media/webrtc/trunk/testing/gtest/test/gtest-printers_test.cc

Wed, 31 Dec 2014 07:53:36 +0100

author
Michael Schloh von Bennewitz <michael@schloh.com>
date
Wed, 31 Dec 2014 07:53:36 +0100
branch
TOR_BUG_3246
changeset 5
4ab42b5ab56c
permissions
-rw-r--r--

Correct small whitespace inconsistency, lost while renaming variables.

michael@0 1 // Copyright 2007, Google Inc.
michael@0 2 // All rights reserved.
michael@0 3 //
michael@0 4 // Redistribution and use in source and binary forms, with or without
michael@0 5 // modification, are permitted provided that the following conditions are
michael@0 6 // met:
michael@0 7 //
michael@0 8 // * Redistributions of source code must retain the above copyright
michael@0 9 // notice, this list of conditions and the following disclaimer.
michael@0 10 // * Redistributions in binary form must reproduce the above
michael@0 11 // copyright notice, this list of conditions and the following disclaimer
michael@0 12 // in the documentation and/or other materials provided with the
michael@0 13 // distribution.
michael@0 14 // * Neither the name of Google Inc. nor the names of its
michael@0 15 // contributors may be used to endorse or promote products derived from
michael@0 16 // this software without specific prior written permission.
michael@0 17 //
michael@0 18 // THIS SOFTWARE IS PROVIDED BY THE COPYRIGHT HOLDERS AND CONTRIBUTORS
michael@0 19 // "AS IS" AND ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT
michael@0 20 // LIMITED TO, THE IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR
michael@0 21 // A PARTICULAR PURPOSE ARE DISCLAIMED. IN NO EVENT SHALL THE COPYRIGHT
michael@0 22 // OWNER OR CONTRIBUTORS BE LIABLE FOR ANY DIRECT, INDIRECT, INCIDENTAL,
michael@0 23 // SPECIAL, EXEMPLARY, OR CONSEQUENTIAL DAMAGES (INCLUDING, BUT NOT
michael@0 24 // LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS OR SERVICES; LOSS OF USE,
michael@0 25 // DATA, OR PROFITS; OR BUSINESS INTERRUPTION) HOWEVER CAUSED AND ON ANY
michael@0 26 // THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT LIABILITY, OR TORT
michael@0 27 // (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY OUT OF THE USE
michael@0 28 // OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF SUCH DAMAGE.
michael@0 29 //
michael@0 30 // Author: wan@google.com (Zhanyong Wan)
michael@0 31
michael@0 32 // Google Test - The Google C++ Testing Framework
michael@0 33 //
michael@0 34 // This file tests the universal value printer.
michael@0 35
michael@0 36 #include "gtest/gtest-printers.h"
michael@0 37
michael@0 38 #include <ctype.h>
michael@0 39 #include <limits.h>
michael@0 40 #include <string.h>
michael@0 41 #include <algorithm>
michael@0 42 #include <deque>
michael@0 43 #include <list>
michael@0 44 #include <map>
michael@0 45 #include <set>
michael@0 46 #include <sstream>
michael@0 47 #include <string>
michael@0 48 #include <utility>
michael@0 49 #include <vector>
michael@0 50
michael@0 51 #include "gtest/gtest.h"
michael@0 52
michael@0 53 // hash_map and hash_set are available under Visual C++.
michael@0 54 #if _MSC_VER
michael@0 55 # define GTEST_HAS_HASH_MAP_ 1 // Indicates that hash_map is available.
michael@0 56 # include <hash_map> // NOLINT
michael@0 57 # define GTEST_HAS_HASH_SET_ 1 // Indicates that hash_set is available.
michael@0 58 # include <hash_set> // NOLINT
michael@0 59 #endif // GTEST_OS_WINDOWS
michael@0 60
michael@0 61 // Some user-defined types for testing the universal value printer.
michael@0 62
michael@0 63 // An anonymous enum type.
michael@0 64 enum AnonymousEnum {
michael@0 65 kAE1 = -1,
michael@0 66 kAE2 = 1
michael@0 67 };
michael@0 68
michael@0 69 // An enum without a user-defined printer.
michael@0 70 enum EnumWithoutPrinter {
michael@0 71 kEWP1 = -2,
michael@0 72 kEWP2 = 42
michael@0 73 };
michael@0 74
michael@0 75 // An enum with a << operator.
michael@0 76 enum EnumWithStreaming {
michael@0 77 kEWS1 = 10
michael@0 78 };
michael@0 79
michael@0 80 std::ostream& operator<<(std::ostream& os, EnumWithStreaming e) {
michael@0 81 return os << (e == kEWS1 ? "kEWS1" : "invalid");
michael@0 82 }
michael@0 83
michael@0 84 // An enum with a PrintTo() function.
michael@0 85 enum EnumWithPrintTo {
michael@0 86 kEWPT1 = 1
michael@0 87 };
michael@0 88
michael@0 89 void PrintTo(EnumWithPrintTo e, std::ostream* os) {
michael@0 90 *os << (e == kEWPT1 ? "kEWPT1" : "invalid");
michael@0 91 }
michael@0 92
michael@0 93 // A class implicitly convertible to BiggestInt.
michael@0 94 class BiggestIntConvertible {
michael@0 95 public:
michael@0 96 operator ::testing::internal::BiggestInt() const { return 42; }
michael@0 97 };
michael@0 98
michael@0 99 // A user-defined unprintable class template in the global namespace.
michael@0 100 template <typename T>
michael@0 101 class UnprintableTemplateInGlobal {
michael@0 102 public:
michael@0 103 UnprintableTemplateInGlobal() : value_() {}
michael@0 104 private:
michael@0 105 T value_;
michael@0 106 };
michael@0 107
michael@0 108 // A user-defined streamable type in the global namespace.
michael@0 109 class StreamableInGlobal {
michael@0 110 public:
michael@0 111 virtual ~StreamableInGlobal() {}
michael@0 112 };
michael@0 113
michael@0 114 inline void operator<<(::std::ostream& os, const StreamableInGlobal& /* x */) {
michael@0 115 os << "StreamableInGlobal";
michael@0 116 }
michael@0 117
michael@0 118 void operator<<(::std::ostream& os, const StreamableInGlobal* /* x */) {
michael@0 119 os << "StreamableInGlobal*";
michael@0 120 }
michael@0 121
michael@0 122 namespace foo {
michael@0 123
michael@0 124 // A user-defined unprintable type in a user namespace.
michael@0 125 class UnprintableInFoo {
michael@0 126 public:
michael@0 127 UnprintableInFoo() : z_(0) { memcpy(xy_, "\xEF\x12\x0\x0\x34\xAB\x0\x0", 8); }
michael@0 128 private:
michael@0 129 char xy_[8];
michael@0 130 double z_;
michael@0 131 };
michael@0 132
michael@0 133 // A user-defined printable type in a user-chosen namespace.
michael@0 134 struct PrintableViaPrintTo {
michael@0 135 PrintableViaPrintTo() : value() {}
michael@0 136 int value;
michael@0 137 };
michael@0 138
michael@0 139 void PrintTo(const PrintableViaPrintTo& x, ::std::ostream* os) {
michael@0 140 *os << "PrintableViaPrintTo: " << x.value;
michael@0 141 }
michael@0 142
michael@0 143 // A type with a user-defined << for printing its pointer.
michael@0 144 struct PointerPrintable {
michael@0 145 };
michael@0 146
michael@0 147 ::std::ostream& operator<<(::std::ostream& os,
michael@0 148 const PointerPrintable* /* x */) {
michael@0 149 return os << "PointerPrintable*";
michael@0 150 }
michael@0 151
michael@0 152 // A user-defined printable class template in a user-chosen namespace.
michael@0 153 template <typename T>
michael@0 154 class PrintableViaPrintToTemplate {
michael@0 155 public:
michael@0 156 explicit PrintableViaPrintToTemplate(const T& a_value) : value_(a_value) {}
michael@0 157
michael@0 158 const T& value() const { return value_; }
michael@0 159 private:
michael@0 160 T value_;
michael@0 161 };
michael@0 162
michael@0 163 template <typename T>
michael@0 164 void PrintTo(const PrintableViaPrintToTemplate<T>& x, ::std::ostream* os) {
michael@0 165 *os << "PrintableViaPrintToTemplate: " << x.value();
michael@0 166 }
michael@0 167
michael@0 168 // A user-defined streamable class template in a user namespace.
michael@0 169 template <typename T>
michael@0 170 class StreamableTemplateInFoo {
michael@0 171 public:
michael@0 172 StreamableTemplateInFoo() : value_() {}
michael@0 173
michael@0 174 const T& value() const { return value_; }
michael@0 175 private:
michael@0 176 T value_;
michael@0 177 };
michael@0 178
michael@0 179 template <typename T>
michael@0 180 inline ::std::ostream& operator<<(::std::ostream& os,
michael@0 181 const StreamableTemplateInFoo<T>& x) {
michael@0 182 return os << "StreamableTemplateInFoo: " << x.value();
michael@0 183 }
michael@0 184
michael@0 185 } // namespace foo
michael@0 186
michael@0 187 namespace testing {
michael@0 188 namespace gtest_printers_test {
michael@0 189
michael@0 190 using ::std::deque;
michael@0 191 using ::std::list;
michael@0 192 using ::std::make_pair;
michael@0 193 using ::std::map;
michael@0 194 using ::std::multimap;
michael@0 195 using ::std::multiset;
michael@0 196 using ::std::pair;
michael@0 197 using ::std::set;
michael@0 198 using ::std::vector;
michael@0 199 using ::testing::PrintToString;
michael@0 200 using ::testing::internal::FormatForComparisonFailureMessage;
michael@0 201 using ::testing::internal::ImplicitCast_;
michael@0 202 using ::testing::internal::NativeArray;
michael@0 203 using ::testing::internal::RE;
michael@0 204 using ::testing::internal::Strings;
michael@0 205 using ::testing::internal::UniversalPrint;
michael@0 206 using ::testing::internal::UniversalPrinter;
michael@0 207 using ::testing::internal::UniversalTersePrint;
michael@0 208 using ::testing::internal::UniversalTersePrintTupleFieldsToStrings;
michael@0 209 using ::testing::internal::kReference;
michael@0 210 using ::testing::internal::string;
michael@0 211
michael@0 212 #if GTEST_HAS_TR1_TUPLE
michael@0 213 using ::std::tr1::make_tuple;
michael@0 214 using ::std::tr1::tuple;
michael@0 215 #endif
michael@0 216
michael@0 217 #if _MSC_VER
michael@0 218 // MSVC defines the following classes in the ::stdext namespace while
michael@0 219 // gcc defines them in the :: namespace. Note that they are not part
michael@0 220 // of the C++ standard.
michael@0 221 using ::stdext::hash_map;
michael@0 222 using ::stdext::hash_set;
michael@0 223 using ::stdext::hash_multimap;
michael@0 224 using ::stdext::hash_multiset;
michael@0 225 #endif
michael@0 226
michael@0 227 // Prints a value to a string using the universal value printer. This
michael@0 228 // is a helper for testing UniversalPrinter<T>::Print() for various types.
