright 2011 Google Inc. |
|
3 * |
|
4 * Use of this source code is governed by a BSD-style license that can be |
|
5 * found in the LICENSE file. |
|
6 */ |
|
7 |
|
8 #include "GrAAHairLinePathRenderer.h" |
|
9 |
|
10 #include "GrContext.h" |
|
11 #include "GrDrawState.h" |
|
12 #include "GrDrawTargetCaps.h" |
|
13 #include "GrEffect.h" |
|
14 #include "GrGpu.h" |
|
15 #include "GrIndexBuffer.h" |
|
16 #include "GrPathUtils.h" |
|
17 #include "GrTBackendEffectFactory.h" |
|
18 #include "SkGeometry.h" |
|
19 #include "SkStroke.h" |
|
20 #include "SkTemplates.h" |
|
21 |
|
22 #include "effects/GrBezierEffect.h" |
|
23 |
|
24 namespace { |
|
25 // quadratics are rendered as 5-sided polys in order to bound the |
|
26 // AA stroke around the center-curve. See comments in push_quad_index_buffer and |
|
27 // bloat_quad. Quadratics and conics share an index buffer |
|
28 static const int kVertsPerQuad = 5; |
|
29 static const int kIdxsPerQuad = 9; |
|
30 |
|
31 // lines are rendered as: |
|
32 // *______________* |
|
33 // |\ -_______ /| |
|
34 // | \ \ / | |
|
35 // | *--------* | |
|
36 // | / ______/ \ | |
|
37 // */_-__________\* |
|
38 // For: 6 vertices and 18 indices (for 6 triangles) |
|
39 static const int kVertsPerLineSeg = 6; |
|
40 static const int kIdxsPerLineSeg = 18; |
|
41 |
|
42 static const int kNumQuadsInIdxBuffer = 256; |
|
43 static const size_t kQuadIdxSBufize = kIdxsPerQuad * |
|
44 sizeof(uint16_t) * |
|
45 kNumQuadsInIdxBuffer; |
|
46 |
|
47 static const int kNumLineSegsInIdxBuffer = 256; |
|
48 static const size_t kLineSegIdxSBufize = kIdxsPerLineSeg * |
|
49 sizeof(uint16_t) * |
|
50 kNumLineSegsInIdxBuffer; |
|
51 |
|
52 static bool push_quad_index_data(GrIndexBuffer* qIdxBuffer) { |
|
53 uint16_t* data = (uint16_t*) qIdxBuffer->lock(); |
|
54 bool tempData = NULL == data; |
|
55 if (tempData) { |
|
56 data = SkNEW_ARRAY(uint16_t, kNumQuadsInIdxBuffer * kIdxsPerQuad); |
|
57 } |
|
58 for (int i = 0; i < kNumQuadsInIdxBuffer; ++i) { |
|
59 |
|
60 // Each quadratic is rendered as a five sided polygon. This poly bounds |
|
61 // the quadratic's bounding triangle but has been expanded so that the |
|
62 // 1-pixel wide area around the curve is inside the poly. |
|
63 // If a,b,c are the original control points then the poly a0,b0,c0,c1,a1 |
|
64 // that is rendered would look like this: |
|
65 // b0 |
|
66 // b |
|
67 // |
|
68 // a0 c0 |
|
69 // a c |
|
70 // a1 c1 |
|
71 // Each is drawn as three triangles specified by these 9 indices: |
|
72 int baseIdx = i * kIdxsPerQuad; |
|
73 uint16_t baseVert = (uint16_t)(i * kVertsPerQuad); |
|
74 data[0 + baseIdx] = baseVert + 0; // a0 |
|
75 data[1 + baseIdx] = baseVert + 1; // a1 |
|
76 data[2 + baseIdx] = baseVert + 2; // b0 |
|
77 data[3 + baseIdx] = baseVert + 2; // b0 |
|
78 data[4 + baseIdx] = baseVert + 4; // c1 |
|
79 data[5 + baseIdx] = baseVert + 3; // c0 |
|
80 data[6 + baseIdx] = baseVert + 1; // a1 |
|
81 data[7 + baseIdx] = baseVert + 4; // c1 |
|
82 data[8 + baseIdx] = baseVert + 2; // b0 |
|
83 } |
|
84 if (tempData) { |
|
85 bool ret = qIdxBuffer->updateData(data, kQuadIdxSBufize); |
|
86 delete[] data; |
|
87 return ret; |
|
88 } else { |
|
89 qIdxBuffer->unlock(); |
|
90 return true; |
|
91 } |
|
92 } |
|
93 |
|
94 static bool push_line_index_data(GrIndexBuffer* lIdxBuffer) { |
|
95 uint16_t* data = (uint16_t*) lIdxBuffer->lock(); |
|
96 bool tempData = NULL == data; |
|
97 if (tempData) { |
|
98 data = SkNEW_ARRAY(uint16_t, kNumLineSegsInIdxBuffer * kIdxsPerLineSeg); |
|
99 } |
|
100 for (int i = 0; i < kNumLineSegsInIdxBuffer; ++i) { |
|
101 // Each line segment is rendered as two quads and two triangles. |
|
102 // p0 and p1 have alpha = 1 while all other points have alpha = 0. |
|
103 // The four external points are offset 1 pixel perpendicular to the |
|
104 // line and half a pixel parallel to the line. |
|
105 // |
|
106 // p4 p5 |
|
107 // p0 p1 |
|
108 // p2 p3 |
|
109 // |
|
110 // Each is drawn as six triangles specified by these 18 indices: |
|
111 int baseIdx = i * kIdxsPerLineSeg; |
|
112 uint16_t baseVert = (uint16_t)(i * kVertsPerLineSeg); |
|
113 data[0 + baseIdx] = baseVert + 0; |
|
114 data[1 + baseIdx] = baseVert + 1; |
|
115 data[2 + baseIdx] = baseVert + 3; |
|
116 |
|
117 data[3 + baseIdx] = baseVert + 0; |
|
118 data[4 + baseIdx] = baseVert + 3; |
|
119 data[5 + baseIdx] = baseVert + 2; |
|
120 |
|
121 data[6 + baseIdx] = baseVert + 0; |
|
122 data[7 + baseIdx] = baseVert + 4; |
|
123 data[8 + baseIdx] = baseVert + 5; |
|
124 |
|
125 data[9 + baseIdx] = baseVert + 0; |
