Wed, 31 Dec 2014 06:09:35 +0100
Cloned upstream origin tor-browser at tor-browser-31.3.0esr-4.5-1-build1
revision ID fc1c9ff7c1b2defdbc039f12214767608f46423f for hacking purpose.
michael@0 | 1 | /* |
michael@0 | 2 | ******************************************************************************* |
michael@0 | 3 | * |
michael@0 | 4 | * Copyright (C) 2003-2013, International Business Machines |
michael@0 | 5 | * Corporation and others. All Rights Reserved. |
michael@0 | 6 | * |
michael@0 | 7 | ******************************************************************************* |
michael@0 | 8 | * file name: gencnvex.c |
michael@0 | 9 | * encoding: US-ASCII |
michael@0 | 10 | * tab size: 8 (not used) |
michael@0 | 11 | * indentation:4 |
michael@0 | 12 | * |
michael@0 | 13 | * created on: 2003oct12 |
michael@0 | 14 | * created by: Markus W. Scherer |
michael@0 | 15 | */ |
michael@0 | 16 | |
michael@0 | 17 | #include <stdio.h> |
michael@0 | 18 | #include "unicode/utypes.h" |
michael@0 | 19 | #include "unicode/ustring.h" |
michael@0 | 20 | #include "cstring.h" |
michael@0 | 21 | #include "cmemory.h" |
michael@0 | 22 | #include "ucnv_cnv.h" |
michael@0 | 23 | #include "ucnvmbcs.h" |
michael@0 | 24 | #include "toolutil.h" |
michael@0 | 25 | #include "unewdata.h" |
michael@0 | 26 | #include "ucm.h" |
michael@0 | 27 | #include "makeconv.h" |
michael@0 | 28 | #include "genmbcs.h" |
michael@0 | 29 | |
michael@0 | 30 | #define LENGTHOF(array) (int32_t)(sizeof(array)/sizeof((array)[0])) |
michael@0 | 31 | |
michael@0 | 32 | |
michael@0 | 33 | static void |
michael@0 | 34 | CnvExtClose(NewConverter *cnvData); |
michael@0 | 35 | |
michael@0 | 36 | static UBool |
michael@0 | 37 | CnvExtIsValid(NewConverter *cnvData, |
michael@0 | 38 | const uint8_t *bytes, int32_t length); |
michael@0 | 39 | |
michael@0 | 40 | static UBool |
michael@0 | 41 | CnvExtAddTable(NewConverter *cnvData, UCMTable *table, UConverterStaticData *staticData); |
michael@0 | 42 | |
michael@0 | 43 | static uint32_t |
michael@0 | 44 | CnvExtWrite(NewConverter *cnvData, const UConverterStaticData *staticData, |
michael@0 | 45 | UNewDataMemory *pData, int32_t tableType); |
michael@0 | 46 | |
michael@0 | 47 | typedef struct CnvExtData { |
michael@0 | 48 | NewConverter newConverter; |
michael@0 | 49 | |
michael@0 | 50 | UCMFile *ucm; |
michael@0 | 51 | |
michael@0 | 52 | /* toUnicode (state table in ucm->states) */ |
michael@0 | 53 | UToolMemory *toUTable, *toUUChars; |
michael@0 | 54 | |
michael@0 | 55 | /* fromUnicode */ |
michael@0 | 56 | UToolMemory *fromUTableUChars, *fromUTableValues, *fromUBytes; |
michael@0 | 57 | |
michael@0 | 58 | uint16_t stage1[MBCS_STAGE_1_SIZE]; |
michael@0 | 59 | uint16_t stage2[MBCS_STAGE_2_SIZE]; |
michael@0 | 60 | uint16_t stage3[0x10000<<UCNV_EXT_STAGE_2_LEFT_SHIFT]; /* 0x10000 because of 16-bit stage 2/3 indexes */ |
michael@0 | 61 | uint32_t stage3b[0x10000]; |
michael@0 | 62 | |
michael@0 | 63 | int32_t stage1Top, stage2Top, stage3Top, stage3bTop; |
michael@0 | 64 | |
michael@0 | 65 | /* for stage3 compaction of <subchar1> |2 mappings */ |
michael@0 | 66 | uint16_t stage3Sub1Block; |
michael@0 | 67 | |
michael@0 | 68 | /* statistics */ |
michael@0 | 69 | int32_t |
michael@0 | 70 | maxInBytes, maxOutBytes, maxBytesPerUChar, |
michael@0 | 71 | maxInUChars, maxOutUChars, maxUCharsPerByte; |
michael@0 | 72 | } CnvExtData; |
michael@0 | 73 | |
michael@0 | 74 | NewConverter * |
michael@0 | 75 | CnvExtOpen(UCMFile *ucm) { |
michael@0 | 76 | CnvExtData *extData; |
michael@0 | 77 | |
michael@0 | 78 | extData=(CnvExtData *)uprv_malloc(sizeof(CnvExtData)); |
michael@0 | 79 | if(extData==NULL) { |
michael@0 | 80 | printf("out of memory\n"); |
michael@0 | 81 | exit(U_MEMORY_ALLOCATION_ERROR); |
michael@0 | 82 | } |
michael@0 | 83 | uprv_memset(extData, 0, sizeof(CnvExtData)); |
michael@0 | 84 | |
michael@0 | 85 | extData->ucm=ucm; /* aliased, not owned */ |
michael@0 | 86 | |
michael@0 | 87 | extData->newConverter.close=CnvExtClose; |
michael@0 | 88 | extData->newConverter.isValid=CnvExtIsValid; |
michael@0 | 89 | extData->newConverter.addTable=CnvExtAddTable; |
michael@0 | 90 | extData->newConverter.write=CnvExtWrite; |
michael@0 | 91 | return &extData->newConverter; |
michael@0 | 92 | } |
michael@0 | 93 | |
michael@0 | 94 | static void |