michael@0 229 template <typename T>
michael@0 230 string Print(const T& value) {
michael@0 231 ::std::stringstream ss;
michael@0 232 UniversalPrinter<T>::Print(value, &ss);
michael@0 233 return ss.str();
michael@0 234 }
michael@0 235
michael@0 236 // Prints a value passed by reference to a string, using the universal
michael@0 237 // value printer. This is a helper for testing
michael@0 238 // UniversalPrinter<T&>::Print() for various types.
michael@0 239 template <typename T>
michael@0 240 string PrintByRef(const T& value) {
michael@0 241 ::std::stringstream ss;
michael@0 242 UniversalPrinter<T&>::Print(value, &ss);
michael@0 243 return ss.str();
michael@0 244 }
michael@0 245
michael@0 246 // Tests printing various enum types.
michael@0 247
michael@0 248 TEST(PrintEnumTest, AnonymousEnum) {
michael@0 249 EXPECT_EQ("-1", Print(kAE1));
michael@0 250 EXPECT_EQ("1", Print(kAE2));
michael@0 251 }
michael@0 252
michael@0 253 TEST(PrintEnumTest, EnumWithoutPrinter) {
michael@0 254 EXPECT_EQ("-2", Print(kEWP1));
michael@0 255 EXPECT_EQ("42", Print(kEWP2));
michael@0 256 }
michael@0 257
michael@0 258 TEST(PrintEnumTest, EnumWithStreaming) {
michael@0 259 EXPECT_EQ("kEWS1", Print(kEWS1));
michael@0 260 EXPECT_EQ("invalid", Print(static_cast<EnumWithStreaming>(0)));
michael@0 261 }
michael@0 262
michael@0 263 TEST(PrintEnumTest, EnumWithPrintTo) {
michael@0 264 EXPECT_EQ("kEWPT1", Print(kEWPT1));
michael@0 265 EXPECT_EQ("invalid", Print(static_cast<EnumWithPrintTo>(0)));
michael@0 266 }
michael@0 267
michael@0 268 // Tests printing a class implicitly convertible to BiggestInt.
michael@0 269
michael@0 270 TEST(PrintClassTest, BiggestIntConvertible) {
michael@0 271 EXPECT_EQ("42", Print(BiggestIntConvertible()));
michael@0 272 }
michael@0 273
michael@0 274 // Tests printing various char types.
michael@0 275
michael@0 276 // char.
michael@0 277 TEST(PrintCharTest, PlainChar) {
michael@0 278 EXPECT_EQ("'\\0'", Print('\0'));
michael@0 279 EXPECT_EQ("'\\'' (39, 0x27)", Print('\''));
michael@0 280 EXPECT_EQ("'\"' (34, 0x22)", Print('"'));
michael@0 281 EXPECT_EQ("'?' (63, 0x3F)", Print('?'));
michael@0 282 EXPECT_EQ("'\\\\' (92, 0x5C)", Print('\\'));
michael@0 283 EXPECT_EQ("'\\a' (7)", Print('\a'));
michael@0 284 EXPECT_EQ("'\\b' (8)", Print('\b'));
michael@0 285 EXPECT_EQ("'\\f' (12, 0xC)", Print('\f'));
michael@0 286 EXPECT_EQ("'\\n' (10, 0xA)", Print('\n'));
michael@0 287 EXPECT_EQ("'\\r' (13, 0xD)", Print('\r'));
michael@0 288 EXPECT_EQ("'\\t' (9)", Print('\t'));
michael@0 289 EXPECT_EQ("'\\v' (11, 0xB)", Print('\v'));
michael@0 290 EXPECT_EQ("'\\x7F' (127)", Print('\x7F'));
michael@0 291 EXPECT_EQ("'\\xFF' (255)", Print('\xFF'));
michael@0 292 EXPECT_EQ("' ' (32, 0x20)", Print(' '));
michael@0 293 EXPECT_EQ("'a' (97, 0x61)", Print('a'));
michael@0 294 }
michael@0 295
michael@0 296 // signed char.
michael@0 297 TEST(PrintCharTest, SignedChar) {
michael@0 298 EXPECT_EQ("'\\0'", Print(static_cast<signed char>('\0')));
michael@0 299 EXPECT_EQ("'\\xCE' (-50)",
michael@0 300 Print(static_cast<signed char>(-50)));
michael@0 301 }
michael@0 302
michael@0 303 // unsigned char.
michael@0 304 TEST(PrintCharTest, UnsignedChar) {
michael@0 305 EXPECT_EQ("'\\0'", Print(static_cast<unsigned char>('\0')));
michael@0 306 EXPECT_EQ("'b' (98, 0x62)",
michael@0 307 Print(static_cast<unsigned char>('b')));
michael@0 308 }
michael@0 309
michael@0 310 // Tests printing other simple, built-in types.
michael@0 311
michael@0 312 // bool.
michael@0 313 TEST(PrintBuiltInTypeTest, Bool) {
michael@0 314 EXPECT_EQ("false", Print(false));
michael@0 315 EXPECT_EQ("true", Print(true));
michael@0 316 }
michael@0 317
michael@0 318 // wchar_t.
michael@0 319 TEST(PrintBuiltInTypeTest, Wchar_t) {
michael@0 320 EXPECT_EQ("L'\\0'", Print(L'\0'));
michael@0 321 EXPECT_EQ("L'\\'' (39, 0x27)", Print(L'\''));
michael@0 322 EXPECT_EQ("L'\"' (34, 0x22)", Print(L'"'));
michael@0 323 EXPECT_EQ("L'?' (63, 0x3F)", Print(L'?'));
michael@0 324 EXPECT_EQ("L'\\\\' (92, 0x5C)", Print(L'\\'));
michael@0 325 EXPECT_EQ("L'\\a' (7)", Print(L'\a'));
michael@0 326 EXPECT_EQ("L'\\b' (8)", Print(L'\b'));
michael@0 327 EXPECT_EQ("L'\\f' (12, 0xC)", Print(L'\f'));
michael@0 328 EXPECT_EQ("L'\\n' (10, 0xA)", Print(L'\n'));
michael@0 329 EXPECT_EQ("L'\\r' (13, 0xD)", Print(L'\r'));
michael@0 330 EXPECT_EQ("L'\\t' (9)", Print(L'\t'));
michael@0 331 EXPECT_EQ("L'\\v' (11, 0xB)", Print(L'\v'));
michael@0 332 EXPECT_EQ("L'\\x7F' (127)", Print(L'\x7F'));
michael@0 333 EXPECT_EQ("L'\\xFF' (255)", Print(L'\xFF'));
michael@0 334 EXPECT_EQ("L' ' (32, 0x20)", Print(L' '));
michael@0 335 EXPECT_EQ("L'a' (97, 0x61)", Print(L'a'));
michael@0 336 EXPECT_EQ("L'\\x576' (1398)", Print(static_cast<wchar_t>(0x576)));
michael@0 337 EXPECT_EQ("L'\\xC74D' (51021)", Print(static_cast<wchar_t>(0xC74D)));
michael@0 338 }
michael@0 339
michael@0 340 // Test that Int64 provides more storage than wchar_t.
michael@0 341 TEST(PrintTypeSizeTest, Wchar_t) {
michael@0 342 EXPECT_LT(sizeof(wchar_t), sizeof(testing::internal::Int64));
michael@0 343 }
michael@0 344
michael@0 345 // Various integer types.
michael@0 346 TEST(PrintBuiltInTypeTest, Integer) {
michael@0 347 EXPECT_EQ("'\\xFF' (255)", Print(static_cast<unsigned char>(255))); // uint8
michael@0 348 EXPECT_EQ("'\\x80' (-128)", Print(static_cast<signed char>(-128))); // int8
michael@0 349 EXPECT_EQ("65535", Print(USHRT_MAX)); // uint16
michael@0 350 EXPECT_EQ("-32768", Print(SHRT_MIN)); // int16
michael@0 351 EXPECT_EQ("4294967295", Print(UINT_MAX)); // uint32
michael@0 352 EXPECT_EQ("-2147483648", Print(INT_MIN)); // int32
michael@0 353 EXPECT_EQ("18446744073709551615",
michael@0 354 Print(static_cast<testing::internal::UInt64>(-1))); // uint64
michael@0 355 EXPECT_EQ("-9223372036854775808",
michael@0 356 Print(static_cast<testing::internal::Int64>(1) << 63)); // int64
michael@0 357 }
michael@0 358
michael@0 359 // Size types.
michael@0 360 TEST(PrintBuiltInTypeTest, Size_t) {
michael@0 361 EXPECT_EQ("1", Print(sizeof('a'))); // size_t.
michael@0 362 #if !GTEST_OS_WINDOWS
michael@0 363 // Windows has no ssize_t type.
michael@0 364 EXPECT_EQ("-2", Print(static_cast<ssize_t>(-2))); // ssize_t.
michael@0 365 #endif // !GTEST_OS_WINDOWS
michael@0 366 }
michael@0 367
michael@0 368 // Floating-points.
michael@0 369 TEST(PrintBuiltInTypeTest, FloatingPoints) {
michael@0 370 EXPECT_EQ("1.5", Print(1.5f)); // float
michael@0 371 EXPECT_EQ("-2.5", Print(-2.5)); // double
michael@0 372 }
michael@0 373
michael@0 374 // Since ::std::stringstream::operator<<(const void *) formats the pointer
michael@0 375 // output differently with different compilers, we have to create the expected
michael@0 376 // output first and use it as our expectation.
michael@0 377 static string PrintPointer(const void *p) {
michael@0 378 ::std::stringstream expected_result_stream;
michael@0 379 expected_result_stream << p;
michael@0 380 return expected_result_stream.str();
michael@0 381 }
michael@0 382
michael@0 383 // Tests printing C strings.
michael@0 384
michael@0 385 // const char*.
michael@0 386 TEST(PrintCStringTest, Const) {
michael@0 387 const char* p = "World";
michael@0 388 EXPECT_EQ(PrintPointer(p) + " pointing to \"World\"", Print(p));
michael@0 389 }
michael@0 390
michael@0 391 // char*.
michael@0 392 TEST(PrintCStringTest, NonConst) {
michael@0 393 char p[] = "Hi";
michael@0 394 EXPECT_EQ(PrintPointer(p) + " pointing to \"Hi\"",
michael@0 395 Print(static_cast<char*>(p)));
michael@0 396 }
michael@0 397
michael@0 398 // NULL C string.
michael@0 399 TEST(PrintCStringTest, Null) {
michael@0 400 const char* p = NULL;
michael@0 401 EXPECT_EQ("NULL", Print(p));
michael@0 402 }
michael@0 403
michael@0 404 // Tests that C strings are escaped properly.