|
126 data[10+ baseIdx] = baseVert + 5; |
|
127 data[11+ baseIdx] = baseVert + 1; |
|
128 |
|
129 data[12 + baseIdx] = baseVert + 0; |
|
130 data[13 + baseIdx] = baseVert + 2; |
|
131 data[14 + baseIdx] = baseVert + 4; |
|
132 |
|
133 data[15 + baseIdx] = baseVert + 1; |
|
134 data[16 + baseIdx] = baseVert + 5; |
|
135 data[17 + baseIdx] = baseVert + 3; |
|
136 } |
|
137 if (tempData) { |
|
138 bool ret = lIdxBuffer->updateData(data, kLineSegIdxSBufize); |
|
139 delete[] data; |
|
140 return ret; |
|
141 } else { |
|
142 lIdxBuffer->unlock(); |
|
143 return true; |
|
144 } |
|
145 } |
|
146 } |
|
147 |
|
148 GrPathRenderer* GrAAHairLinePathRenderer::Create(GrContext* context) { |
|
149 GrGpu* gpu = context->getGpu(); |
|
150 GrIndexBuffer* qIdxBuf = gpu->createIndexBuffer(kQuadIdxSBufize, false); |
|
151 SkAutoTUnref<GrIndexBuffer> qIdxBuffer(qIdxBuf); |
|
152 if (NULL == qIdxBuf || !push_quad_index_data(qIdxBuf)) { |
|
153 return NULL; |
|
154 } |
|
155 GrIndexBuffer* lIdxBuf = gpu->createIndexBuffer(kLineSegIdxSBufize, false); |
|
156 SkAutoTUnref<GrIndexBuffer> lIdxBuffer(lIdxBuf); |
|
157 if (NULL == lIdxBuf || !push_line_index_data(lIdxBuf)) { |
|
158 return NULL; |
|
159 } |
|
160 return SkNEW_ARGS(GrAAHairLinePathRenderer, |
|
161 (context, lIdxBuf, qIdxBuf)); |
|
162 } |
|
163 |
|
164 GrAAHairLinePathRenderer::GrAAHairLinePathRenderer( |
|
165 const GrContext* context, |
|
166 const GrIndexBuffer* linesIndexBuffer, |
|
167 const GrIndexBuffer* quadsIndexBuffer) { |
|
168 fLinesIndexBuffer = linesIndexBuffer; |
|
169 linesIndexBuffer->ref(); |
|
170 fQuadsIndexBuffer = quadsIndexBuffer; |
|
171 quadsIndexBuffer->ref(); |
|
172 } |
|
173 |
|
174 GrAAHairLinePathRenderer::~GrAAHairLinePathRenderer() { |
|
175 fLinesIndexBuffer->unref(); |
|
176 fQuadsIndexBuffer->unref(); |
|
177 } |
|
178 |
|
179 namespace { |
|
180 |
|
181 #define PREALLOC_PTARRAY(N) SkSTArray<(N),SkPoint, true> |
|
182 |
|
183 // Takes 178th time of logf on Z600 / VC2010 |
|
184 int get_float_exp(float x) { |
|
185 GR_STATIC_ASSERT(sizeof(int) == sizeof(float)); |
|
186 #ifdef SK_DEBUG |
|
187 static bool tested; |
|
188 if (!tested) { |
|
189 tested = true; |
|
190 SkASSERT(get_float_exp(0.25f) == -2); |
|
191 SkASSERT(get_float_exp(0.3f) == -2); |
|
192 SkASSERT(get_float_exp(0.5f) == -1); |
|
193 SkASSERT(get_float_exp(1.f) == 0); |
|
194 SkASSERT(get_float_exp(2.f) == 1); |
|
195 SkASSERT(get_float_exp(2.5f) == 1); |
|
196 SkASSERT(get_float_exp(8.f) == 3); |
|
197 SkASSERT(get_float_exp(100.f) == 6); |
|
198 SkASSERT(get_float_exp(1000.f) == 9); |
|
199 SkASSERT(get_float_exp(1024.f) == 10); |
|
200 SkASSERT(get_float_exp(3000000.f) == 21); |
|
201 } |
|
202 #endif |
|
203 const int* iptr = (const int*)&x; |
|
204 return (((*iptr) & 0x7f800000) >> 23) - 127; |
|
205 } |
|
206 |
|
207 // Uses the max curvature function for quads to estimate |
|
208 // where to chop the conic. If the max curvature is not |
|
209 // found along the curve segment it will return 1 and |
|
210 // dst[0] is the original conic. If it returns 2 the dst[0] |
|
211 // and dst[1] are the two new conics. |
|
212 int split_conic(const SkPoint src[3], SkConic dst[2], const SkScalar weight) { |
|
213 SkScalar t = SkFindQuadMaxCurvature(src); |
|
214 if (t == 0) { |
|
215 if (dst) { |
|
216 dst[0].set(src, weight); |
|
217 } |
|
218 return 1; |
|
219 } else { |
|
220 if (dst) { |
|
221 SkConic conic; |
|
222 conic.set(src, weight); |
|
223 conic.chopAt(t, dst); |
|
224 } |
|
225 return 2; |
|
226 } |
|
227 } |
|
228 |
|
229 // Calls split_conic on the entire conic and then once more on each subsection. |
|
230 // Most cases will result in either 1 conic (chop point is not within t range) |
|
231 // or 3 points (split once and then one subsection is split again). |
|
232 int chop_conic(const SkPoint src[3], SkConic dst[4], const SkScalar weight) { |
|
233 SkConic dstTemp[2]; |
|
234 int conicCnt = split_conic(src, dstTemp, weight); |
|
235 if (2 == conicCnt) { |
|
236 int conicCnt2 = split_conic(dstTemp[0].fPts, dst, dstTemp[0].fW); |
|
237 conicCnt = conicCnt2 + split_conic(dstTemp[1].fPts, &dst[conicCnt2], dstTemp[1].fW); |
|
238 } else { |
|
239 dst[0] = dstTemp[0]; |
|
240 } |
|
241 return conicCnt; |
|
242 } |
|
243 |
|
244 // returns 0 if quad/conic is degen or close to it |
|
245 // in this case approx the path with lines |
|
246 // otherwise returns 1 |
|
247 int is_degen_quad_or_conic(const SkPoint p[3]) { |
|
248 static const SkScalar gDegenerateToLineTol = SK_Scalar1; |
|