michael@0 | 95 | CnvExtClose(NewConverter *cnvData) { |
michael@0 | 96 | CnvExtData *extData=(CnvExtData *)cnvData; |
michael@0 | 97 | if(extData!=NULL) { |
michael@0 | 98 | utm_close(extData->toUTable); |
michael@0 | 99 | utm_close(extData->toUUChars); |
michael@0 | 100 | utm_close(extData->fromUTableUChars); |
michael@0 | 101 | utm_close(extData->fromUTableValues); |
michael@0 | 102 | utm_close(extData->fromUBytes); |
michael@0 | 103 | uprv_free(extData); |
michael@0 | 104 | } |
michael@0 | 105 | } |
michael@0 | 106 | |
michael@0 | 107 | /* we do not expect this to be called */ |
michael@0 | 108 | static UBool |
michael@0 | 109 | CnvExtIsValid(NewConverter *cnvData, |
michael@0 | 110 | const uint8_t *bytes, int32_t length) { |
michael@0 | 111 | return FALSE; |
michael@0 | 112 | } |
michael@0 | 113 | |
michael@0 | 114 | static uint32_t |
michael@0 | 115 | CnvExtWrite(NewConverter *cnvData, const UConverterStaticData *staticData, |
michael@0 | 116 | UNewDataMemory *pData, int32_t tableType) { |
michael@0 | 117 | CnvExtData *extData=(CnvExtData *)cnvData; |
michael@0 | 118 | int32_t length, top, headerSize; |
michael@0 | 119 | |
michael@0 | 120 | int32_t indexes[UCNV_EXT_INDEXES_MIN_LENGTH]={ 0 }; |
michael@0 | 121 | |
michael@0 | 122 | if(tableType&TABLE_BASE) { |
michael@0 | 123 | headerSize=0; |
michael@0 | 124 | } else { |
michael@0 | 125 | _MBCSHeader header={ { 0, 0, 0, 0 }, 0, 0, 0, 0, 0, 0, 0 }; |
michael@0 | 126 | |
michael@0 | 127 | /* write the header and base table name for an extension-only table */ |
michael@0 | 128 | length=(int32_t)uprv_strlen(extData->ucm->baseName)+1; |
michael@0 | 129 | while(length&3) { |
michael@0 | 130 | /* add padding */ |
michael@0 | 131 | extData->ucm->baseName[length++]=0; |
michael@0 | 132 | } |
michael@0 | 133 | |
michael@0 | 134 | headerSize=MBCS_HEADER_V4_LENGTH*4+length; |
michael@0 | 135 | |
michael@0 | 136 | /* fill the header */ |
michael@0 | 137 | header.version[0]=4; |
michael@0 | 138 | header.version[1]=2; |
michael@0 | 139 | header.flags=(uint32_t)((headerSize<<8)|MBCS_OUTPUT_EXT_ONLY); |
michael@0 | 140 | |
michael@0 | 141 | /* write the header and the base table name */ |
michael@0 | 142 | udata_writeBlock(pData, &header, MBCS_HEADER_V4_LENGTH*4); |
michael@0 | 143 | udata_writeBlock(pData, extData->ucm->baseName, length); |
michael@0 | 144 | } |
michael@0 | 145 | |
michael@0 | 146 | /* fill indexes[] - offsets/indexes are in units of the target array */ |
michael@0 | 147 | top=0; |
michael@0 | 148 | |
michael@0 | 149 | indexes[UCNV_EXT_INDEXES_LENGTH]=length=UCNV_EXT_INDEXES_MIN_LENGTH; |
michael@0 | 150 | top+=length*4; |
michael@0 | 151 | |
michael@0 | 152 | indexes[UCNV_EXT_TO_U_INDEX]=top; |
michael@0 | 153 | indexes[UCNV_EXT_TO_U_LENGTH]=length=utm_countItems(extData->toUTable); |
michael@0 | 154 | top+=length*4; |
michael@0 | 155 | |
michael@0 | 156 | indexes[UCNV_EXT_TO_U_UCHARS_INDEX]=top; |
michael@0 | 157 | indexes[UCNV_EXT_TO_U_UCHARS_LENGTH]=length=utm_countItems(extData->toUUChars); |
michael@0 | 158 | top+=length*2; |
michael@0 | 159 | |
michael@0 | 160 | indexes[UCNV_EXT_FROM_U_UCHARS_INDEX]=top; |
michael@0 | 161 | length=utm_countItems(extData->fromUTableUChars); |
michael@0 | 162 | top+=length*2; |
michael@0 | 163 | |
michael@0 | 164 | if(top&3) { |
michael@0 | 165 | /* add padding */ |
michael@0 | 166 | *((UChar *)utm_alloc(extData->fromUTableUChars))=0; |
michael@0 | 167 | *((uint32_t *)utm_alloc(extData->fromUTableValues))=0; |
michael@0 | 168 | ++length; |
michael@0 | 169 | top+=2; |
michael@0 | 170 | } |
michael@0 | 171 | indexes[UCNV_EXT_FROM_U_LENGTH]=length; |
michael@0 | 172 | |
michael@0 | 173 | indexes[UCNV_EXT_FROM_U_VALUES_INDEX]=top; |
michael@0 | 174 | top+=length*4; |
michael@0 | 175 | |
michael@0 | 176 | indexes[UCNV_EXT_FROM_U_BYTES_INDEX]=top; |
michael@0 | 177 | length=utm_countItems(extData->fromUBytes); |
michael@0 | 178 | top+=length; |
michael@0 | 179 | |
michael@0 | 180 | if(top&1) { |
michael@0 | 181 | /* add padding */ |
michael@0 | 182 | *((uint8_t *)utm_alloc(extData->fromUBytes))=0; |
michael@0 | 183 | ++length; |
michael@0 | 184 | ++top; |
michael@0 | 185 | } |
michael@0 | 186 | indexes[UCNV_EXT_FROM_U_BYTES_LENGTH]=length; |
michael@0 | 187 | |
michael@0 | 188 | indexes[UCNV_EXT_FROM_U_STAGE_12_INDEX]=top; |