michael@0 405 TEST(PrintCStringTest, EscapesProperly) {
michael@0 406 const char* p = "'\"?\\\a\b\f\n\r\t\v\x7F\xFF a";
michael@0 407 EXPECT_EQ(PrintPointer(p) + " pointing to \"'\\\"?\\\\\\a\\b\\f"
michael@0 408 "\\n\\r\\t\\v\\x7F\\xFF a\"",
michael@0 409 Print(p));
michael@0 410 }
michael@0 411
michael@0 412
michael@0 413
michael@0 414 // MSVC compiler can be configured to define whar_t as a typedef
michael@0 415 // of unsigned short. Defining an overload for const wchar_t* in that case
michael@0 416 // would cause pointers to unsigned shorts be printed as wide strings,
michael@0 417 // possibly accessing more memory than intended and causing invalid
michael@0 418 // memory accesses. MSVC defines _NATIVE_WCHAR_T_DEFINED symbol when
michael@0 419 // wchar_t is implemented as a native type.
michael@0 420 #if !defined(_MSC_VER) || defined(_NATIVE_WCHAR_T_DEFINED)
michael@0 421
michael@0 422 // const wchar_t*.
michael@0 423 TEST(PrintWideCStringTest, Const) {
michael@0 424 const wchar_t* p = L"World";
michael@0 425 EXPECT_EQ(PrintPointer(p) + " pointing to L\"World\"", Print(p));
michael@0 426 }
michael@0 427
michael@0 428 // wchar_t*.
michael@0 429 TEST(PrintWideCStringTest, NonConst) {
michael@0 430 wchar_t p[] = L"Hi";
michael@0 431 EXPECT_EQ(PrintPointer(p) + " pointing to L\"Hi\"",
michael@0 432 Print(static_cast<wchar_t*>(p)));
michael@0 433 }
michael@0 434
michael@0 435 // NULL wide C string.
michael@0 436 TEST(PrintWideCStringTest, Null) {
michael@0 437 const wchar_t* p = NULL;
michael@0 438 EXPECT_EQ("NULL", Print(p));
michael@0 439 }
michael@0 440
michael@0 441 // Tests that wide C strings are escaped properly.
michael@0 442 TEST(PrintWideCStringTest, EscapesProperly) {
michael@0 443 const wchar_t s[] = {'\'', '"', '?', '\\', '\a', '\b', '\f', '\n', '\r',
michael@0 444 '\t', '\v', 0xD3, 0x576, 0x8D3, 0xC74D, ' ', 'a', '\0'};
michael@0 445 EXPECT_EQ(PrintPointer(s) + " pointing to L\"'\\\"?\\\\\\a\\b\\f"
michael@0 446 "\\n\\r\\t\\v\\xD3\\x576\\x8D3\\xC74D a\"",
michael@0 447 Print(static_cast<const wchar_t*>(s)));
michael@0 448 }
michael@0 449 #endif // native wchar_t
michael@0 450
michael@0 451 // Tests printing pointers to other char types.
michael@0 452
michael@0 453 // signed char*.
michael@0 454 TEST(PrintCharPointerTest, SignedChar) {
michael@0 455 signed char* p = reinterpret_cast<signed char*>(0x1234);
michael@0 456 EXPECT_EQ(PrintPointer(p), Print(p));
michael@0 457 p = NULL;
michael@0 458 EXPECT_EQ("NULL", Print(p));
michael@0 459 }
michael@0 460
michael@0 461 // const signed char*.
michael@0 462 TEST(PrintCharPointerTest, ConstSignedChar) {
michael@0 463 signed char* p = reinterpret_cast<signed char*>(0x1234);
michael@0 464 EXPECT_EQ(PrintPointer(p), Print(p));
michael@0 465 p = NULL;
michael@0 466 EXPECT_EQ("NULL", Print(p));
michael@0 467 }
michael@0 468
michael@0 469 // unsigned char*.
michael@0 470 TEST(PrintCharPointerTest, UnsignedChar) {
michael@0 471 unsigned char* p = reinterpret_cast<unsigned char*>(0x1234);
michael@0 472 EXPECT_EQ(PrintPointer(p), Print(p));
michael@0 473 p = NULL;
michael@0 474 EXPECT_EQ("NULL", Print(p));
michael@0 475 }
michael@0 476
michael@0 477 // const unsigned char*.
michael@0 478 TEST(PrintCharPointerTest, ConstUnsignedChar) {
michael@0 479 const unsigned char* p = reinterpret_cast<const unsigned char*>(0x1234);
michael@0 480 EXPECT_EQ(PrintPointer(p), Print(p));
michael@0 481 p = NULL;
michael@0 482 EXPECT_EQ("NULL", Print(p));
michael@0 483 }
michael@0 484
michael@0 485 // Tests printing pointers to simple, built-in types.
michael@0 486
michael@0 487 // bool*.
michael@0 488 TEST(PrintPointerToBuiltInTypeTest, Bool) {
michael@0 489 bool* p = reinterpret_cast<bool*>(0xABCD);
michael@0 490 EXPECT_EQ(PrintPointer(p), Print(p));
michael@0 491 p = NULL;
michael@0 492 EXPECT_EQ("NULL", Print(p));
michael@0 493 }
michael@0 494
michael@0 495 // void*.
michael@0 496 TEST(PrintPointerToBuiltInTypeTest, Void) {
michael@0 497 void* p = reinterpret_cast<void*>(0xABCD);
michael@0 498 EXPECT_EQ(PrintPointer(p), Print(p));
michael@0 499 p = NULL;
michael@0 500 EXPECT_EQ("NULL", Print(p));
michael@0 501 }
michael@0 502
michael@0 503 // const void*.
michael@0 504 TEST(PrintPointerToBuiltInTypeTest, ConstVoid) {
michael@0 505 const void* p = reinterpret_cast<const void*>(0xABCD);
michael@0 506 EXPECT_EQ(PrintPointer(p), Print(p));
michael@0 507 p = NULL;
michael@0 508 EXPECT_EQ("NULL", Print(p));
michael@0 509 }
michael@0 510
michael@0 511 // Tests printing pointers to pointers.
michael@0 512 TEST(PrintPointerToPointerTest, IntPointerPointer) {
michael@0 513 int** p = reinterpret_cast<int**>(0xABCD);
michael@0 514 EXPECT_EQ(PrintPointer(p), Print(p));
michael@0 515 p = NULL;
michael@0 516 EXPECT_EQ("NULL", Print(p));
michael@0 517 }
michael@0 518
michael@0 519 // Tests printing (non-member) function pointers.
michael@0 520
michael@0 521 void MyFunction(int /* n */) {}
michael@0 522
michael@0 523 TEST(PrintPointerTest, NonMemberFunctionPointer) {
michael@0 524 // We cannot directly cast &MyFunction to const void* because the
michael@0 525 // standard disallows casting between pointers to functions and
michael@0 526 // pointers to objects, and some compilers (e.g. GCC 3.4) enforce
michael@0 527 // this limitation.
michael@0 528 EXPECT_EQ(
michael@0 529 PrintPointer(reinterpret_cast<const void*>(
michael@0 530 reinterpret_cast<internal::BiggestInt>(&MyFunction))),
michael@0 531 Print(&MyFunction));
michael@0 532 int (*p)(bool) = NULL; // NOLINT
michael@0 533 EXPECT_EQ("NULL", Print(p));
michael@0 534 }
michael@0 535
michael@0 536 // An assertion predicate determining whether a one string is a prefix for
michael@0 537 // another.
michael@0 538 template <typename StringType>
michael@0 539 AssertionResult HasPrefix(const StringType& str, const StringType& prefix) {
michael@0 540 if (str.find(prefix, 0) == 0)
michael@0 541 return AssertionSuccess();
michael@0 542
michael@0 543 const bool is_wide_string = sizeof(prefix[0]) > 1;
michael@0 544 const char* const begin_string_quote = is_wide_string ? "L\"" : "\"";
michael@0 545 return AssertionFailure()
michael@0 546 << begin_string_quote << prefix << "\" is not a prefix of "
michael@0 547 << begin_string_quote << str << "\"\n";
michael@0 548 }
michael@0 549
michael@0 550 // Tests printing member variable pointers. Although they are called
michael@0 551 // pointers, they don't point to a location in the address space.
michael@0 552 // Their representation is implementation-defined. Thus they will be
michael@0 553 // printed as raw bytes.
michael@0 554
michael@0 555 struct Foo {
michael@0 556 public:
michael@0 557 virtual ~Foo() {}
michael@0 558 int MyMethod(char x) { return x + 1; }
michael@0 559 virtual char MyVirtualMethod(int /* n */) { return 'a'; }
michael@0 560
michael@0 561 int value;
michael@0 562 };
michael@0 563
michael@0 564 TEST(PrintPointerTest, MemberVariablePointer) {
michael@0 565 EXPECT_TRUE(HasPrefix(Print(&Foo::value),
michael@0 566 Print(sizeof(&Foo::value)) + "-byte object "));
michael@0 567 int (Foo::*p) = NULL; // NOLINT
michael@0 568 EXPECT_TRUE(HasPrefix(Print(p),
michael@0 569 Print(sizeof(p)) + "-byte object "));
michael@0 570 }
michael@0 571
michael@0 572 // Tests printing member function pointers. Although they are called
michael@0 573 // pointers, they don't point to a location in the address space.
michael@0 574 // Their representation is implementation-defined. Thus they will be
michael@0 575 // printed as raw bytes.
michael@0 576 TEST(PrintPointerTest, MemberFunctionPointer) {
michael@0 577 EXPECT_TRUE(HasPrefix(Print(&Foo::MyMethod),
michael@0 578 Print(sizeof(&Foo::MyMethod)) + "-byte object "));
michael@0 579 EXPECT_TRUE(
michael@0 580 HasPrefix(Print(&Foo::MyVirtualMethod),
michael@0 581 Print(sizeof((&Foo::MyVirtualMethod))) + "-byte object "));
michael@0 582 int (Foo::*p)(char) = NULL; // NOLINT
michael@0 583 EXPECT_TRUE(HasPrefix(Print(p),
michael@0 584 Print(sizeof(p)) + "-byte object "));
michael@0 585 }
michael@0 586
michael@0 587 // Tests printing C arrays.
michael@0 588
michael@0 589 // The difference between this and Print() is that it ensures that the
michael@0 590 // argument is a reference to an array.
michael@0 591 template <typename T, size_t N>
michael@0 592 string PrintArrayHelper(T (&a)[N]) {
michael@0 593 return Print(a);
michael@0 594 }
michael@0 595
michael@0 596 // One-dimensional array.
michael@0 597 TEST(PrintArrayTest, OneDimensionalArray) {
michael@0 598 int a[5] = { 1, 2, 3, 4, 5 };
michael@0 599 EXPECT_EQ("{ 1, 2, 3, 4, 5 }", PrintArrayHelper(a));
michael@0 600 }
michael@0 601
michael@0 602 // Two-dimensional array.
michael@0 603 TEST(PrintArrayTest, TwoDimensionalArray) {
michael@0 604 int a[2][5] = {
michael@0 605 { 1, 2, 3, 4, 5 },
michael@0 606 { 6, 7, 8, 9, 0 }
michael@0 607 };
michael@0 608 EXPECT_EQ("{ { 1, 2, 3, 4, 5 }, { 6, 7, 8, 9, 0 } }", PrintArrayHelper(a));
michael@0 609 }
michael@0 610
michael@0 611 // Array of const elements.