249 static const SkScalar gDegenerateToLineTolSqd = |
|
250 SkScalarMul(gDegenerateToLineTol, gDegenerateToLineTol); |
|
251 |
|
252 if (p[0].distanceToSqd(p[1]) < gDegenerateToLineTolSqd || |
|
253 p[1].distanceToSqd(p[2]) < gDegenerateToLineTolSqd) { |
|
254 return 1; |
|
255 } |
|
256 |
|
257 SkScalar dsqd = p[1].distanceToLineBetweenSqd(p[0], p[2]); |
|
258 if (dsqd < gDegenerateToLineTolSqd) { |
|
259 return 1; |
|
260 } |
|
261 |
|
262 if (p[2].distanceToLineBetweenSqd(p[1], p[0]) < gDegenerateToLineTolSqd) { |
|
263 return 1; |
|
264 } |
|
265 return 0; |
|
266 } |
|
267 |
|
268 // we subdivide the quads to avoid huge overfill |
|
269 // if it returns -1 then should be drawn as lines |
|
270 int num_quad_subdivs(const SkPoint p[3]) { |
|
271 static const SkScalar gDegenerateToLineTol = SK_Scalar1; |
|
272 static const SkScalar gDegenerateToLineTolSqd = |
|
273 SkScalarMul(gDegenerateToLineTol, gDegenerateToLineTol); |
|
274 |
|
275 if (p[0].distanceToSqd(p[1]) < gDegenerateToLineTolSqd || |
|
276 p[1].distanceToSqd(p[2]) < gDegenerateToLineTolSqd) { |
|
277 return -1; |
|
278 } |
|
279 |
|
280 SkScalar dsqd = p[1].distanceToLineBetweenSqd(p[0], p[2]); |
|
281 if (dsqd < gDegenerateToLineTolSqd) { |
|
282 return -1; |
|
283 } |
|
284 |
|
285 if (p[2].distanceToLineBetweenSqd(p[1], p[0]) < gDegenerateToLineTolSqd) { |
|
286 return -1; |
|
287 } |
|
288 |
|
289 // tolerance of triangle height in pixels |
|
290 // tuned on windows Quadro FX 380 / Z600 |
|
291 // trade off of fill vs cpu time on verts |
|
292 // maybe different when do this using gpu (geo or tess shaders) |
|
293 static const SkScalar gSubdivTol = 175 * SK_Scalar1; |
|
294 |
|
295 if (dsqd <= SkScalarMul(gSubdivTol, gSubdivTol)) { |
|
296 return 0; |
|
297 } else { |
|
298 static const int kMaxSub = 4; |
|
299 // subdividing the quad reduces d by 4. so we want x = log4(d/tol) |
|
300 // = log4(d*d/tol*tol)/2 |
|
301 // = log2(d*d/tol*tol) |
|
302 |
|
303 // +1 since we're ignoring the mantissa contribution. |
|
304 int log = get_float_exp(dsqd/(gSubdivTol*gSubdivTol)) + 1; |
|
305 log = GrMin(GrMax(0, log), kMaxSub); |
|
306 return log; |
|
307 } |
|
308 } |
|
309 |
|
310 /** |
|
311 * Generates the lines and quads to be rendered. Lines are always recorded in |
|
312 * device space. We will do a device space bloat to account for the 1pixel |
|
313 * thickness. |
|
314 * Quads are recorded in device space unless m contains |
|
315 * perspective, then in they are in src space. We do this because we will |
|
316 * subdivide large quads to reduce over-fill. This subdivision has to be |
|
317 * performed before applying the perspective matrix. |
|
318 */ |
|
319 int generate_lines_and_quads(const SkPath& path, |
|
320 const SkMatrix& m, |
|
321 const SkIRect& devClipBounds, |
|
322 GrAAHairLinePathRenderer::PtArray* lines, |
|
323 GrAAHairLinePathRenderer::PtArray* quads, |
|
324 GrAAHairLinePathRenderer::PtArray* conics, |
|
325 GrAAHairLinePathRenderer::IntArray* quadSubdivCnts, |
|
326 GrAAHairLinePathRenderer::FloatArray* conicWeights) { |
|
327 SkPath::Iter iter(path, false); |
|
328 |
|
329 int totalQuadCount = 0; |
|
330 SkRect bounds; |
|
331 SkIRect ibounds; |
|
332 |
|
333 bool persp = m.hasPerspective(); |
|
334 |
|
335 for (;;) { |
|
336 GrPoint pathPts[4]; |
|
337 GrPoint devPts[4]; |
|
338 SkPath::Verb verb = iter.next(pathPts); |
|
339 switch (verb) { |
|
340 case SkPath::kConic_Verb: { |
|
341 SkConic dst[4]; |
|
342 // We chop the conics to create tighter clipping to hide error |
|
343 // that appears near max curvature of very thin conics. Thin |
|
344 // hyperbolas with high weight still show error. |
|
345 int conicCnt = chop_conic(pathPts, dst, iter.conicWeight()); |
|
346 for (int i = 0; i < conicCnt; ++i) { |
|
347 SkPoint* chopPnts = dst[i].fPts; |
|
348 m.mapPoints(devPts, chopPnts, 3); |
|
349 bounds.setBounds(devPts, 3); |
|
350 bounds.outset(SK_Scalar1, SK_Scalar1); |
|
351 bounds.roundOut(&ibounds); |
|
352 if (SkIRect::Intersects(devClipBounds, ibounds)) { |
|
353 if (is_degen_quad_or_conic(devPts)) { |
|
354 SkPoint* pts = lines->push_back_n(4); |
|
355 pts[0] = devPts[0]; |
|
356 pts[1] = devPts[1]; |
|
357 pts[2] = devPts[1]; |
|
358 pts[3] = devPts[2]; |
|
359 } else { |
|
360 // when in perspective keep conics in src space |
|
361 SkPoint* cPts = persp ? chopPnts : devPts; |
|
362 SkPoint* pts = conics->push_back_n(3); |
|
363 pts[0] = cPts[0]; |
|
364 pts[1] = cPts[1]; |
|
365 pts[2] = cPts[2]; |
|
366 conicWeights->push_back() = dst[i].fW; |
|
367 } |
|
368 } |
|
369 } |
|