michael@0 | 189 | indexes[UCNV_EXT_FROM_U_STAGE_1_LENGTH]=length=extData->stage1Top; |
michael@0 | 190 | indexes[UCNV_EXT_FROM_U_STAGE_12_LENGTH]=length+=extData->stage2Top; |
michael@0 | 191 | top+=length*2; |
michael@0 | 192 | |
michael@0 | 193 | indexes[UCNV_EXT_FROM_U_STAGE_3_INDEX]=top; |
michael@0 | 194 | length=extData->stage3Top; |
michael@0 | 195 | top+=length*2; |
michael@0 | 196 | |
michael@0 | 197 | if(top&3) { |
michael@0 | 198 | /* add padding */ |
michael@0 | 199 | extData->stage3[extData->stage3Top++]=0; |
michael@0 | 200 | ++length; |
michael@0 | 201 | top+=2; |
michael@0 | 202 | } |
michael@0 | 203 | indexes[UCNV_EXT_FROM_U_STAGE_3_LENGTH]=length; |
michael@0 | 204 | |
michael@0 | 205 | indexes[UCNV_EXT_FROM_U_STAGE_3B_INDEX]=top; |
michael@0 | 206 | indexes[UCNV_EXT_FROM_U_STAGE_3B_LENGTH]=length=extData->stage3bTop; |
michael@0 | 207 | top+=length*4; |
michael@0 | 208 | |
michael@0 | 209 | indexes[UCNV_EXT_SIZE]=top; |
michael@0 | 210 | |
michael@0 | 211 | /* statistics */ |
michael@0 | 212 | indexes[UCNV_EXT_COUNT_BYTES]= |
michael@0 | 213 | (extData->maxInBytes<<16)| |
michael@0 | 214 | (extData->maxOutBytes<<8)| |
michael@0 | 215 | extData->maxBytesPerUChar; |
michael@0 | 216 | indexes[UCNV_EXT_COUNT_UCHARS]= |
michael@0 | 217 | (extData->maxInUChars<<16)| |
michael@0 | 218 | (extData->maxOutUChars<<8)| |
michael@0 | 219 | extData->maxUCharsPerByte; |
michael@0 | 220 | |
michael@0 | 221 | indexes[UCNV_EXT_FLAGS]=extData->ucm->ext->unicodeMask; |
michael@0 | 222 | |
michael@0 | 223 | /* write the extension data */ |
michael@0 | 224 | udata_writeBlock(pData, indexes, sizeof(indexes)); |
michael@0 | 225 | udata_writeBlock(pData, utm_getStart(extData->toUTable), indexes[UCNV_EXT_TO_U_LENGTH]*4); |
michael@0 | 226 | udata_writeBlock(pData, utm_getStart(extData->toUUChars), indexes[UCNV_EXT_TO_U_UCHARS_LENGTH]*2); |
michael@0 | 227 | |
michael@0 | 228 | udata_writeBlock(pData, utm_getStart(extData->fromUTableUChars), indexes[UCNV_EXT_FROM_U_LENGTH]*2); |
michael@0 | 229 | udata_writeBlock(pData, utm_getStart(extData->fromUTableValues), indexes[UCNV_EXT_FROM_U_LENGTH]*4); |
michael@0 | 230 | udata_writeBlock(pData, utm_getStart(extData->fromUBytes), indexes[UCNV_EXT_FROM_U_BYTES_LENGTH]); |
michael@0 | 231 | |
michael@0 | 232 | udata_writeBlock(pData, extData->stage1, extData->stage1Top*2); |
michael@0 | 233 | udata_writeBlock(pData, extData->stage2, extData->stage2Top*2); |
michael@0 | 234 | udata_writeBlock(pData, extData->stage3, extData->stage3Top*2); |
michael@0 | 235 | udata_writeBlock(pData, extData->stage3b, extData->stage3bTop*4); |
michael@0 | 236 | |
michael@0 | 237 | #if 0 |
michael@0 | 238 | { |
michael@0 | 239 | int32_t i, j; |
michael@0 | 240 | |
michael@0 | 241 | length=extData->stage1Top; |
michael@0 | 242 | printf("\nstage1[%x]:\n", length); |
michael@0 | 243 | |
michael@0 | 244 | for(i=0; i<length; ++i) { |
michael@0 | 245 | if(extData->stage1[i]!=length) { |
michael@0 | 246 | printf("stage1[%04x]=%04x\n", i, extData->stage1[i]); |
michael@0 | 247 | } |
michael@0 | 248 | } |
michael@0 | 249 | |
michael@0 | 250 | j=length; |
michael@0 | 251 | length=extData->stage2Top; |
michael@0 | 252 | printf("\nstage2[%x]:\n", length); |
michael@0 | 253 | |
michael@0 | 254 | for(i=0; i<length; ++j, ++i) { |
michael@0 | 255 | if(extData->stage2[i]!=0) { |
michael@0 | 256 | printf("stage12[%04x]=%04x\n", j, extData->stage2[i]); |
michael@0 | 257 | } |
michael@0 | 258 | } |
michael@0 | 259 | |
michael@0 | 260 | length=extData->stage3Top; |
michael@0 | 261 | printf("\nstage3[%x]:\n", length); |
michael@0 | 262 | |
michael@0 | 263 | for(i=0; i<length; ++i) { |
michael@0 | 264 | if(extData->stage3[i]!=0) { |
michael@0 | 265 | printf("stage3[%04x]=%04x\n", i, extData->stage3[i]); |
michael@0 | 266 | } |
michael@0 | 267 | } |
michael@0 | 268 | |
michael@0 | 269 | length=extData->stage3bTop; |
michael@0 | 270 | printf("\nstage3b[%x]:\n", length); |
michael@0 | 271 | |
michael@0 | 272 | for(i=0; i<length; ++i) { |
michael@0 | 273 | if(extData->stage3b[i]!=0) { |
michael@0 | 274 | printf("stage3b[%04x]=%08x\n", i, extData->stage3b[i]); |
michael@0 | 275 | } |
michael@0 | 276 | } |
michael@0 | 277 | } |
michael@0 | 278 | #endif |
michael@0 | 279 | |
michael@0 | 280 | if(VERBOSE) { |