michael@0 612 TEST(PrintArrayTest, ConstArray) {
michael@0 613 const bool a[1] = { false };
michael@0 614 EXPECT_EQ("{ false }", PrintArrayHelper(a));
michael@0 615 }
michael@0 616
michael@0 617 // char array without terminating NUL.
michael@0 618 TEST(PrintArrayTest, CharArrayWithNoTerminatingNul) {
michael@0 619 // Array a contains '\0' in the middle and doesn't end with '\0'.
michael@0 620 char a[] = { 'H', '\0', 'i' };
michael@0 621 EXPECT_EQ("\"H\\0i\" (no terminating NUL)", PrintArrayHelper(a));
michael@0 622 }
michael@0 623
michael@0 624 // const char array with terminating NUL.
michael@0 625 TEST(PrintArrayTest, ConstCharArrayWithTerminatingNul) {
michael@0 626 const char a[] = "\0Hi";
michael@0 627 EXPECT_EQ("\"\\0Hi\"", PrintArrayHelper(a));
michael@0 628 }
michael@0 629
michael@0 630 // const wchar_t array without terminating NUL.
michael@0 631 TEST(PrintArrayTest, WCharArrayWithNoTerminatingNul) {
michael@0 632 // Array a contains '\0' in the middle and doesn't end with '\0'.
michael@0 633 const wchar_t a[] = { L'H', L'\0', L'i' };
michael@0 634 EXPECT_EQ("L\"H\\0i\" (no terminating NUL)", PrintArrayHelper(a));
michael@0 635 }
michael@0 636
michael@0 637 // wchar_t array with terminating NUL.
michael@0 638 TEST(PrintArrayTest, WConstCharArrayWithTerminatingNul) {
michael@0 639 const wchar_t a[] = L"\0Hi";
michael@0 640 EXPECT_EQ("L\"\\0Hi\"", PrintArrayHelper(a));
michael@0 641 }
michael@0 642
michael@0 643 // Array of objects.
michael@0 644 TEST(PrintArrayTest, ObjectArray) {
michael@0 645 string a[3] = { "Hi", "Hello", "Ni hao" };
michael@0 646 EXPECT_EQ("{ \"Hi\", \"Hello\", \"Ni hao\" }", PrintArrayHelper(a));
michael@0 647 }
michael@0 648
michael@0 649 // Array with many elements.
michael@0 650 TEST(PrintArrayTest, BigArray) {
michael@0 651 int a[100] = { 1, 2, 3 };
michael@0 652 EXPECT_EQ("{ 1, 2, 3, 0, 0, 0, 0, 0, ..., 0, 0, 0, 0, 0, 0, 0, 0 }",
michael@0 653 PrintArrayHelper(a));
michael@0 654 }
michael@0 655
michael@0 656 // Tests printing ::string and ::std::string.
michael@0 657
michael@0 658 #if GTEST_HAS_GLOBAL_STRING
michael@0 659 // ::string.
michael@0 660 TEST(PrintStringTest, StringInGlobalNamespace) {
michael@0 661 const char s[] = "'\"?\\\a\b\f\n\0\r\t\v\x7F\xFF a";
michael@0 662 const ::string str(s, sizeof(s));
michael@0 663 EXPECT_EQ("\"'\\\"?\\\\\\a\\b\\f\\n\\0\\r\\t\\v\\x7F\\xFF a\\0\"",
michael@0 664 Print(str));
michael@0 665 }
michael@0 666 #endif // GTEST_HAS_GLOBAL_STRING
michael@0 667
michael@0 668 // ::std::string.
michael@0 669 TEST(PrintStringTest, StringInStdNamespace) {
michael@0 670 const char s[] = "'\"?\\\a\b\f\n\0\r\t\v\x7F\xFF a";
michael@0 671 const ::std::string str(s, sizeof(s));
michael@0 672 EXPECT_EQ("\"'\\\"?\\\\\\a\\b\\f\\n\\0\\r\\t\\v\\x7F\\xFF a\\0\"",
michael@0 673 Print(str));
michael@0 674 }
michael@0 675
michael@0 676 TEST(PrintStringTest, StringAmbiguousHex) {
michael@0 677 // "\x6BANANA" is ambiguous, it can be interpreted as starting with either of:
michael@0 678 // '\x6', '\x6B', or '\x6BA'.
michael@0 679
michael@0 680 // a hex escaping sequence following by a decimal digit
michael@0 681 EXPECT_EQ("\"0\\x12\" \"3\"", Print(::std::string("0\x12" "3")));
michael@0 682 // a hex escaping sequence following by a hex digit (lower-case)
michael@0 683 EXPECT_EQ("\"mm\\x6\" \"bananas\"", Print(::std::string("mm\x6" "bananas")));
michael@0 684 // a hex escaping sequence following by a hex digit (upper-case)
michael@0 685 EXPECT_EQ("\"NOM\\x6\" \"BANANA\"", Print(::std::string("NOM\x6" "BANANA")));
michael@0 686 // a hex escaping sequence following by a non-xdigit
michael@0 687 EXPECT_EQ("\"!\\x5-!\"", Print(::std::string("!\x5-!")));
michael@0 688 }
michael@0 689
michael@0 690 // Tests printing ::wstring and ::std::wstring.
michael@0 691
michael@0 692 #if GTEST_HAS_GLOBAL_WSTRING
michael@0 693 // ::wstring.
michael@0 694 TEST(PrintWideStringTest, StringInGlobalNamespace) {
michael@0 695 const wchar_t s[] = L"'\"?\\\a\b\f\n\0\r\t\v\xD3\x576\x8D3\xC74D a";
michael@0 696 const ::wstring str(s, sizeof(s)/sizeof(wchar_t));
michael@0 697 EXPECT_EQ("L\"'\\\"?\\\\\\a\\b\\f\\n\\0\\r\\t\\v"
michael@0 698 "\\xD3\\x576\\x8D3\\xC74D a\\0\"",
michael@0 699 Print(str));
michael@0 700 }
michael@0 701 #endif // GTEST_HAS_GLOBAL_WSTRING
michael@0 702
michael@0 703 #if GTEST_HAS_STD_WSTRING
michael@0 704 // ::std::wstring.
michael@0 705 TEST(PrintWideStringTest, StringInStdNamespace) {
michael@0 706 const wchar_t s[] = L"'\"?\\\a\b\f\n\0\r\t\v\xD3\x576\x8D3\xC74D a";
michael@0 707 const ::std::wstring str(s, sizeof(s)/sizeof(wchar_t));
michael@0 708 EXPECT_EQ("L\"'\\\"?\\\\\\a\\b\\f\\n\\0\\r\\t\\v"
michael@0 709 "\\xD3\\x576\\x8D3\\xC74D a\\0\"",
michael@0 710 Print(str));
michael@0 711 }
michael@0 712
michael@0 713 TEST(PrintWideStringTest, StringAmbiguousHex) {
michael@0 714 // same for wide strings.
michael@0 715 EXPECT_EQ("L\"0\\x12\" L\"3\"", Print(::std::wstring(L"0\x12" L"3")));
michael@0 716 EXPECT_EQ("L\"mm\\x6\" L\"bananas\"",
michael@0 717 Print(::std::wstring(L"mm\x6" L"bananas")));
michael@0 718 EXPECT_EQ("L\"NOM\\x6\" L\"BANANA\"",
michael@0 719 Print(::std::wstring(L"NOM\x6" L"BANANA")));
michael@0 720 EXPECT_EQ("L\"!\\x5-!\"", Print(::std::wstring(L"!\x5-!")));
michael@0 721 }
michael@0 722 #endif // GTEST_HAS_STD_WSTRING
michael@0 723
michael@0 724 // Tests printing types that support generic streaming (i.e. streaming
michael@0 725 // to std::basic_ostream<Char, CharTraits> for any valid Char and
michael@0 726 // CharTraits types).
michael@0 727
michael@0 728 // Tests printing a non-template type that supports generic streaming.
michael@0 729
michael@0 730 class AllowsGenericStreaming {};
michael@0 731
michael@0 732 template <typename Char, typename CharTraits>
michael@0 733 std::basic_ostream<Char, CharTraits>& operator<<(
michael@0 734 std::basic_ostream<Char, CharTraits>& os,
michael@0 735 const AllowsGenericStreaming& /* a */) {
michael@0 736 return os << "AllowsGenericStreaming";
michael@0 737 }
michael@0 738
michael@0 739 TEST(PrintTypeWithGenericStreamingTest, NonTemplateType) {
michael@0 740 AllowsGenericStreaming a;
michael@0 741 EXPECT_EQ("AllowsGenericStreaming", Print(a));
michael@0 742 }
michael@0 743
michael@0 744 // Tests printing a template type that supports generic streaming.
michael@0 745
michael@0 746 template <typename T>
michael@0 747 class AllowsGenericStreamingTemplate {};
michael@0 748
michael@0 749 template <typename Char, typename CharTraits, typename T>
michael@0 750 std::basic_ostream<Char, CharTraits>& operator<<(
michael@0 751 std::basic_ostream<Char, CharTraits>& os,
michael@0 752 const AllowsGenericStreamingTemplate<T>& /* a */) {
michael@0 753 return os << "AllowsGenericStreamingTemplate";
michael@0 754 }
michael@0 755
michael@0 756 TEST(PrintTypeWithGenericStreamingTest, TemplateType) {
michael@0 757 AllowsGenericStreamingTemplate<int> a;
michael@0 758 EXPECT_EQ("AllowsGenericStreamingTemplate", Print(a));
michael@0 759 }
michael@0 760
michael@0 761 // Tests printing a type that supports generic streaming and can be
michael@0 762 // implicitly converted to another printable type.
michael@0 763
michael@0 764 template <typename T>
michael@0 765 class AllowsGenericStreamingAndImplicitConversionTemplate {
michael@0 766 public:
michael@0 767 operator bool() const { return false; }
michael@0 768 };
michael@0 769
michael@0 770 template <typename Char, typename CharTraits, typename T>
michael@0 771 std::basic_ostream<Char, CharTraits>& operator<<(
michael@0 772 std::basic_ostream<Char, CharTraits>& os,
michael@0 773 const AllowsGenericStreamingAndImplicitConversionTemplate<T>& /* a */) {
michael@0 774 return os << "AllowsGenericStreamingAndImplicitConversionTemplate";
michael@0 775 }
michael@0 776
michael@0 777 TEST(PrintTypeWithGenericStreamingTest, TypeImplicitlyConvertible) {
michael@0 778 AllowsGenericStreamingAndImplicitConversionTemplate<int> a;
michael@0 779 EXPECT_EQ("AllowsGenericStreamingAndImplicitConversionTemplate", Print(a));
michael@0 780 }
michael@0 781
michael@0 782 #if GTEST_HAS_STRING_PIECE_
michael@0 783
michael@0 784 // Tests printing StringPiece.