370 break; |
|
371 } |
|
372 case SkPath::kMove_Verb: |
|
373 break; |
|
374 case SkPath::kLine_Verb: |
|
375 m.mapPoints(devPts, pathPts, 2); |
|
376 bounds.setBounds(devPts, 2); |
|
377 bounds.outset(SK_Scalar1, SK_Scalar1); |
|
378 bounds.roundOut(&ibounds); |
|
379 if (SkIRect::Intersects(devClipBounds, ibounds)) { |
|
380 SkPoint* pts = lines->push_back_n(2); |
|
381 pts[0] = devPts[0]; |
|
382 pts[1] = devPts[1]; |
|
383 } |
|
384 break; |
|
385 case SkPath::kQuad_Verb: { |
|
386 SkPoint choppedPts[5]; |
|
387 // Chopping the quad helps when the quad is either degenerate or nearly degenerate. |
|
388 // When it is degenerate it allows the approximation with lines to work since the |
|
389 // chop point (if there is one) will be at the parabola's vertex. In the nearly |
|
390 // degenerate the QuadUVMatrix computed for the points is almost singular which |
|
391 // can cause rendering artifacts. |
|
392 int n = SkChopQuadAtMaxCurvature(pathPts, choppedPts); |
|
393 for (int i = 0; i < n; ++i) { |
|
394 SkPoint* quadPts = choppedPts + i * 2; |
|
395 m.mapPoints(devPts, quadPts, 3); |
|
396 bounds.setBounds(devPts, 3); |
|
397 bounds.outset(SK_Scalar1, SK_Scalar1); |
|
398 bounds.roundOut(&ibounds); |
|
399 |
|
400 if (SkIRect::Intersects(devClipBounds, ibounds)) { |
|
401 int subdiv = num_quad_subdivs(devPts); |
|
402 SkASSERT(subdiv >= -1); |
|
403 if (-1 == subdiv) { |
|
404 SkPoint* pts = lines->push_back_n(4); |
|
405 pts[0] = devPts[0]; |
|
406 pts[1] = devPts[1]; |
|
407 pts[2] = devPts[1]; |
|
408 pts[3] = devPts[2]; |
|
409 } else { |
|
410 // when in perspective keep quads in src space |
|
411 SkPoint* qPts = persp ? quadPts : devPts; |
|
412 SkPoint* pts = quads->push_back_n(3); |
|
413 pts[0] = qPts[0]; |
|
414 pts[1] = qPts[1]; |
|
415 pts[2] = qPts[2]; |
|
416 quadSubdivCnts->push_back() = subdiv; |
|
417 totalQuadCount += 1 << subdiv; |
|
418 } |
|
419 } |
|
420 } |
|
421 break; |
|
422 } |
|
423 case SkPath::kCubic_Verb: |
|
424 m.mapPoints(devPts, pathPts, 4); |
|
425 bounds.setBounds(devPts, 4); |
|
426 bounds.outset(SK_Scalar1, SK_Scalar1); |
|
427 bounds.roundOut(&ibounds); |
|
428 if (SkIRect::Intersects(devClipBounds, ibounds)) { |
|
429 PREALLOC_PTARRAY(32) q; |
|
430 // we don't need a direction if we aren't constraining the subdivision |
|
431 static const SkPath::Direction kDummyDir = SkPath::kCCW_Direction; |
|
432 // We convert cubics to quadratics (for now). |
|
433 // In perspective have to do conversion in src space. |
|
434 if (persp) { |
|
435 SkScalar tolScale = |
|
436 GrPathUtils::scaleToleranceToSrc(SK_Scalar1, m, |
|
437 path.getBounds()); |
|
438 GrPathUtils::convertCubicToQuads(pathPts, tolScale, false, kDummyDir, &q); |
|
439 } else { |
|
440 GrPathUtils::convertCubicToQuads(devPts, SK_Scalar1, false, kDummyDir, &q); |
|
441 } |
|
442 for (int i = 0; i < q.count(); i += 3) { |
|
443 SkPoint* qInDevSpace; |
|
444 // bounds has to be calculated in device space, but q is |
|
445 // in src space when there is perspective. |
|
446 if (persp) { |
|
447 m.mapPoints(devPts, &q[i], 3); |
|
448 bounds.setBounds(devPts, 3); |
|
449 qInDevSpace = devPts; |
|
450 } else { |
|
451 bounds.setBounds(&q[i], 3); |
|
452 qInDevSpace = &q[i]; |
|
453 } |
|
454 bounds.outset(SK_Scalar1, SK_Scalar1); |
|
455 bounds.roundOut(&ibounds); |
|
456 if (SkIRect::Intersects(devClipBounds, ibounds)) { |
|
457 int subdiv = num_quad_subdivs(qInDevSpace); |
|
458 SkASSERT(subdiv >= -1); |
|
459 if (-1 == subdiv) { |
|
460 SkPoint* pts = lines->push_back_n(4); |
|
461 // lines should always be in device coords |
|
462 pts[0] = qInDevSpace[0]; |
|
463 pts[1] = qInDevSpace[1]; |
|
464 pts[2] = qInDevSpace[1]; |
|
465 pts[3] = qInDevSpace[2]; |
|
466 } else { |
|
467 SkPoint* pts = quads->push_back_n(3); |
|
468 // q is already in src space when there is no |
|
469 // perspective and dev coords otherwise. |
|
470 pts[0] = q[0 + i]; |
|
471 pts[1] = q[1 + i]; |
|
472 pts[2] = q[2 + i]; |
|
473 quadSubdivCnts->push_back() = subdiv; |
|
474 totalQuadCount += 1 << subdiv; |
|
475 } |
|
476 } |
|
477 } |
|
478 } |
|
479 break; |
|
480 case SkPath::kClose_Verb: |
|
481 break; |
|
482 case SkPath::kDone_Verb: |
|
483 return totalQuadCount; |
|
484 } |
|
485 } |
|
486 } |
|
487 |
|
488 struct LineVertex { |
|
489 GrPoint fPos; |
|
490 GrColor fCoverage; |
|
491 }; |
|
492 |
|
493 struct BezierVertex { |
|
494 GrPoint fPos; |
|
495 union { |
|
496 struct { |
|
497 SkScalar fK; |
|
498 SkScalar fL; |
|
499 SkScalar fM; |
|
500 } fConic; |
|
501 GrVec fQuadCoord; |
|