michael@0 | 281 | printf("size of extension data: %ld\n", (long)top); |
michael@0 | 282 | } |
michael@0 | 283 | |
michael@0 | 284 | /* return the number of bytes that should have been written */ |
michael@0 | 285 | return (uint32_t)(headerSize+top); |
michael@0 | 286 | } |
michael@0 | 287 | |
michael@0 | 288 | /* to Unicode --------------------------------------------------------------- */ |
michael@0 | 289 | |
michael@0 | 290 | /* |
michael@0 | 291 | * Remove fromUnicode fallbacks and SUB mappings which are irrelevant for |
michael@0 | 292 | * the toUnicode table. |
michael@0 | 293 | * This includes mappings with MBCS_FROM_U_EXT_FLAG which were suitable |
michael@0 | 294 | * for the base toUnicode table but not for the base fromUnicode table. |
michael@0 | 295 | * The table must be sorted. |
michael@0 | 296 | * Modifies previous data in the reverseMap. |
michael@0 | 297 | */ |
michael@0 | 298 | static int32_t |
michael@0 | 299 | reduceToUMappings(UCMTable *table) { |
michael@0 | 300 | UCMapping *mappings; |
michael@0 | 301 | int32_t *map; |
michael@0 | 302 | int32_t i, j, count; |
michael@0 | 303 | int8_t flag; |
michael@0 | 304 | |
michael@0 | 305 | mappings=table->mappings; |
michael@0 | 306 | map=table->reverseMap; |
michael@0 | 307 | count=table->mappingsLength; |
michael@0 | 308 | |
michael@0 | 309 | /* leave the map alone for the initial mappings with desired flags */ |
michael@0 | 310 | for(i=j=0; i<count; ++i) { |
michael@0 | 311 | flag=mappings[map[i]].f; |
michael@0 | 312 | if(flag!=0 && flag!=3) { |
michael@0 | 313 | break; |
michael@0 | 314 | } |
michael@0 | 315 | } |
michael@0 | 316 | |
michael@0 | 317 | /* reduce from here to the rest */ |
michael@0 | 318 | for(j=i; i<count; ++i) { |
michael@0 | 319 | flag=mappings[map[i]].f; |
michael@0 | 320 | if(flag==0 || flag==3) { |
michael@0 | 321 | map[j++]=map[i]; |
michael@0 | 322 | } |
michael@0 | 323 | } |
michael@0 | 324 | |
michael@0 | 325 | return j; |
michael@0 | 326 | } |
michael@0 | 327 | |
michael@0 | 328 | static uint32_t |
michael@0 | 329 | getToUnicodeValue(CnvExtData *extData, UCMTable *table, UCMapping *m) { |
michael@0 | 330 | UChar32 *u32; |
michael@0 | 331 | UChar *u; |
michael@0 | 332 | uint32_t value; |
michael@0 | 333 | int32_t u16Length, ratio; |
michael@0 | 334 | UErrorCode errorCode; |
michael@0 | 335 | |
michael@0 | 336 | /* write the Unicode result code point or string index */ |
michael@0 | 337 | if(m->uLen==1) { |
michael@0 | 338 | u16Length=U16_LENGTH(m->u); |
michael@0 | 339 | value=(uint32_t)(UCNV_EXT_TO_U_MIN_CODE_POINT+m->u); |
michael@0 | 340 | } else { |
michael@0 | 341 | /* the parser enforces m->uLen<=UCNV_EXT_MAX_UCHARS */ |
michael@0 | 342 | |
michael@0 | 343 | /* get the result code point string and its 16-bit string length */ |
michael@0 | 344 | u32=UCM_GET_CODE_POINTS(table, m); |
michael@0 | 345 | errorCode=U_ZERO_ERROR; |
michael@0 | 346 | u_strFromUTF32(NULL, 0, &u16Length, u32, m->uLen, &errorCode); |
michael@0 | 347 | if(U_FAILURE(errorCode) && errorCode!=U_BUFFER_OVERFLOW_ERROR) { |
michael@0 | 348 | exit(errorCode); |
michael@0 | 349 | } |
michael@0 | 350 | |
michael@0 | 351 | /* allocate it and put its length and index into the value */ |
michael@0 | 352 | value= |
michael@0 | 353 | (((uint32_t)u16Length+UCNV_EXT_TO_U_LENGTH_OFFSET)<<UCNV_EXT_TO_U_LENGTH_SHIFT)| |
michael@0 | 354 | ((uint32_t)utm_countItems(extData->toUUChars)); |
michael@0 | 355 | u=utm_allocN(extData->toUUChars, u16Length); |
michael@0 | 356 | |
michael@0 | 357 | /* write the result 16-bit string */ |
michael@0 | 358 | errorCode=U_ZERO_ERROR; |
michael@0 | 359 | u_strFromUTF32(u, u16Length, NULL, u32, m->uLen, &errorCode); |
michael@0 | 360 | if(U_FAILURE(errorCode) && errorCode!=U_BUFFER_OVERFLOW_ERROR) { |
michael@0 | 361 | exit(errorCode); |
michael@0 | 362 | } |
michael@0 | 363 | } |
michael@0 | 364 | if(m->f==0) { |
michael@0 | 365 | value|=UCNV_EXT_TO_U_ROUNDTRIP_FLAG; |
michael@0 | 366 | } |
michael@0 | 367 | |
michael@0 | 368 | /* update statistics */ |
michael@0 | 369 | if(m->bLen>extData->maxInBytes) { |
michael@0 | 370 | extData->maxInBytes=m->bLen; |
michael@0 | 371 | } |
michael@0 | 372 | if(u16Length>extData->maxOutUChars) { |
michael@0 | 373 | extData->maxOutUChars=u16Length; |
michael@0 | 374 | } |
michael@0 | 375 | |
michael@0 | 376 | ratio=(u16Length+(m->bLen-1))/m->bLen; |