michael@0 785
michael@0 786 TEST(PrintStringPieceTest, SimpleStringPiece) {
michael@0 787 const StringPiece sp = "Hello";
michael@0 788 EXPECT_EQ("\"Hello\"", Print(sp));
michael@0 789 }
michael@0 790
michael@0 791 TEST(PrintStringPieceTest, UnprintableCharacters) {
michael@0 792 const char str[] = "NUL (\0) and \r\t";
michael@0 793 const StringPiece sp(str, sizeof(str) - 1);
michael@0 794 EXPECT_EQ("\"NUL (\\0) and \\r\\t\"", Print(sp));
michael@0 795 }
michael@0 796
michael@0 797 #endif // GTEST_HAS_STRING_PIECE_
michael@0 798
michael@0 799 // Tests printing STL containers.
michael@0 800
michael@0 801 TEST(PrintStlContainerTest, EmptyDeque) {
michael@0 802 deque<char> empty;
michael@0 803 EXPECT_EQ("{}", Print(empty));
michael@0 804 }
michael@0 805
michael@0 806 TEST(PrintStlContainerTest, NonEmptyDeque) {
michael@0 807 deque<int> non_empty;
michael@0 808 non_empty.push_back(1);
michael@0 809 non_empty.push_back(3);
michael@0 810 EXPECT_EQ("{ 1, 3 }", Print(non_empty));
michael@0 811 }
michael@0 812
michael@0 813 #if GTEST_HAS_HASH_MAP_
michael@0 814
michael@0 815 TEST(PrintStlContainerTest, OneElementHashMap) {
michael@0 816 hash_map<int, char> map1;
michael@0 817 map1[1] = 'a';
michael@0 818 EXPECT_EQ("{ (1, 'a' (97, 0x61)) }", Print(map1));
michael@0 819 }
michael@0 820
michael@0 821 TEST(PrintStlContainerTest, HashMultiMap) {
michael@0 822 hash_multimap<int, bool> map1;
michael@0 823 map1.insert(make_pair(5, true));
michael@0 824 map1.insert(make_pair(5, false));
michael@0 825
michael@0 826 // Elements of hash_multimap can be printed in any order.
michael@0 827 const string result = Print(map1);
michael@0 828 EXPECT_TRUE(result == "{ (5, true), (5, false) }" ||
michael@0 829 result == "{ (5, false), (5, true) }")
michael@0 830 << " where Print(map1) returns \"" << result << "\".";
michael@0 831 }
michael@0 832
michael@0 833 #endif // GTEST_HAS_HASH_MAP_
michael@0 834
michael@0 835 #if GTEST_HAS_HASH_SET_
michael@0 836
michael@0 837 TEST(PrintStlContainerTest, HashSet) {
michael@0 838 hash_set<string> set1;
michael@0 839 set1.insert("hello");
michael@0 840 EXPECT_EQ("{ \"hello\" }", Print(set1));
michael@0 841 }
michael@0 842
michael@0 843 TEST(PrintStlContainerTest, HashMultiSet) {
michael@0 844 const int kSize = 5;
michael@0 845 int a[kSize] = { 1, 1, 2, 5, 1 };
michael@0 846 hash_multiset<int> set1(a, a + kSize);
michael@0 847
michael@0 848 // Elements of hash_multiset can be printed in any order.
michael@0 849 const string result = Print(set1);
michael@0 850 const string expected_pattern = "{ d, d, d, d, d }"; // d means a digit.
michael@0 851
michael@0 852 // Verifies the result matches the expected pattern; also extracts
michael@0 853 // the numbers in the result.
michael@0 854 ASSERT_EQ(expected_pattern.length(), result.length());
michael@0 855 std::vector<int> numbers;
michael@0 856 for (size_t i = 0; i != result.length(); i++) {
michael@0 857 if (expected_pattern[i] == 'd') {
michael@0 858 ASSERT_NE(isdigit(static_cast<unsigned char>(result[i])), 0);
michael@0 859 numbers.push_back(result[i] - '0');
michael@0 860 } else {
michael@0 861 EXPECT_EQ(expected_pattern[i], result[i]) << " where result is "
michael@0 862 << result;
michael@0 863 }
michael@0 864 }
michael@0 865
michael@0 866 // Makes sure the result contains the right numbers.
michael@0 867 std::sort(numbers.begin(), numbers.end());
michael@0 868 std::sort(a, a + kSize);
michael@0 869 EXPECT_TRUE(std::equal(a, a + kSize, numbers.begin()));
michael@0 870 }
michael@0 871
michael@0 872 #endif // GTEST_HAS_HASH_SET_
michael@0 873
michael@0 874 TEST(PrintStlContainerTest, List) {
michael@0 875 const string a[] = {
michael@0 876 "hello",
michael@0 877 "world"
michael@0 878 };
michael@0 879 const list<string> strings(a, a + 2);
michael@0 880 EXPECT_EQ("{ \"hello\", \"world\" }", Print(strings));
michael@0 881 }
michael@0 882
michael@0 883 TEST(PrintStlContainerTest, Map) {
michael@0 884 map<int, bool> map1;
michael@0 885 map1[1] = true;
michael@0 886 map1[5] = false;
michael@0 887 map1[3] = true;
michael@0 888 EXPECT_EQ("{ (1, true), (3, true), (5, false) }", Print(map1));
michael@0 889 }
michael@0 890
michael@0 891 TEST(PrintStlContainerTest, MultiMap) {
michael@0 892 multimap<bool, int> map1;
michael@0 893 // The make_pair template function would deduce the type as
michael@0 894 // pair<bool, int> here, and since the key part in a multimap has to
michael@0 895 // be constant, without a templated ctor in the pair class (as in
michael@0 896 // libCstd on Solaris), make_pair call would fail to compile as no
michael@0 897 // implicit conversion is found. Thus explicit typename is used
michael@0 898 // here instead.
michael@0 899 map1.insert(pair<const bool, int>(true, 0));
michael@0 900 map1.insert(pair<const bool, int>(true, 1));
michael@0 901 map1.insert(pair<const bool, int>(false, 2));
michael@0 902 EXPECT_EQ("{ (false, 2), (true, 0), (true, 1) }", Print(map1));
michael@0 903 }
michael@0 904
michael@0 905 TEST(PrintStlContainerTest, Set) {
michael@0 906 const unsigned int a[] = { 3, 0, 5 };
michael@0 907 set<unsigned int> set1(a, a + 3);
michael@0 908 EXPECT_EQ("{ 0, 3, 5 }", Print(set1));
michael@0 909 }
michael@0 910
michael@0 911 TEST(PrintStlContainerTest, MultiSet) {
michael@0 912 const int a[] = { 1, 1, 2, 5, 1 };
michael@0 913 multiset<int> set1(a, a + 5);
michael@0 914 EXPECT_EQ("{ 1, 1, 1, 2, 5 }", Print(set1));
michael@0 915 }
michael@0 916
michael@0 917 TEST(PrintStlContainerTest, Pair) {
michael@0 918 pair<const bool, int> p(true, 5);
michael@0 919 EXPECT_EQ("(true, 5)", Print(p));
michael@0 920 }
michael@0 921
michael@0 922 TEST(PrintStlContainerTest, Vector) {
michael@0 923 vector<int> v;
michael@0 924 v.push_back(1);
michael@0 925 v.push_back(2);
michael@0 926 EXPECT_EQ("{ 1, 2 }", Print(v));
michael@0 927 }
michael@0 928
michael@0 929 TEST(PrintStlContainerTest, LongSequence) {
michael@0 930 const int a[100] = { 1, 2, 3 };
michael@0 931 const vector<int> v(a, a + 100);
michael@0 932 EXPECT_EQ("{ 1, 2, 3, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, "
michael@0 933 "0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, ... }", Print(v));
michael@0 934 }
michael@0 935
michael@0 936 TEST(PrintStlContainerTest, NestedContainer) {
michael@0 937 const int a1[] = { 1, 2 };
michael@0 938 const int a2[] = { 3, 4, 5 };
michael@0 939 const list<int> l1(a1, a1 + 2);
michael@0 940 const list<int> l2(a2, a2 + 3);
michael@0 941
michael@0 942 vector<list<int> > v;
michael@0 943 v.push_back(l1);
michael@0 944 v.push_back(l2);
michael@0 945 EXPECT_EQ("{ { 1, 2 }, { 3, 4, 5 } }", Print(v));
michael@0 946 }
michael@0 947
michael@0 948 TEST(PrintStlContainerTest, OneDimensionalNativeArray) {
michael@0 949 const int a[3] = { 1, 2, 3 };
michael@0 950 NativeArray<int> b(a, 3, kReference);
michael@0 951 EXPECT_EQ("{ 1, 2, 3 }", Print(b));
michael@0 952 }
michael@0 953
michael@0 954 TEST(PrintStlContainerTest, TwoDimensionalNativeArray) {
michael@0 955 const int a[2][3] = { { 1, 2, 3 }, { 4, 5, 6 } };
michael@0 956 NativeArray<int[3]> b(a, 2, kReference);
michael@0 957 EXPECT_EQ("{ { 1, 2, 3 }, { 4, 5, 6 } }", Print(b));
michael@0 958 }
michael@0 959
michael@0 960 // Tests that a class named iterator isn't treated as a container.
michael@0 961
michael@0 962 struct iterator {
michael@0 963 char x;
michael@0 964 };
michael@0 965
michael@0 966 TEST(PrintStlContainerTest, Iterator) {
michael@0 967 iterator it = {};
michael@0 968 EXPECT_EQ("1-byte object <00>", Print(it));
michael@0 969 }
michael@0 970
michael@0 971 // Tests that a class named const_iterator isn't treated as a container.
michael@0 972
michael@0 973 struct const_iterator {
michael@0 974 char x;
michael@0 975 };
michael@0 976
michael@0 977 TEST(PrintStlContainerTest, ConstIterator) {
michael@0 978 const_iterator it = {};
michael@0 979 EXPECT_EQ("1-byte object <00>", Print(it));
michael@0 980 }
michael@0 981
michael@0 982 #if GTEST_HAS_TR1_TUPLE
michael@0 983 // Tests printing tuples.
michael@0 984
michael@0 985 // Tuples of various arities.
michael@0 986 TEST(PrintTupleTest, VariousSizes) {
michael@0 987 tuple<> t0;
michael@0 988 EXPECT_EQ("()", Print(t0));
michael@0 989
michael@0 990 tuple<int> t1(5);
michael@0 991 EXPECT_EQ("(5)", Print(t1));
michael@0 992
michael@0 993 tuple<char, bool> t2('a', true);
michael@0 994 EXPECT_EQ("('a' (97, 0x61), true)", Print(t2));
michael@0 995
michael@0 996 tuple<bool, int, int> t3(false, 2, 3);
michael@0 997 EXPECT_EQ("(false, 2, 3)", Print(t3));
michael@0 998
michael@0 999 tuple<bool, int, int, int> t4(false, 2, 3, 4);
michael@0 1000 EXPECT_EQ("(false, 2, 3, 4)", Print(t4));
michael@0 1001
michael@0 1002 tuple<bool, int, int, int, bool> t5(false, 2, 3, 4, true);
michael@0 1003 EXPECT_EQ("(false, 2, 3, 4, true)", Print(t5));
michael@0 1004
michael@0 1005 tuple<bool, int, int, int, bool, int> t6(false, 2, 3, 4, true, 6);
michael@0 1006 EXPECT_EQ("(false, 2, 3, 4, true, 6)", Print(t6));
michael@0 1007
michael@0 1008 tuple<bool, int, int, int, bool, int, int> t7(false, 2, 3, 4, true, 6, 7);
michael@0 1009 EXPECT_EQ("(false, 2, 3, 4, true, 6, 7)", Print(t7));
michael@0 1010
michael@0 1011 tuple<bool, int, int, int, bool, int, int, bool> t8(
michael@0 1012 false, 2, 3, 4, true, 6, 7, true);
michael@0 1013 EXPECT_EQ("(false, 2, 3, 4, true, 6, 7, true)", Print(t8));
michael@0 1014
michael@0 1015 tuple<bool, int, int, int, bool, int, int, bool, int> t9(
michael@0 1016 false, 2, 3, 4, true, 6, 7, true, 9);
michael@0 1017 EXPECT_EQ("(false, 2, 3, 4, true, 6, 7, true, 9)", Print(t9));
michael@0 1018
michael@0 1019 const char* const str = "8";
michael@0 1020 // VC++ 2010's implementation of tuple of C++0x is deficient, requiring
michael@0 1021 // an explicit type cast of NULL to be used.