502 struct { |
|
503 SkScalar fBogus[4]; |
|
504 }; |
|
505 }; |
|
506 }; |
|
507 |
|
508 GR_STATIC_ASSERT(sizeof(BezierVertex) == 3 * sizeof(GrPoint)); |
|
509 |
|
510 void intersect_lines(const SkPoint& ptA, const SkVector& normA, |
|
511 const SkPoint& ptB, const SkVector& normB, |
|
512 SkPoint* result) { |
|
513 |
|
514 SkScalar lineAW = -normA.dot(ptA); |
|
515 SkScalar lineBW = -normB.dot(ptB); |
|
516 |
|
517 SkScalar wInv = SkScalarMul(normA.fX, normB.fY) - |
|
518 SkScalarMul(normA.fY, normB.fX); |
|
519 wInv = SkScalarInvert(wInv); |
|
520 |
|
521 result->fX = SkScalarMul(normA.fY, lineBW) - SkScalarMul(lineAW, normB.fY); |
|
522 result->fX = SkScalarMul(result->fX, wInv); |
|
523 |
|
524 result->fY = SkScalarMul(lineAW, normB.fX) - SkScalarMul(normA.fX, lineBW); |
|
525 result->fY = SkScalarMul(result->fY, wInv); |
|
526 } |
|
527 |
|
528 void set_uv_quad(const SkPoint qpts[3], BezierVertex verts[kVertsPerQuad]) { |
|
529 // this should be in the src space, not dev coords, when we have perspective |
|
530 GrPathUtils::QuadUVMatrix DevToUV(qpts); |
|
531 DevToUV.apply<kVertsPerQuad, sizeof(BezierVertex), sizeof(GrPoint)>(verts); |
|
532 } |
|
533 |
|
534 void bloat_quad(const SkPoint qpts[3], const SkMatrix* toDevice, |
|
535 const SkMatrix* toSrc, BezierVertex verts[kVertsPerQuad], |
|
536 SkRect* devBounds) { |
|
537 SkASSERT(!toDevice == !toSrc); |
|
538 // original quad is specified by tri a,b,c |
|
539 SkPoint a = qpts[0]; |
|
540 SkPoint b = qpts[1]; |
|
541 SkPoint c = qpts[2]; |
|
542 |
|
543 if (toDevice) { |
|
544 toDevice->mapPoints(&a, 1); |
|
545 toDevice->mapPoints(&b, 1); |
|
546 toDevice->mapPoints(&c, 1); |
|
547 } |
|
548 // make a new poly where we replace a and c by a 1-pixel wide edges orthog |
|
549 // to edges ab and bc: |
|
550 // |
|
551 // before | after |
|
552 // | b0 |
|
553 // b | |
|
554 // | |
|
555 // | a0 c0 |
|
556 // a c | a1 c1 |
|
557 // |
|
558 // edges a0->b0 and b0->c0 are parallel to original edges a->b and b->c, |
|
559 // respectively. |
|
560 BezierVertex& a0 = verts[0]; |
|
561 BezierVertex& a1 = verts[1]; |
|
562 BezierVertex& b0 = verts[2]; |
|
563 BezierVertex& c0 = verts[3]; |
|
564 BezierVertex& c1 = verts[4]; |
|
565 |
|
566 SkVector ab = b; |
|
567 ab -= a; |
|
568 SkVector ac = c; |
|
569 ac -= a; |
|
570 SkVector cb = b; |
|
571 cb -= c; |
|
572 |
|
573 // We should have already handled degenerates |
|
574 SkASSERT(ab.length() > 0 && cb.length() > 0); |
|
575 |
|
576 ab.normalize(); |
|
577 SkVector abN; |
|
578 abN.setOrthog(ab, SkVector::kLeft_Side); |
|
579 if (abN.dot(ac) > 0) { |
|
580 abN.negate(); |
|
581 } |
|
582 |
|
583 cb.normalize(); |
|
584 SkVector cbN; |
|
585 cbN.setOrthog(cb, SkVector::kLeft_Side); |
|
586 if (cbN.dot(ac) < 0) { |
|
587 cbN.negate(); |
|
588 } |
|
589 |
|
590 a0.fPos = a; |
|
591 a0.fPos += abN; |
|
592 a1.fPos = a; |
|
593 a1.fPos -= abN; |
|
594 |
|
595 c0.fPos = c; |
|
596 c0.fPos += cbN; |
|
597 c1.fPos = c; |
|
598 c1.fPos -= cbN; |
|
599 |
|
600 intersect_lines(a0.fPos, abN, c0.fPos, cbN, &b0.fPos); |
|
601 devBounds->growToInclude(&verts[0].fPos, sizeof(BezierVertex), kVertsPerQuad); |
|
602 |
|
603 if (toSrc) { |
|
604 toSrc->mapPointsWithStride(&verts[0].fPos, sizeof(BezierVertex), kVertsPerQuad); |
|
605 } |
|
606 } |
|
607 |
|
608 // Equations based off of Loop-Blinn Quadratic GPU Rendering |
|
609 // Input Parametric: |
|
610 // P(t) = (P0*(1-t)^2 + 2*w*P1*t*(1-t) + P2*t^2) / (1-t)^2 + 2*w*t*(1-t) + t^2) |
|
611 // Output Implicit: |
|
612 // f(x, y, w) = f(P) = K^2 - LM |
|
613 // K = dot(k, P), L = dot(l, P), M = dot(m, P) |
|
614 // k, l, m are calculated in function GrPathUtils::getConicKLM |
|
615 void set_conic_coeffs(const SkPoint p[3], BezierVertex verts[kVertsPerQuad], |
|
616 const SkScalar weight) { |
|
617 SkScalar klm[9]; |
|
618 |
|
619 GrPathUtils::getConicKLM(p, weight, klm); |
|
620 |
|
621 for (int i = 0; i < kVertsPerQuad; ++i) { |
|
622 const SkPoint pnt = verts[i].fPos; |
|
623 verts[i].fConic.fK = pnt.fX * klm[0] + pnt.fY * klm[1] + klm[2]; |
|
624 verts[i].fConic.fL = pnt.fX * klm[3] + pnt.fY * klm[4] + klm[5]; |
|
625 verts[i].fConic.fM = pnt.fX * klm[6] + pnt.fY * klm[7] + klm[8]; |
|
626 } |
|
627 } |
|
628 |
|
629 void add_conics(const SkPoint p[3], |
|
630 const SkScalar weight, |
|
631 const SkMatrix* toDevice, |
|
632 const SkMatrix* toSrc, |
|
633 BezierVertex** vert, |
|
634 SkRect* devBounds) { |
|
635 bloat_quad(p, toDevice, toSrc, *vert, devBounds); |
|
636 set_conic_coeffs(p, *vert, weight); |
|
637 *vert += kVertsPerQuad; |