michael@0 | 377 | if(ratio>extData->maxUCharsPerByte) { |
michael@0 | 378 | extData->maxUCharsPerByte=ratio; |
michael@0 | 379 | } |
michael@0 | 380 | |
michael@0 | 381 | return value; |
michael@0 | 382 | } |
michael@0 | 383 | |
michael@0 | 384 | /* |
michael@0 | 385 | * Recursive toUTable generator core function. |
michael@0 | 386 | * Preconditions: |
michael@0 | 387 | * - start<limit (There is at least one mapping.) |
michael@0 | 388 | * - The mappings are sorted lexically. (Access is through the reverseMap.) |
michael@0 | 389 | * - All mappings between start and limit have input sequences that share |
michael@0 | 390 | * the same prefix of unitIndex length, and therefore all of these sequences |
michael@0 | 391 | * are at least unitIndex+1 long. |
michael@0 | 392 | * - There are only relevant mappings available through the reverseMap, |
michael@0 | 393 | * see reduceToUMappings(). |
michael@0 | 394 | * |
michael@0 | 395 | * One function invocation generates one section table. |
michael@0 | 396 | * |
michael@0 | 397 | * Steps: |
michael@0 | 398 | * 1. Count the number of unique unit values and get the low/high unit values |
michael@0 | 399 | * that occur at unitIndex. |
michael@0 | 400 | * 2. Allocate the section table with possible optimization for linear access. |
michael@0 | 401 | * 3. Write temporary version of the section table with start indexes of |
michael@0 | 402 | * subsections, each corresponding to one unit value at unitIndex. |
michael@0 | 403 | * 4. Iterate through the table once more, and depending on the subsection length: |
michael@0 | 404 | * 0: write 0 as a result value (unused byte in linear-access section table) |
michael@0 | 405 | * >0: if there is one mapping with an input unit sequence of unitIndex+1 |
michael@0 | 406 | * then defaultValue=compute the mapping result for this whole sequence |
michael@0 | 407 | * else defaultValue=0 |
michael@0 | 408 | * |
michael@0 | 409 | * recurse into the subsection |
michael@0 | 410 | */ |
michael@0 | 411 | static UBool |
michael@0 | 412 | generateToUTable(CnvExtData *extData, UCMTable *table, |
michael@0 | 413 | int32_t start, int32_t limit, int32_t unitIndex, |
michael@0 | 414 | uint32_t defaultValue) { |
michael@0 | 415 | UCMapping *mappings, *m; |
michael@0 | 416 | int32_t *map; |
michael@0 | 417 | int32_t i, j, uniqueCount, count, subStart, subLimit; |
michael@0 | 418 | |
michael@0 | 419 | uint8_t *bytes; |
michael@0 | 420 | int32_t low, high, prev; |
michael@0 | 421 | |
michael@0 | 422 | uint32_t *section; |
michael@0 | 423 | |
michael@0 | 424 | mappings=table->mappings; |
michael@0 | 425 | map=table->reverseMap; |
michael@0 | 426 | |
michael@0 | 427 | /* step 1: examine the input units; set low, high, uniqueCount */ |
michael@0 | 428 | m=mappings+map[start]; |
michael@0 | 429 | bytes=UCM_GET_BYTES(table, m); |
michael@0 | 430 | low=bytes[unitIndex]; |
michael@0 | 431 | uniqueCount=1; |
michael@0 | 432 | |
michael@0 | 433 | prev=high=low; |
michael@0 | 434 | for(i=start+1; i<limit; ++i) { |
michael@0 | 435 | m=mappings+map[i]; |
michael@0 | 436 | bytes=UCM_GET_BYTES(table, m); |
michael@0 | 437 | high=bytes[unitIndex]; |
michael@0 | 438 | |
michael@0 | 439 | if(high!=prev) { |
michael@0 | 440 | prev=high; |
michael@0 | 441 | ++uniqueCount; |
michael@0 | 442 | } |
michael@0 | 443 | } |
michael@0 | 444 | |
michael@0 | 445 | /* step 2: allocate the section; set count, section */ |
michael@0 | 446 | count=(high-low)+1; |
michael@0 | 447 | if(count<0x100 && (unitIndex==0 || uniqueCount>=(3*count)/4)) { |
michael@0 | 448 | /* |
michael@0 | 449 | * for the root table and for fairly full tables: |
michael@0 | 450 | * allocate for direct, linear array access |
michael@0 | 451 | * by keeping count, to write an entry for each unit value |
michael@0 | 452 | * from low to high |
michael@0 | 453 | * exception: use a compact table if count==0x100 because |
michael@0 | 454 | * that cannot be encoded in the length byte |
michael@0 | 455 | */ |
michael@0 | 456 | } else { |
michael@0 | 457 | count=uniqueCount; |
michael@0 | 458 | } |
michael@0 | 459 | |
michael@0 | 460 | if(count>=0x100) { |
michael@0 | 461 | fprintf(stderr, "error: toUnicode extension table section overflow: %ld section entries\n", (long)count); |
michael@0 | 462 | return FALSE; |