michael@0 1022 tuple<bool, char, short, testing::internal::Int32, // NOLINT
michael@0 1023 testing::internal::Int64, float, double, const char*, void*, string>
michael@0 1024 t10(false, 'a', 3, 4, 5, 1.5F, -2.5, str,
michael@0 1025 ImplicitCast_<void*>(NULL), "10");
michael@0 1026 EXPECT_EQ("(false, 'a' (97, 0x61), 3, 4, 5, 1.5, -2.5, " + PrintPointer(str) +
michael@0 1027 " pointing to \"8\", NULL, \"10\")",
michael@0 1028 Print(t10));
michael@0 1029 }
michael@0 1030
michael@0 1031 // Nested tuples.
michael@0 1032 TEST(PrintTupleTest, NestedTuple) {
michael@0 1033 tuple<tuple<int, bool>, char> nested(make_tuple(5, true), 'a');
michael@0 1034 EXPECT_EQ("((5, true), 'a' (97, 0x61))", Print(nested));
michael@0 1035 }
michael@0 1036
michael@0 1037 #endif // GTEST_HAS_TR1_TUPLE
michael@0 1038
michael@0 1039 // Tests printing user-defined unprintable types.
michael@0 1040
michael@0 1041 // Unprintable types in the global namespace.
michael@0 1042 TEST(PrintUnprintableTypeTest, InGlobalNamespace) {
michael@0 1043 EXPECT_EQ("1-byte object <00>",
michael@0 1044 Print(UnprintableTemplateInGlobal<char>()));
michael@0 1045 }
michael@0 1046
michael@0 1047 // Unprintable types in a user namespace.
michael@0 1048 TEST(PrintUnprintableTypeTest, InUserNamespace) {
michael@0 1049 EXPECT_EQ("16-byte object <EF-12 00-00 34-AB 00-00 00-00 00-00 00-00 00-00>",
michael@0 1050 Print(::foo::UnprintableInFoo()));
michael@0 1051 }
michael@0 1052
michael@0 1053 // Unprintable types are that too big to be printed completely.
michael@0 1054
michael@0 1055 struct Big {
michael@0 1056 Big() { memset(array, 0, sizeof(array)); }
michael@0 1057 char array[257];
michael@0 1058 };
michael@0 1059
michael@0 1060 TEST(PrintUnpritableTypeTest, BigObject) {
michael@0 1061 EXPECT_EQ("257-byte object <00-00 00-00 00-00 00-00 00-00 00-00 "
michael@0 1062 "00-00 00-00 00-00 00-00 00-00 00-00 00-00 00-00 00-00 00-00 "
michael@0 1063 "00-00 00-00 00-00 00-00 00-00 00-00 00-00 00-00 00-00 00-00 "
michael@0 1064 "00-00 00-00 00-00 00-00 00-00 00-00 ... 00-00 00-00 00-00 "
michael@0 1065 "00-00 00-00 00-00 00-00 00-00 00-00 00-00 00-00 00-00 00-00 "
michael@0 1066 "00-00 00-00 00-00 00-00 00-00 00-00 00-00 00-00 00-00 00-00 "
michael@0 1067 "00-00 00-00 00-00 00-00 00-00 00-00 00-00 00-00 00>",
michael@0 1068 Print(Big()));
michael@0 1069 }
michael@0 1070
michael@0 1071 // Tests printing user-defined streamable types.
michael@0 1072
michael@0 1073 // Streamable types in the global namespace.
michael@0 1074 TEST(PrintStreamableTypeTest, InGlobalNamespace) {
michael@0 1075 StreamableInGlobal x;
michael@0 1076 EXPECT_EQ("StreamableInGlobal", Print(x));
michael@0 1077 EXPECT_EQ("StreamableInGlobal*", Print(&x));
michael@0 1078 }
michael@0 1079
michael@0 1080 // Printable template types in a user namespace.
michael@0 1081 TEST(PrintStreamableTypeTest, TemplateTypeInUserNamespace) {
michael@0 1082 EXPECT_EQ("StreamableTemplateInFoo: 0",
michael@0 1083 Print(::foo::StreamableTemplateInFoo<int>()));
michael@0 1084 }
michael@0 1085
michael@0 1086 // Tests printing user-defined types that have a PrintTo() function.
michael@0 1087 TEST(PrintPrintableTypeTest, InUserNamespace) {
michael@0 1088 EXPECT_EQ("PrintableViaPrintTo: 0",
michael@0 1089 Print(::foo::PrintableViaPrintTo()));
michael@0 1090 }
michael@0 1091
michael@0 1092 // Tests printing a pointer to a user-defined type that has a <<
michael@0 1093 // operator for its pointer.
michael@0 1094 TEST(PrintPrintableTypeTest, PointerInUserNamespace) {
michael@0 1095 ::foo::PointerPrintable x;
michael@0 1096 EXPECT_EQ("PointerPrintable*", Print(&x));
michael@0 1097 }
michael@0 1098
michael@0 1099 // Tests printing user-defined class template that have a PrintTo() function.
michael@0 1100 TEST(PrintPrintableTypeTest, TemplateInUserNamespace) {
michael@0 1101 EXPECT_EQ("PrintableViaPrintToTemplate: 5",
michael@0 1102 Print(::foo::PrintableViaPrintToTemplate<int>(5)));
michael@0 1103 }
michael@0 1104
michael@0 1105 #if GTEST_HAS_PROTOBUF_
michael@0 1106
michael@0 1107 // Tests printing a protocol message.
michael@0 1108 TEST(PrintProtocolMessageTest, PrintsShortDebugString) {
michael@0 1109 testing::internal::TestMessage msg;
michael@0 1110 msg.set_member("yes");
michael@0 1111 EXPECT_EQ("<member:\"yes\">", Print(msg));
michael@0 1112 }
michael@0 1113
michael@0 1114 // Tests printing a short proto2 message.
michael@0 1115 TEST(PrintProto2MessageTest, PrintsShortDebugStringWhenItIsShort) {
michael@0 1116 testing::internal::FooMessage msg;
michael@0 1117 msg.set_int_field(2);
michael@0 1118 msg.set_string_field("hello");
michael@0 1119 EXPECT_PRED2(RE::FullMatch, Print(msg),
michael@0 1120 "<int_field:\\s*2\\s+string_field:\\s*\"hello\">");
michael@0 1121 }
michael@0 1122
michael@0 1123 // Tests printing a long proto2 message.
michael@0 1124 TEST(PrintProto2MessageTest, PrintsDebugStringWhenItIsLong) {
michael@0 1125 testing::internal::FooMessage msg;
michael@0 1126 msg.set_int_field(2);
michael@0 1127 msg.set_string_field("hello");
michael@0 1128 msg.add_names("peter");
michael@0 1129 msg.add_names("paul");
michael@0 1130 msg.add_names("mary");
michael@0 1131 EXPECT_PRED2(RE::FullMatch, Print(msg),
michael@0 1132 "<\n"
michael@0 1133 "int_field:\\s*2\n"
michael@0 1134 "string_field:\\s*\"hello\"\n"
michael@0 1135 "names:\\s*\"peter\"\n"
michael@0 1136 "names:\\s*\"paul\"\n"
michael@0 1137 "names:\\s*\"mary\"\n"
michael@0 1138 ">");
michael@0 1139 }
michael@0 1140
michael@0 1141 #endif // GTEST_HAS_PROTOBUF_
michael@0 1142
michael@0 1143 // Tests that the universal printer prints both the address and the
michael@0 1144 // value of a reference.
michael@0 1145 TEST(PrintReferenceTest, PrintsAddressAndValue) {
michael@0 1146 int n = 5;
michael@0 1147 EXPECT_EQ("@" + PrintPointer(&n) + " 5", PrintByRef(n));
michael@0 1148
michael@0 1149 int a[2][3] = {
michael@0 1150 { 0, 1, 2 },
michael@0 1151 { 3, 4, 5 }
michael@0 1152 };
michael@0 1153 EXPECT_EQ("@" + PrintPointer(a) + " { { 0, 1, 2 }, { 3, 4, 5 } }",
michael@0 1154 PrintByRef(a));
michael@0 1155
michael@0 1156 const ::foo::UnprintableInFoo x;
michael@0 1157 EXPECT_EQ("@" + PrintPointer(&x) + " 16-byte object "
michael@0 1158 "<EF-12 00-00 34-AB 00-00 00-00 00-00 00-00 00-00>",
michael@0 1159 PrintByRef(x));
michael@0 1160 }
michael@0 1161
michael@0 1162 // Tests that the universal printer prints a function pointer passed by
michael@0 1163 // reference.
michael@0 1164 TEST(PrintReferenceTest, HandlesFunctionPointer) {
michael@0 1165 void (*fp)(int n) = &MyFunction;
michael@0 1166 const string fp_pointer_string =
michael@0 1167 PrintPointer(reinterpret_cast<const void*>(&fp));
michael@0 1168 // We cannot directly cast &MyFunction to const void* because the
michael@0 1169 // standard disallows casting between pointers to functions and
michael@0 1170 // pointers to objects, and some compilers (e.g. GCC 3.4) enforce
michael@0 1171 // this limitation.
michael@0 1172 const string fp_string = PrintPointer(reinterpret_cast<const void*>(
michael@0 1173 reinterpret_cast<internal::BiggestInt>(fp)));
michael@0 1174 EXPECT_EQ("@" + fp_pointer_string + " " + fp_string,
michael@0 1175 PrintByRef(fp));
michael@0 1176 }
michael@0 1177
michael@0 1178 // Tests that the universal printer prints a member function pointer
michael@0 1179 // passed by reference.