|
638 } |
|
639 |
|
640 void add_quads(const SkPoint p[3], |
|
641 int subdiv, |
|
642 const SkMatrix* toDevice, |
|
643 const SkMatrix* toSrc, |
|
644 BezierVertex** vert, |
|
645 SkRect* devBounds) { |
|
646 SkASSERT(subdiv >= 0); |
|
647 if (subdiv) { |
|
648 SkPoint newP[5]; |
|
649 SkChopQuadAtHalf(p, newP); |
|
650 add_quads(newP + 0, subdiv-1, toDevice, toSrc, vert, devBounds); |
|
651 add_quads(newP + 2, subdiv-1, toDevice, toSrc, vert, devBounds); |
|
652 } else { |
|
653 bloat_quad(p, toDevice, toSrc, *vert, devBounds); |
|
654 set_uv_quad(p, *vert); |
|
655 *vert += kVertsPerQuad; |
|
656 } |
|
657 } |
|
658 |
|
659 void add_line(const SkPoint p[2], |
|
660 const SkMatrix* toSrc, |
|
661 GrColor coverage, |
|
662 LineVertex** vert) { |
|
663 const SkPoint& a = p[0]; |
|
664 const SkPoint& b = p[1]; |
|
665 |
|
666 SkVector ortho, vec = b; |
|
667 vec -= a; |
|
668 |
|
669 if (vec.setLength(SK_ScalarHalf)) { |
|
670 // Create a vector orthogonal to 'vec' and of unit length |
|
671 ortho.fX = 2.0f * vec.fY; |
|
672 ortho.fY = -2.0f * vec.fX; |
|
673 |
|
674 (*vert)[0].fPos = a; |
|
675 (*vert)[0].fCoverage = coverage; |
|
676 (*vert)[1].fPos = b; |
|
677 (*vert)[1].fCoverage = coverage; |
|
678 (*vert)[2].fPos = a - vec + ortho; |
|
679 (*vert)[2].fCoverage = 0; |
|
680 (*vert)[3].fPos = b + vec + ortho; |
|
681 (*vert)[3].fCoverage = 0; |
|
682 (*vert)[4].fPos = a - vec - ortho; |
|
683 (*vert)[4].fCoverage = 0; |
|
684 (*vert)[5].fPos = b + vec - ortho; |
|
685 (*vert)[5].fCoverage = 0; |
|
686 |
|
687 if (NULL != toSrc) { |
|
688 toSrc->mapPointsWithStride(&(*vert)->fPos, |
|
689 sizeof(LineVertex), |
|
690 kVertsPerLineSeg); |
|
691 } |
|
692 } else { |
|
693 // just make it degenerate and likely offscreen |
|
694 for (int i = 0; i < kVertsPerLineSeg; ++i) { |
|
695 (*vert)[i].fPos.set(SK_ScalarMax, SK_ScalarMax); |
|
696 } |
|
697 } |
|
698 |
|
699 *vert += kVertsPerLineSeg; |
|
700 } |
|
701 |
|
702 } |
|
703 |
|
704 /////////////////////////////////////////////////////////////////////////////// |
|
705 |
|
706 namespace { |
|
707 |
|
708 // position + edge |
|
709 extern const GrVertexAttrib gHairlineBezierAttribs[] = { |
|
710 {kVec2f_GrVertexAttribType, 0, kPosition_GrVertexAttribBinding}, |
|
711 {kVec4f_GrVertexAttribType, sizeof(GrPoint), kEffect_GrVertexAttribBinding} |
|
712 }; |
|
713 |
|
714 // position + coverage |
|
715 extern const GrVertexAttrib gHairlineLineAttribs[] = { |
|
716 {kVec2f_GrVertexAttribType, 0, kPosition_GrVertexAttribBinding}, |
|
717 {kVec4ub_GrVertexAttribType, sizeof(GrPoint), kCoverage_GrVertexAttribBinding}, |
|
718 }; |
|
719 |
|
720 }; |
|
721 |
|
722 bool GrAAHairLinePathRenderer::createLineGeom(const SkPath& path, |
|
723 GrDrawTarget* target, |
|
724 const PtArray& lines, |
|
725 int lineCnt, |
|
726 GrDrawTarget::AutoReleaseGeometry* arg, |
|
727 SkRect* devBounds) { |
|
728 GrDrawState* drawState = target->drawState(); |
|
729 |
|
730 const SkMatrix& viewM = drawState->getViewMatrix(); |
|
731 |
|
732 int vertCnt = kVertsPerLineSeg * lineCnt; |
|
733 |
|
734 drawState->setVertexAttribs<gHairlineLineAttribs>(SK_ARRAY_COUNT(gHairlineLineAttribs)); |
|
735 SkASSERT(sizeof(LineVertex) == drawState->getVertexSize()); |
|
736 |
|
737 if (!arg->set(target, vertCnt, 0)) { |
|
738 return false; |
|
739 } |
|
740 |
|
741 LineVertex* verts = reinterpret_cast<LineVertex*>(arg->vertices()); |
|
742 |
|
743 const SkMatrix* toSrc = NULL; |
|
744 SkMatrix ivm; |
|
745 |
|
746 if (viewM.hasPerspective()) { |
|
747 if (viewM.invert(&ivm)) { |
|
748 toSrc = &ivm; |
|
749 } |
|
750 } |
|
751 devBounds->set(lines.begin(), lines.count()); |
|
752 for (int i = 0; i < lineCnt; ++i) { |
|
753 add_line(&lines[2*i], toSrc, drawState->getCoverageColor(), &verts); |
|
754 } |
|
755 // All the verts computed by add_line are within sqrt(1^2 + 0.5^2) of the end points. |
|
756 static const SkScalar kSqrtOfOneAndAQuarter = 1.118f; |
|
757 // Add a little extra to account for vector normalization precision. |
|
758 static const SkScalar kOutset = kSqrtOfOneAndAQuarter + SK_Scalar1 / 20; |
|
759 devBounds->outset(kOutset, kOutset); |
|
760 |
|
761 return true; |
|
762 } |
|
763 |
|
764 bool GrAAHairLinePathRenderer::createBezierGeom( |
|
765 const SkPath& path, |
|
766 GrDrawTarget* target, |
|
767 const PtArray& quads, |
|
768 int quadCnt, |
|
769 const PtArray& conics, |
|
770 int conicCnt, |
|
771 const IntArray& qSubdivs, |
|
772 const FloatArray& cWeights, |
|
773 GrDrawTarget::AutoReleaseGeometry* arg, |
|
774 SkRect* devBounds) { |