michael@0 | 463 | } |
michael@0 | 464 | |
michael@0 | 465 | /* allocate the section: 1 entry for the header + count for the items */ |
michael@0 | 466 | section=(uint32_t *)utm_allocN(extData->toUTable, 1+count); |
michael@0 | 467 | |
michael@0 | 468 | /* write the section header */ |
michael@0 | 469 | *section++=((uint32_t)count<<UCNV_EXT_TO_U_BYTE_SHIFT)|defaultValue; |
michael@0 | 470 | |
michael@0 | 471 | /* step 3: write temporary section table with subsection starts */ |
michael@0 | 472 | prev=low-1; /* just before low to prevent empty subsections before low */ |
michael@0 | 473 | j=0; /* section table index */ |
michael@0 | 474 | for(i=start; i<limit; ++i) { |
michael@0 | 475 | m=mappings+map[i]; |
michael@0 | 476 | bytes=UCM_GET_BYTES(table, m); |
michael@0 | 477 | high=bytes[unitIndex]; |
michael@0 | 478 | |
michael@0 | 479 | if(high!=prev) { |
michael@0 | 480 | /* start of a new subsection for unit high */ |
michael@0 | 481 | if(count>uniqueCount) { |
michael@0 | 482 | /* write empty subsections for unused units in a linear table */ |
michael@0 | 483 | while(++prev<high) { |
michael@0 | 484 | section[j++]=((uint32_t)prev<<UCNV_EXT_TO_U_BYTE_SHIFT)|(uint32_t)i; |
michael@0 | 485 | } |
michael@0 | 486 | } else { |
michael@0 | 487 | prev=high; |
michael@0 | 488 | } |
michael@0 | 489 | |
michael@0 | 490 | /* write the entry with the subsection start */ |
michael@0 | 491 | section[j++]=((uint32_t)high<<UCNV_EXT_TO_U_BYTE_SHIFT)|(uint32_t)i; |
michael@0 | 492 | } |
michael@0 | 493 | } |
michael@0 | 494 | /* assert(j==count) */ |
michael@0 | 495 | |
michael@0 | 496 | /* step 4: recurse and write results */ |
michael@0 | 497 | subLimit=UCNV_EXT_TO_U_GET_VALUE(section[0]); |
michael@0 | 498 | for(j=0; j<count; ++j) { |
michael@0 | 499 | subStart=subLimit; |
michael@0 | 500 | subLimit= (j+1)<count ? UCNV_EXT_TO_U_GET_VALUE(section[j+1]) : limit; |
michael@0 | 501 | |
michael@0 | 502 | /* remove the subStart temporary value */ |
michael@0 | 503 | section[j]&=~UCNV_EXT_TO_U_VALUE_MASK; |
michael@0 | 504 | |
michael@0 | 505 | if(subStart==subLimit) { |
michael@0 | 506 | /* leave the value zero: empty subsection for unused unit in a linear table */ |
michael@0 | 507 | continue; |
michael@0 | 508 | } |
michael@0 | 509 | |
michael@0 | 510 | /* see if there is exactly one input unit sequence of length unitIndex+1 */ |
michael@0 | 511 | defaultValue=0; |
michael@0 | 512 | m=mappings+map[subStart]; |
michael@0 | 513 | if(m->bLen==unitIndex+1) { |
michael@0 | 514 | /* do not include this in generateToUTable() */ |
michael@0 | 515 | ++subStart; |
michael@0 | 516 | |
michael@0 | 517 | if(subStart<subLimit && mappings[map[subStart]].bLen==unitIndex+1) { |
michael@0 | 518 | /* print error for multiple same-input-sequence mappings */ |
michael@0 | 519 | fprintf(stderr, "error: multiple mappings from same bytes\n"); |
michael@0 | 520 | ucm_printMapping(table, m, stderr); |
michael@0 | 521 | ucm_printMapping(table, mappings+map[subStart], stderr); |
michael@0 | 522 | return FALSE; |
michael@0 | 523 | } |
michael@0 | 524 | |
michael@0 | 525 | defaultValue=getToUnicodeValue(extData, table, m); |
michael@0 | 526 | } |
michael@0 | 527 | |
michael@0 | 528 | if(subStart==subLimit) { |
michael@0 | 529 | /* write the result for the input sequence ending here */ |
michael@0 | 530 | section[j]|=defaultValue; |
michael@0 | 531 | } else { |
michael@0 | 532 | /* write the index to the subsection table */ |
michael@0 | 533 | section[j]|=(uint32_t)utm_countItems(extData->toUTable); |
michael@0 | 534 | |
michael@0 | 535 | /* recurse */ |
michael@0 | 536 | if(!generateToUTable(extData, table, subStart, subLimit, unitIndex+1, defaultValue)) { |
michael@0 | 537 | return FALSE; |
michael@0 | 538 | } |
michael@0 | 539 | } |
michael@0 | 540 | } |
michael@0 | 541 | return TRUE; |
michael@0 | 542 | } |
michael@0 | 543 | |
michael@0 | 544 | /* |
michael@0 | 545 | * Generate the toUTable and toUUChars from the input table. |
michael@0 | 546 | * The input table must be sorted, and all precision flags must be 0..3. |
michael@0 | 547 | * This function will modify the table's reverseMap. |
michael@0 | 548 | */ |
michael@0 | 549 | static UBool |
michael@0 | 550 | makeToUTable(CnvExtData *extData, UCMTable *table) { |
michael@0 | 551 | int32_t toUCount; |