michael@0 1180 TEST(PrintReferenceTest, HandlesMemberFunctionPointer) {
michael@0 1181 int (Foo::*p)(char ch) = &Foo::MyMethod;
michael@0 1182 EXPECT_TRUE(HasPrefix(
michael@0 1183 PrintByRef(p),
michael@0 1184 "@" + PrintPointer(reinterpret_cast<const void*>(&p)) + " " +
michael@0 1185 Print(sizeof(p)) + "-byte object "));
michael@0 1186
michael@0 1187 char (Foo::*p2)(int n) = &Foo::MyVirtualMethod;
michael@0 1188 EXPECT_TRUE(HasPrefix(
michael@0 1189 PrintByRef(p2),
michael@0 1190 "@" + PrintPointer(reinterpret_cast<const void*>(&p2)) + " " +
michael@0 1191 Print(sizeof(p2)) + "-byte object "));
michael@0 1192 }
michael@0 1193
michael@0 1194 // Tests that the universal printer prints a member variable pointer
michael@0 1195 // passed by reference.
michael@0 1196 TEST(PrintReferenceTest, HandlesMemberVariablePointer) {
michael@0 1197 int (Foo::*p) = &Foo::value; // NOLINT
michael@0 1198 EXPECT_TRUE(HasPrefix(
michael@0 1199 PrintByRef(p),
michael@0 1200 "@" + PrintPointer(&p) + " " + Print(sizeof(p)) + "-byte object "));
michael@0 1201 }
michael@0 1202
michael@0 1203 // Tests that FormatForComparisonFailureMessage(), which is used to print
michael@0 1204 // an operand in a comparison assertion (e.g. ASSERT_EQ) when the assertion
michael@0 1205 // fails, formats the operand in the desired way.
michael@0 1206
michael@0 1207 // scalar
michael@0 1208 TEST(FormatForComparisonFailureMessageTest, WorksForScalar) {
michael@0 1209 EXPECT_STREQ("123",
michael@0 1210 FormatForComparisonFailureMessage(123, 124).c_str());
michael@0 1211 }
michael@0 1212
michael@0 1213 // non-char pointer
michael@0 1214 TEST(FormatForComparisonFailureMessageTest, WorksForNonCharPointer) {
michael@0 1215 int n = 0;
michael@0 1216 EXPECT_EQ(PrintPointer(&n),
michael@0 1217 FormatForComparisonFailureMessage(&n, &n).c_str());
michael@0 1218 }
michael@0 1219
michael@0 1220 // non-char array
michael@0 1221 TEST(FormatForComparisonFailureMessageTest, FormatsNonCharArrayAsPointer) {
michael@0 1222 // In expression 'array == x', 'array' is compared by pointer.
michael@0 1223 // Therefore we want to print an array operand as a pointer.
michael@0 1224 int n[] = { 1, 2, 3 };
michael@0 1225 EXPECT_EQ(PrintPointer(n),
michael@0 1226 FormatForComparisonFailureMessage(n, n).c_str());
michael@0 1227 }
michael@0 1228
michael@0 1229 // Tests formatting a char pointer when it's compared with another pointer.
michael@0 1230 // In this case we want to print it as a raw pointer, as the comparision is by
michael@0 1231 // pointer.
michael@0 1232
michael@0 1233 // char pointer vs pointer
michael@0 1234 TEST(FormatForComparisonFailureMessageTest, WorksForCharPointerVsPointer) {
michael@0 1235 // In expression 'p == x', where 'p' and 'x' are (const or not) char
michael@0 1236 // pointers, the operands are compared by pointer. Therefore we
michael@0 1237 // want to print 'p' as a pointer instead of a C string (we don't
michael@0 1238 // even know if it's supposed to point to a valid C string).
michael@0 1239
michael@0 1240 // const char*
michael@0 1241 const char* s = "hello";
michael@0 1242 EXPECT_EQ(PrintPointer(s),
michael@0 1243 FormatForComparisonFailureMessage(s, s).c_str());
michael@0 1244
michael@0 1245 // char*
michael@0 1246 char ch = 'a';
michael@0 1247 EXPECT_EQ(PrintPointer(&ch),
michael@0 1248 FormatForComparisonFailureMessage(&ch, &ch).c_str());
michael@0 1249 }
michael@0 1250
michael@0 1251 // wchar_t pointer vs pointer
michael@0 1252 TEST(FormatForComparisonFailureMessageTest, WorksForWCharPointerVsPointer) {
michael@0 1253 // In expression 'p == x', where 'p' and 'x' are (const or not) char
michael@0 1254 // pointers, the operands are compared by pointer. Therefore we
michael@0 1255 // want to print 'p' as a pointer instead of a wide C string (we don't
michael@0 1256 // even know if it's supposed to point to a valid wide C string).
michael@0 1257
michael@0 1258 // const wchar_t*
michael@0 1259 const wchar_t* s = L"hello";
michael@0 1260 EXPECT_EQ(PrintPointer(s),
michael@0 1261 FormatForComparisonFailureMessage(s, s).c_str());
michael@0 1262
michael@0 1263 // wchar_t*
michael@0 1264 wchar_t ch = L'a';
michael@0 1265 EXPECT_EQ(PrintPointer(&ch),
michael@0 1266 FormatForComparisonFailureMessage(&ch, &ch).c_str());
michael@0 1267 }
michael@0 1268
michael@0 1269 // Tests formatting a char pointer when it's compared to a string object.
michael@0 1270 // In this case we want to print the char pointer as a C string.
michael@0 1271
michael@0 1272 #if GTEST_HAS_GLOBAL_STRING
michael@0 1273 // char pointer vs ::string
michael@0 1274 TEST(FormatForComparisonFailureMessageTest, WorksForCharPointerVsString) {
michael@0 1275 const char* s = "hello \"world";
michael@0 1276 EXPECT_STREQ("\"hello \\\"world\"", // The string content should be escaped.
michael@0 1277 FormatForComparisonFailureMessage(s, ::string()).c_str());
michael@0 1278
michael@0 1279 // char*
michael@0 1280 char str[] = "hi\1";
michael@0 1281 char* p = str;
michael@0 1282 EXPECT_STREQ("\"hi\\x1\"", // The string content should be escaped.
michael@0 1283 FormatForComparisonFailureMessage(p, ::string()).c_str());
michael@0 1284 }
michael@0 1285 #endif
michael@0 1286
michael@0 1287 // char pointer vs std::string
michael@0 1288 TEST(FormatForComparisonFailureMessageTest, WorksForCharPointerVsStdString) {
michael@0 1289 const char* s = "hello \"world";
michael@0 1290 EXPECT_STREQ("\"hello \\\"world\"", // The string content should be escaped.
michael@0 1291 FormatForComparisonFailureMessage(s, ::std::string()).c_str());
michael@0 1292
michael@0 1293 // char*
michael@0 1294 char str[] = "hi\1";
michael@0 1295 char* p = str;
michael@0 1296 EXPECT_STREQ("\"hi\\x1\"", // The string content should be escaped.
michael@0 1297 FormatForComparisonFailureMessage(p, ::std::string()).c_str());
michael@0 1298 }
michael@0 1299
michael@0 1300 #if GTEST_HAS_GLOBAL_WSTRING
michael@0 1301 // wchar_t pointer vs ::wstring
michael@0 1302 TEST(FormatForComparisonFailureMessageTest, WorksForWCharPointerVsWString) {
michael@0 1303 const wchar_t* s = L"hi \"world";
michael@0 1304 EXPECT_STREQ("L\"hi \\\"world\"", // The string content should be escaped.
michael@0 1305 FormatForComparisonFailureMessage(s, ::wstring()).c_str());
michael@0 1306
michael@0 1307 // wchar_t*
michael@0 1308 wchar_t str[] = L"hi\1";
michael@0 1309 wchar_t* p = str;
michael@0 1310 EXPECT_STREQ("L\"hi\\x1\"", // The string content should be escaped.
michael@0 1311 FormatForComparisonFailureMessage(p, ::wstring()).c_str());
michael@0 1312 }
michael@0 1313 #endif
michael@0 1314
michael@0 1315 #if GTEST_HAS_STD_WSTRING
michael@0 1316 // wchar_t pointer vs std::wstring
michael@0 1317 TEST(FormatForComparisonFailureMessageTest, WorksForWCharPointerVsStdWString) {
michael@0 1318 const wchar_t* s = L"hi \"world";
michael@0 1319 EXPECT_STREQ("L\"hi \\\"world\"", // The string content should be escaped.
michael@0 1320 FormatForComparisonFailureMessage(s, ::std::wstring()).c_str());
michael@0 1321
michael@0 1322 // wchar_t*
michael@0 1323 wchar_t str[] = L"hi\1";
michael@0 1324 wchar_t* p = str;
michael@0 1325 EXPECT_STREQ("L\"hi\\x1\"", // The string content should be escaped.
michael@0 1326 FormatForComparisonFailureMessage(p, ::std::wstring()).c_str());
michael@0 1327 }
michael@0 1328 #endif
michael@0 1329
michael@0 1330 // Tests formatting a char array when it's compared with a pointer or array.
michael@0 1331 // In this case we want to print the array as a row pointer, as the comparison
michael@0 1332 // is by pointer.
michael@0 1333
michael@0 1334 // char array vs pointer
michael@0 1335 TEST(FormatForComparisonFailureMessageTest, WorksForCharArrayVsPointer) {
michael@0 1336 char str[] = "hi \"world\"";
michael@0 1337 char* p = NULL;
michael@0 1338 EXPECT_EQ(PrintPointer(str),
michael@0 1339 FormatForComparisonFailureMessage(str, p).c_str());
michael@0 1340 }
michael@0 1341
michael@0 1342 // char array vs char array
michael@0 1343 TEST(FormatForComparisonFailureMessageTest, WorksForCharArrayVsCharArray) {
michael@0 1344 const char str[] = "hi \"world\"";
michael@0 1345 EXPECT_EQ(PrintPointer(str),
michael@0 1346 FormatForComparisonFailureMessage(str, str).c_str());
michael@0 1347 }
michael@0 1348
michael@0 1349 // wchar_t array vs pointer
michael@0 1350 TEST(FormatForComparisonFailureMessageTest, WorksForWCharArrayVsPointer) {
michael@0 1351 wchar_t str[] = L"hi \"world\"";
michael@0 1352 wchar_t* p = NULL;
michael@0 1353 EXPECT_EQ(PrintPointer(str),
michael@0 1354 FormatForComparisonFailureMessage(str, p).c_str());
michael@0 1355 }
michael@0 1356
michael@0 1357 // wchar_t array vs wchar_t array
michael@0 1358 TEST(FormatForComparisonFailureMessageTest, WorksForWCharArrayVsWCharArray) {
michael@0 1359 const wchar_t str[] = L"hi \"world\"";
michael@0 1360 EXPECT_EQ(PrintPointer(str),
michael@0 1361 FormatForComparisonFailureMessage(str, str).c_str());
michael@0 1362 }
michael@0 1363
michael@0 1364 // Tests formatting a char array when it's compared with a string object.
michael@0 1365 // In this case we want to print the array as a C string.
michael@0 1366
michael@0 1367 #if GTEST_HAS_GLOBAL_STRING
michael@0 1368 // char array vs string
michael@0 1369 TEST(FormatForComparisonFailureMessageTest, WorksForCharArrayVsString) {
michael@0 1370 const char str[] = "hi \"w\0rld\"";
michael@0 1371 EXPECT_STREQ("\"hi \\\"w\"", // The content should be escaped.