|
775 GrDrawState* drawState = target->drawState(); |
|
776 |
|
777 const SkMatrix& viewM = drawState->getViewMatrix(); |
|
778 |
|
779 int vertCnt = kVertsPerQuad * quadCnt + kVertsPerQuad * conicCnt; |
|
780 |
|
781 target->drawState()->setVertexAttribs<gHairlineBezierAttribs>(SK_ARRAY_COUNT(gHairlineBezierAttribs)); |
|
782 SkASSERT(sizeof(BezierVertex) == target->getDrawState().getVertexSize()); |
|
783 |
|
784 if (!arg->set(target, vertCnt, 0)) { |
|
785 return false; |
|
786 } |
|
787 |
|
788 BezierVertex* verts = reinterpret_cast<BezierVertex*>(arg->vertices()); |
|
789 |
|
790 const SkMatrix* toDevice = NULL; |
|
791 const SkMatrix* toSrc = NULL; |
|
792 SkMatrix ivm; |
|
793 |
|
794 if (viewM.hasPerspective()) { |
|
795 if (viewM.invert(&ivm)) { |
|
796 toDevice = &viewM; |
|
797 toSrc = &ivm; |
|
798 } |
|
799 } |
|
800 |
|
801 // Seed the dev bounds with some pts known to be inside. Each quad and conic grows the bounding |
|
802 // box to include its vertices. |
|
803 SkPoint seedPts[2]; |
|
804 if (quadCnt) { |
|
805 seedPts[0] = quads[0]; |
|
806 seedPts[1] = quads[2]; |
|
807 } else if (conicCnt) { |
|
808 seedPts[0] = conics[0]; |
|
809 seedPts[1] = conics[2]; |
|
810 } |
|
811 if (NULL != toDevice) { |
|
812 toDevice->mapPoints(seedPts, 2); |
|
813 } |
|
814 devBounds->set(seedPts[0], seedPts[1]); |
|
815 |
|
816 int unsubdivQuadCnt = quads.count() / 3; |
|
817 for (int i = 0; i < unsubdivQuadCnt; ++i) { |
|
818 SkASSERT(qSubdivs[i] >= 0); |
|
819 add_quads(&quads[3*i], qSubdivs[i], toDevice, toSrc, &verts, devBounds); |
|
820 } |
|
821 |
|
822 // Start Conics |
|
823 for (int i = 0; i < conicCnt; ++i) { |
|
824 add_conics(&conics[3*i], cWeights[i], toDevice, toSrc, &verts, devBounds); |
|
825 } |
|
826 return true; |
|
827 } |
|
828 |
|
829 bool GrAAHairLinePathRenderer::canDrawPath(const SkPath& path, |
|
830 const SkStrokeRec& stroke, |
|
831 const GrDrawTarget* target, |
|
832 bool antiAlias) const { |
|
833 if (!antiAlias) { |
|
834 return false; |
|
835 } |
|
836 |
|
837 if (!IsStrokeHairlineOrEquivalent(stroke, |
|
838 target->getDrawState().getViewMatrix(), |
|
839 NULL)) { |
|
840 return false; |
|
841 } |
|
842 |
|
843 if (SkPath::kLine_SegmentMask == path.getSegmentMasks() || |
|
844 target->caps()->shaderDerivativeSupport()) { |
|
845 return true; |
|
846 } |
|
847 return false; |
|
848 } |
|
849 |
|
850 template <class VertexType> |
|
851 bool check_bounds(GrDrawState* drawState, const SkRect& devBounds, void* vertices, int vCount) |
|
852 { |
|
853 SkRect tolDevBounds = devBounds; |
|
854 // The bounds ought to be tight, but in perspective the below code runs the verts |
|
855 // through the view matrix to get back to dev coords, which can introduce imprecision. |
|
856 if (drawState->getViewMatrix().hasPerspective()) { |
|
857 tolDevBounds.outset(SK_Scalar1 / 1000, SK_Scalar1 / 1000); |
|
858 } else { |
|
859 // Non-persp matrices cause this path renderer to draw in device space. |
|
860 SkASSERT(drawState->getViewMatrix().isIdentity()); |
|
861 } |
|
862 SkRect actualBounds; |
|
863 |
|
864 VertexType* verts = reinterpret_cast<VertexType*>(vertices); |
|
865 bool first = true; |
|
866 for (int i = 0; i < vCount; ++i) { |
|
867 SkPoint pos = verts[i].fPos; |
|
868 // This is a hack to workaround the fact that we move some degenerate segments offscreen. |
|
869 if (SK_ScalarMax == pos.fX) { |
|
870 continue; |
|
871 } |
|
872 drawState->getViewMatrix().mapPoints(&pos, 1); |
|
873 if (first) { |
|
874 actualBounds.set(pos.fX, pos.fY, pos.fX, pos.fY); |
|
875 first = false; |
|
876 } else { |
|
877 actualBounds.growToInclude(pos.fX, pos.fY); |
|
878 } |
|
879 } |
|
880 if (!first) { |
|
881 return tolDevBounds.contains(actualBounds); |
|
882 } |
|
883 |
|
884 return true; |
|
885 } |
|
886 |
|
887 bool GrAAHairLinePathRenderer::onDrawPath(const SkPath& path, |
|
888 const SkStrokeRec& stroke, |
|
889 GrDrawTarget* target, |
|
890 bool antiAlias) { |
|
891 GrDrawState* drawState = target->drawState(); |
|
892 |
|
893 SkScalar hairlineCoverage; |
|
894 if (IsStrokeHairlineOrEquivalent(stroke, |
|
895 target->getDrawState().getViewMatrix(), |
|
896 &hairlineCoverage)) { |
|
897 uint8_t newCoverage = SkScalarRoundToInt(hairlineCoverage * |
|
898 target->getDrawState().getCoverage()); |
|
899 target->drawState()->setCoverage(newCoverage); |
|
900 } |
|
901 |
|
902 SkIRect devClipBounds; |
|
903 target->getClip()->getConservativeBounds(drawState->getRenderTarget(), &devClipBounds); |
|
904 |
|
905 int lineCnt; |
|
906 int quadCnt; |