michael@0 | 552 | |
michael@0 | 553 | toUCount=reduceToUMappings(table); |
michael@0 | 554 | |
michael@0 | 555 | extData->toUTable=utm_open("cnv extension toUTable", 0x10000, UCNV_EXT_TO_U_MIN_CODE_POINT, 4); |
michael@0 | 556 | extData->toUUChars=utm_open("cnv extension toUUChars", 0x10000, UCNV_EXT_TO_U_INDEX_MASK+1, 2); |
michael@0 | 557 | |
michael@0 | 558 | return generateToUTable(extData, table, 0, toUCount, 0, 0); |
michael@0 | 559 | } |
michael@0 | 560 | |
michael@0 | 561 | /* from Unicode ------------------------------------------------------------- */ |
michael@0 | 562 | |
michael@0 | 563 | /* |
michael@0 | 564 | * preprocessing: |
michael@0 | 565 | * rebuild reverseMap with mapping indexes for mappings relevant for from Unicode |
michael@0 | 566 | * change each Unicode string to encode all but the first code point in 16-bit form |
michael@0 | 567 | * |
michael@0 | 568 | * generation: |
michael@0 | 569 | * for each unique code point |
michael@0 | 570 | * write an entry in the 3-stage trie |
michael@0 | 571 | * check that there is only one single-code point sequence |
michael@0 | 572 | * start recursion for following 16-bit input units |
michael@0 | 573 | */ |
michael@0 | 574 | |
michael@0 | 575 | /* |
michael@0 | 576 | * Remove toUnicode fallbacks and non-<subchar1> SUB mappings |
michael@0 | 577 | * which are irrelevant for the fromUnicode extension table. |
michael@0 | 578 | * Remove MBCS_FROM_U_EXT_FLAG bits. |
michael@0 | 579 | * Overwrite the reverseMap with an index array to the relevant mappings. |
michael@0 | 580 | * Modify the code point sequences to a generator-friendly format where |
michael@0 | 581 | * the first code points remains unchanged but the following are recoded |
michael@0 | 582 | * into 16-bit Unicode string form. |
michael@0 | 583 | * The table must be sorted. |
michael@0 | 584 | * Destroys previous data in the reverseMap. |
michael@0 | 585 | */ |
michael@0 | 586 | static int32_t |
michael@0 | 587 | prepareFromUMappings(UCMTable *table) { |
michael@0 | 588 | UCMapping *mappings, *m; |
michael@0 | 589 | int32_t *map; |
michael@0 | 590 | int32_t i, j, count; |
michael@0 | 591 | int8_t flag; |
michael@0 | 592 | |
michael@0 | 593 | mappings=table->mappings; |
michael@0 | 594 | map=table->reverseMap; |
michael@0 | 595 | count=table->mappingsLength; |
michael@0 | 596 | |
michael@0 | 597 | /* |
michael@0 | 598 | * we do not go through the map on input because the mappings are |
michael@0 | 599 | * sorted lexically |
michael@0 | 600 | */ |
michael@0 | 601 | m=mappings; |
michael@0 | 602 | |
michael@0 | 603 | for(i=j=0; i<count; ++m, ++i) { |
michael@0 | 604 | flag=m->f; |
michael@0 | 605 | if(flag>=0) { |
michael@0 | 606 | flag&=MBCS_FROM_U_EXT_MASK; |
michael@0 | 607 | m->f=flag; |
michael@0 | 608 | } |
michael@0 | 609 | if(flag==0 || flag==1 || (flag==2 && m->bLen==1) || flag==4) { |
michael@0 | 610 | map[j++]=i; |
michael@0 | 611 | |
michael@0 | 612 | if(m->uLen>1) { |
michael@0 | 613 | /* recode all but the first code point to 16-bit Unicode */ |
michael@0 | 614 | UChar32 *u32; |
michael@0 | 615 | UChar *u; |
michael@0 | 616 | UChar32 c; |
michael@0 | 617 | int32_t q, r; |
michael@0 | 618 | |
michael@0 | 619 | u32=UCM_GET_CODE_POINTS(table, m); |
michael@0 | 620 | u=(UChar *)u32; /* destructive in-place recoding */ |
michael@0 | 621 | for(r=2, q=1; q<m->uLen; ++q) { |
michael@0 | 622 | c=u32[q]; |
michael@0 | 623 | U16_APPEND_UNSAFE(u, r, c); |
michael@0 | 624 | } |
michael@0 | 625 | |
michael@0 | 626 | /* counts the first code point always at 2 - the first 16-bit unit is at 16-bit index 2 */ |
michael@0 | 627 | m->uLen=(int8_t)r; |
michael@0 | 628 | } |
michael@0 | 629 | } |
michael@0 | 630 | } |
michael@0 | 631 | |
michael@0 | 632 | return j; |
michael@0 | 633 | } |
michael@0 | 634 | |
michael@0 | 635 | static uint32_t |
michael@0 | 636 | getFromUBytesValue(CnvExtData *extData, UCMTable *table, UCMapping *m) { |
michael@0 | 637 | uint8_t *bytes, *resultBytes; |
michael@0 | 638 | uint32_t value; |
michael@0 | 639 | int32_t u16Length, ratio; |
michael@0 | 640 | |
michael@0 | 641 | if(m->f==2) { |
michael@0 | 642 | /* |
michael@0 | 643 | * no mapping, <subchar1> preferred |
michael@0 | 644 | * |
michael@0 | 645 | * no need to count in statistics because the subchars are already |