michael@0 1372 // Embedded NUL terminates the string.
michael@0 1373 FormatForComparisonFailureMessage(str, ::string()).c_str());
michael@0 1374 }
michael@0 1375 #endif
michael@0 1376
michael@0 1377 // char array vs std::string
michael@0 1378 TEST(FormatForComparisonFailureMessageTest, WorksForCharArrayVsStdString) {
michael@0 1379 const char str[] = "hi \"world\"";
michael@0 1380 EXPECT_STREQ("\"hi \\\"world\\\"\"", // The content should be escaped.
michael@0 1381 FormatForComparisonFailureMessage(str, ::std::string()).c_str());
michael@0 1382 }
michael@0 1383
michael@0 1384 #if GTEST_HAS_GLOBAL_WSTRING
michael@0 1385 // wchar_t array vs wstring
michael@0 1386 TEST(FormatForComparisonFailureMessageTest, WorksForWCharArrayVsWString) {
michael@0 1387 const wchar_t str[] = L"hi \"world\"";
michael@0 1388 EXPECT_STREQ("L\"hi \\\"world\\\"\"", // The content should be escaped.
michael@0 1389 FormatForComparisonFailureMessage(str, ::wstring()).c_str());
michael@0 1390 }
michael@0 1391 #endif
michael@0 1392
michael@0 1393 #if GTEST_HAS_STD_WSTRING
michael@0 1394 // wchar_t array vs std::wstring
michael@0 1395 TEST(FormatForComparisonFailureMessageTest, WorksForWCharArrayVsStdWString) {
michael@0 1396 const wchar_t str[] = L"hi \"w\0rld\"";
michael@0 1397 EXPECT_STREQ(
michael@0 1398 "L\"hi \\\"w\"", // The content should be escaped.
michael@0 1399 // Embedded NUL terminates the string.
michael@0 1400 FormatForComparisonFailureMessage(str, ::std::wstring()).c_str());
michael@0 1401 }
michael@0 1402 #endif
michael@0 1403
michael@0 1404 // Useful for testing PrintToString(). We cannot use EXPECT_EQ()
michael@0 1405 // there as its implementation uses PrintToString(). The caller must
michael@0 1406 // ensure that 'value' has no side effect.
michael@0 1407 #define EXPECT_PRINT_TO_STRING_(value, expected_string) \
michael@0 1408 EXPECT_TRUE(PrintToString(value) == (expected_string)) \
michael@0 1409 << " where " #value " prints as " << (PrintToString(value))
michael@0 1410
michael@0 1411 TEST(PrintToStringTest, WorksForScalar) {
michael@0 1412 EXPECT_PRINT_TO_STRING_(123, "123");
michael@0 1413 }
michael@0 1414
michael@0 1415 TEST(PrintToStringTest, WorksForPointerToConstChar) {
michael@0 1416 const char* p = "hello";
michael@0 1417 EXPECT_PRINT_TO_STRING_(p, "\"hello\"");
michael@0 1418 }
michael@0 1419
michael@0 1420 TEST(PrintToStringTest, WorksForPointerToNonConstChar) {
michael@0 1421 char s[] = "hello";
michael@0 1422 char* p = s;
michael@0 1423 EXPECT_PRINT_TO_STRING_(p, "\"hello\"");
michael@0 1424 }
michael@0 1425
michael@0 1426 TEST(PrintToStringTest, EscapesForPointerToConstChar) {
michael@0 1427 const char* p = "hello\n";
michael@0 1428 EXPECT_PRINT_TO_STRING_(p, "\"hello\\n\"");
michael@0 1429 }
michael@0 1430
michael@0 1431 TEST(PrintToStringTest, EscapesForPointerToNonConstChar) {
michael@0 1432 char s[] = "hello\1";
michael@0 1433 char* p = s;
michael@0 1434 EXPECT_PRINT_TO_STRING_(p, "\"hello\\x1\"");
michael@0 1435 }
michael@0 1436
michael@0 1437 TEST(PrintToStringTest, WorksForArray) {
michael@0 1438 int n[3] = { 1, 2, 3 };
michael@0 1439 EXPECT_PRINT_TO_STRING_(n, "{ 1, 2, 3 }");
michael@0 1440 }
michael@0 1441
michael@0 1442 TEST(PrintToStringTest, WorksForCharArray) {
michael@0 1443 char s[] = "hello";
michael@0 1444 EXPECT_PRINT_TO_STRING_(s, "\"hello\"");
michael@0 1445 }
michael@0 1446
michael@0 1447 TEST(PrintToStringTest, WorksForCharArrayWithEmbeddedNul) {
michael@0 1448 const char str_with_nul[] = "hello\0 world";
michael@0 1449 EXPECT_PRINT_TO_STRING_(str_with_nul, "\"hello\\0 world\"");
michael@0 1450
michael@0 1451 char mutable_str_with_nul[] = "hello\0 world";
michael@0 1452 EXPECT_PRINT_TO_STRING_(mutable_str_with_nul, "\"hello\\0 world\"");
michael@0 1453 }
michael@0 1454
michael@0 1455 #undef EXPECT_PRINT_TO_STRING_
michael@0 1456
michael@0 1457 TEST(UniversalTersePrintTest, WorksForNonReference) {
michael@0 1458 ::std::stringstream ss;
michael@0 1459 UniversalTersePrint(123, &ss);
michael@0 1460 EXPECT_EQ("123", ss.str());
michael@0 1461 }
michael@0 1462
michael@0 1463 TEST(UniversalTersePrintTest, WorksForReference) {
michael@0 1464 const int& n = 123;
michael@0 1465 ::std::stringstream ss;
michael@0 1466 UniversalTersePrint(n, &ss);
michael@0 1467 EXPECT_EQ("123", ss.str());
michael@0 1468 }
michael@0 1469
michael@0 1470 TEST(UniversalTersePrintTest, WorksForCString) {
michael@0 1471 const char* s1 = "abc";
michael@0 1472 ::std::stringstream ss1;
michael@0 1473 UniversalTersePrint(s1, &ss1);
michael@0 1474 EXPECT_EQ("\"abc\"", ss1.str());
michael@0 1475
michael@0 1476 char* s2 = const_cast<char*>(s1);
michael@0 1477 ::std::stringstream ss2;
michael@0 1478 UniversalTersePrint(s2, &ss2);
michael@0 1479 EXPECT_EQ("\"abc\"", ss2.str());
michael@0 1480
michael@0 1481 const char* s3 = NULL;
michael@0 1482 ::std::stringstream ss3;
michael@0 1483 UniversalTersePrint(s3, &ss3);
michael@0 1484 EXPECT_EQ("NULL", ss3.str());
michael@0 1485 }
michael@0 1486
michael@0 1487 TEST(UniversalPrintTest, WorksForNonReference) {
michael@0 1488 ::std::stringstream ss;
michael@0 1489 UniversalPrint(123, &ss);
michael@0 1490 EXPECT_EQ("123", ss.str());
michael@0 1491 }
michael@0 1492
michael@0 1493 TEST(UniversalPrintTest, WorksForReference) {
michael@0 1494 const int& n = 123;
michael@0 1495 ::std::stringstream ss;
michael@0 1496 UniversalPrint(n, &ss);
michael@0 1497 EXPECT_EQ("123", ss.str());
michael@0 1498 }
michael@0 1499
michael@0 1500 TEST(UniversalPrintTest, WorksForCString) {
michael@0 1501 const char* s1 = "abc";
michael@0 1502 ::std::stringstream ss1;
michael@0 1503 UniversalPrint(s1, &ss1);
michael@0 1504 EXPECT_EQ(PrintPointer(s1) + " pointing to \"abc\"", string(ss1.str()));
michael@0 1505
michael@0 1506 char* s2 = const_cast<char*>(s1);
michael@0 1507 ::std::stringstream ss2;
michael@0 1508 UniversalPrint(s2, &ss2);
michael@0 1509 EXPECT_EQ(PrintPointer(s2) + " pointing to \"abc\"", string(ss2.str()));
michael@0 1510
michael@0 1511 const char* s3 = NULL;
michael@0 1512 ::std::stringstream ss3;
michael@0 1513 UniversalPrint(s3, &ss3);
michael@0 1514 EXPECT_EQ("NULL", ss3.str());
michael@0 1515 }
michael@0 1516
michael@0 1517 TEST(UniversalPrintTest, WorksForCharArray) {
michael@0 1518 const char str[] = "\"Line\0 1\"\nLine 2";
michael@0 1519 ::std::stringstream ss1;
michael@0 1520 UniversalPrint(str, &ss1);
michael@0 1521 EXPECT_EQ("\"\\\"Line\\0 1\\\"\\nLine 2\"", ss1.str());
michael@0 1522
michael@0 1523 const char mutable_str[] = "\"Line\0 1\"\nLine 2";
michael@0 1524 ::std::stringstream ss2;
michael@0 1525 UniversalPrint(mutable_str, &ss2);
michael@0 1526 EXPECT_EQ("\"\\\"Line\\0 1\\\"\\nLine 2\"", ss2.str());
michael@0 1527 }
michael@0 1528
michael@0 1529 #if GTEST_HAS_TR1_TUPLE
michael@0 1530
michael@0 1531 TEST(UniversalTersePrintTupleFieldsToStringsTest, PrintsEmptyTuple) {
michael@0 1532 Strings result = UniversalTersePrintTupleFieldsToStrings(make_tuple());
michael@0 1533 EXPECT_EQ(0u, result.size());
michael@0 1534 }
michael@0 1535
michael@0 1536 TEST(UniversalTersePrintTupleFieldsToStringsTest, PrintsOneTuple) {
michael@0 1537 Strings result = UniversalTersePrintTupleFieldsToStrings(make_tuple(1));
michael@0 1538 ASSERT_EQ(1u, result.size());
michael@0 1539 EXPECT_EQ("1", result[0]);
michael@0 1540 }
michael@0 1541
michael@0 1542 TEST(UniversalTersePrintTupleFieldsToStringsTest, PrintsTwoTuple) {
michael@0 1543 Strings result = UniversalTersePrintTupleFieldsToStrings(make_tuple(1, 'a'));
michael@0 1544 ASSERT_EQ(2u, result.size());
michael@0 1545 EXPECT_EQ("1", result[0]);
michael@0 1546 EXPECT_EQ("'a' (97, 0x61)", result[1]);
michael@0 1547 }
michael@0 1548
michael@0 1549 TEST(UniversalTersePrintTupleFieldsToStringsTest, PrintsTersely) {
michael@0 1550 const int n = 1;
michael@0 1551 Strings result = UniversalTersePrintTupleFieldsToStrings(
michael@0 1552 tuple<const int&, const char*>(n, "a"));
michael@0 1553 ASSERT_EQ(2u, result.size());
michael@0 1554 EXPECT_EQ("1", result[0]);
michael@0 1555 EXPECT_EQ("\"a\"", result[1]);
michael@0 1556 }
michael@0 1557
michael@0 1558 #endif // GTEST_HAS_TR1_TUPLE
michael@0 1559
michael@0 1560 } // namespace gtest_printers_test
michael@0 1561 } // namespace testing

mercurial