|
907 int conicCnt; |
|
908 PREALLOC_PTARRAY(128) lines; |
|
909 PREALLOC_PTARRAY(128) quads; |
|
910 PREALLOC_PTARRAY(128) conics; |
|
911 IntArray qSubdivs; |
|
912 FloatArray cWeights; |
|
913 quadCnt = generate_lines_and_quads(path, drawState->getViewMatrix(), devClipBounds, |
|
914 &lines, &quads, &conics, &qSubdivs, &cWeights); |
|
915 lineCnt = lines.count() / 2; |
|
916 conicCnt = conics.count() / 3; |
|
917 |
|
918 // do lines first |
|
919 if (lineCnt) { |
|
920 GrDrawTarget::AutoReleaseGeometry arg; |
|
921 SkRect devBounds; |
|
922 |
|
923 if (!this->createLineGeom(path, |
|
924 target, |
|
925 lines, |
|
926 lineCnt, |
|
927 &arg, |
|
928 &devBounds)) { |
|
929 return false; |
|
930 } |
|
931 |
|
932 GrDrawTarget::AutoStateRestore asr; |
|
933 |
|
934 // createLineGeom transforms the geometry to device space when the matrix does not have |
|
935 // perspective. |
|
936 if (target->getDrawState().getViewMatrix().hasPerspective()) { |
|
937 asr.set(target, GrDrawTarget::kPreserve_ASRInit); |
|
938 } else if (!asr.setIdentity(target, GrDrawTarget::kPreserve_ASRInit)) { |
|
939 return false; |
|
940 } |
|
941 GrDrawState* drawState = target->drawState(); |
|
942 |
|
943 // Check devBounds |
|
944 SkASSERT(check_bounds<LineVertex>(drawState, devBounds, arg.vertices(), |
|
945 kVertsPerLineSeg * lineCnt)); |
|
946 |
|
947 { |
|
948 GrDrawState::AutoRestoreEffects are(drawState); |
|
949 target->setIndexSourceToBuffer(fLinesIndexBuffer); |
|
950 int lines = 0; |
|
951 while (lines < lineCnt) { |
|
952 int n = GrMin(lineCnt - lines, kNumLineSegsInIdxBuffer); |
|
953 target->drawIndexed(kTriangles_GrPrimitiveType, |
|
954 kVertsPerLineSeg*lines, // startV |
|
955 0, // startI |
|
956 kVertsPerLineSeg*n, // vCount |
|
957 kIdxsPerLineSeg*n, // iCount |
|
958 &devBounds); |
|
959 lines += n; |
|
960 } |
|
961 } |
|
962 } |
|
963 |
|
964 // then quadratics/conics |
|
965 if (quadCnt || conicCnt) { |
|
966 GrDrawTarget::AutoReleaseGeometry arg; |
|
967 SkRect devBounds; |
|
968 |
|
969 if (!this->createBezierGeom(path, |
|
970 target, |
|
971 quads, |
|
972 quadCnt, |
|
973 conics, |
|
974 conicCnt, |
|
975 qSubdivs, |
|
976 cWeights, |
|
977 &arg, |
|
978 &devBounds)) { |
|
979 return false; |
|
980 } |
|
981 |
|
982 GrDrawTarget::AutoStateRestore asr; |
|
983 |
|
984 // createGeom transforms the geometry to device space when the matrix does not have |
|
985 // perspective. |
|
986 if (target->getDrawState().getViewMatrix().hasPerspective()) { |
|
987 asr.set(target, GrDrawTarget::kPreserve_ASRInit); |
|
988 } else if (!asr.setIdentity(target, GrDrawTarget::kPreserve_ASRInit)) { |
|
989 return false; |
|
990 } |
|
991 GrDrawState* drawState = target->drawState(); |
|
992 |
|
993 static const int kEdgeAttrIndex = 1; |
|
994 |
|
995 // Check devBounds |
|
996 SkASSERT(check_bounds<BezierVertex>(drawState, devBounds, arg.vertices(), |
|
997 kVertsPerQuad * quadCnt + kVertsPerQuad * conicCnt)); |
|
998 |
|
999 if (quadCnt > 0) { |
|
1000 GrEffectRef* hairQuadEffect = GrQuadEffect::Create(kHairlineAA_GrEffectEdgeType, |
|
1001 *target->caps()); |
|
1002 SkASSERT(NULL != hairQuadEffect); |
|
1003 GrDrawState::AutoRestoreEffects are(drawState); |
|
1004 target->setIndexSourceToBuffer(fQuadsIndexBuffer); |
|
1005 drawState->addCoverageEffect(hairQuadEffect, kEdgeAttrIndex)->unref(); |
|
1006 int quads = 0; |
|
1007 while (quads < quadCnt) { |
|
1008 int n = GrMin(quadCnt - quads, kNumQuadsInIdxBuffer); |
|
1009 target->drawIndexed(kTriangles_GrPrimitiveType, |
|
1010 kVertsPerQuad*quads, // startV |
|
1011 0, // startI |
|
1012 kVertsPerQuad*n, // vCount |
|
1013 kIdxsPerQuad*n, // iCount |
|
1014 &devBounds); |
|
1015 quads += n; |
|
1016 } |
|
1017 } |
|
1018 |
|
1019 if (conicCnt > 0) { |
|
1020 GrDrawState::AutoRestoreEffects are(drawState); |
|
1021 GrEffectRef* hairConicEffect = GrConicEffect::Create(kHairlineAA_GrEffectEdgeType, |
|
1022 *target->caps()); |
|
1023 SkASSERT(NULL != hairConicEffect); |
|
1024 drawState->addCoverageEffect(hairConicEffect, 1, 2)->unref(); |
|
1025 int conics = 0; |
|
1026 while (conics < conicCnt) { |
|
1027 int n = GrMin(conicCnt - conics, kNumQuadsInIdxBuffer); |
|
1028 target->drawIndexed(kTriangles_GrPrimitiveType, |
|
1029 kVertsPerQuad*(quadCnt + conics), // startV |
|
1030 0, // startI |
|
1031 kVertsPerQuad*n, // vCount |
|
1032 kIdxsPerQuad*n, // iCount |
|
1033 &devBounds); |
|
1034 conics += n; |
|
1035 } |
|
1036 } |
|
1037 } |
|
1038 |
|
1039 target->resetIndexSource(); |
|
1040 |
|
1041 return true; |
|
1042 } |