michael@0 | 646 | * counted for maxOutBytes and maxBytesPerUChar in UConverterStaticData, |
michael@0 | 647 | * and this non-mapping does not count for maxInUChars which are always |
michael@0 | 648 | * trivially at least two if counting unmappable supplementary code points |
michael@0 | 649 | */ |
michael@0 | 650 | return UCNV_EXT_FROM_U_SUBCHAR1; |
michael@0 | 651 | } |
michael@0 | 652 | |
michael@0 | 653 | bytes=UCM_GET_BYTES(table, m); |
michael@0 | 654 | value=0; |
michael@0 | 655 | switch(m->bLen) { |
michael@0 | 656 | /* 1..3: store the bytes in the value word */ |
michael@0 | 657 | case 3: |
michael@0 | 658 | value=((uint32_t)*bytes++)<<16; |
michael@0 | 659 | case 2: |
michael@0 | 660 | value|=((uint32_t)*bytes++)<<8; |
michael@0 | 661 | case 1: |
michael@0 | 662 | value|=*bytes; |
michael@0 | 663 | break; |
michael@0 | 664 | default: |
michael@0 | 665 | /* the parser enforces m->bLen<=UCNV_EXT_MAX_BYTES */ |
michael@0 | 666 | /* store the bytes in fromUBytes[] and the index in the value word */ |
michael@0 | 667 | value=(uint32_t)utm_countItems(extData->fromUBytes); |
michael@0 | 668 | resultBytes=utm_allocN(extData->fromUBytes, m->bLen); |
michael@0 | 669 | uprv_memcpy(resultBytes, bytes, m->bLen); |
michael@0 | 670 | break; |
michael@0 | 671 | } |
michael@0 | 672 | value|=(uint32_t)m->bLen<<UCNV_EXT_FROM_U_LENGTH_SHIFT; |
michael@0 | 673 | if(m->f==0) { |
michael@0 | 674 | value|=UCNV_EXT_FROM_U_ROUNDTRIP_FLAG; |
michael@0 | 675 | } else if(m->f==4) { |
michael@0 | 676 | value|=UCNV_EXT_FROM_U_GOOD_ONE_WAY_FLAG; |
michael@0 | 677 | } |
michael@0 | 678 | |
michael@0 | 679 | /* calculate the real UTF-16 length (see recoding in prepareFromUMappings()) */ |
michael@0 | 680 | if(m->uLen==1) { |
michael@0 | 681 | u16Length=U16_LENGTH(m->u); |
michael@0 | 682 | } else { |
michael@0 | 683 | u16Length=U16_LENGTH(UCM_GET_CODE_POINTS(table, m)[0])+(m->uLen-2); |
michael@0 | 684 | } |
michael@0 | 685 | |
michael@0 | 686 | /* update statistics */ |
michael@0 | 687 | if(u16Length>extData->maxInUChars) { |
michael@0 | 688 | extData->maxInUChars=u16Length; |
michael@0 | 689 | } |
michael@0 | 690 | if(m->bLen>extData->maxOutBytes) { |
michael@0 | 691 | extData->maxOutBytes=m->bLen; |
michael@0 | 692 | } |
michael@0 | 693 | |
michael@0 | 694 | ratio=(m->bLen+(u16Length-1))/u16Length; |
michael@0 | 695 | if(ratio>extData->maxBytesPerUChar) { |
michael@0 | 696 | extData->maxBytesPerUChar=ratio; |
michael@0 | 697 | } |
michael@0 | 698 | |
michael@0 | 699 | return value; |
michael@0 | 700 | } |
michael@0 | 701 | |
michael@0 | 702 | /* |
michael@0 | 703 | * works like generateToUTable(), except that the |
michael@0 | 704 | * output section consists of two arrays, one for input UChars and one |
michael@0 | 705 | * for result values |
michael@0 | 706 | * |
michael@0 | 707 | * also, fromUTable sections are always stored in a compact form for |
michael@0 | 708 | * access via binary search |
michael@0 | 709 | */ |
michael@0 | 710 | static UBool |
michael@0 | 711 | generateFromUTable(CnvExtData *extData, UCMTable *table, |
michael@0 | 712 | int32_t start, int32_t limit, int32_t unitIndex, |
michael@0 | 713 | uint32_t defaultValue) { |
michael@0 | 714 | UCMapping *mappings, *m; |
michael@0 | 715 | int32_t *map; |
michael@0 | 716 | int32_t i, j, uniqueCount, count, subStart, subLimit; |
michael@0 | 717 | |
michael@0 | 718 | UChar *uchars; |
michael@0 | 719 | UChar32 low, high, prev; |
michael@0 | 720 | |
michael@0 | 721 | UChar *sectionUChars; |
michael@0 | 722 | uint32_t *sectionValues; |
michael@0 | 723 | |
michael@0 | 724 | mappings=table->mappings; |
michael@0 | 725 | map=table->reverseMap; |
michael@0 | 726 | |
michael@0 | 727 | /* step 1: examine the input units; set low, high, uniqueCount */ |
michael@0 | 728 | m=mappings+map[start]; |
michael@0 | 729 | uchars=(UChar *)UCM_GET_CODE_POINTS(table, m); |
michael@0 | 730 | low=uchars[unitIndex]; |
michael@0 | 731 | uniqueCount=1; |
michael@0 | 732 | |
michael@0 | 733 | prev=high=low; |
michael@0 | 734 | for(i=start+1; i<limit; ++i) { |
michael@0 | 735 | m=mappings+map[i]; |
michael@0 | 736 | uchars=(UChar *)UCM_GET_CODE_POINTS(table, m); |
michael@0 | 737 | high=uchars[unitIndex]; |
michael@0 | 738 | |
michael@0 | 739 | if(high!=prev) { |
michael@0 | 740 | prev=high; |
michael@0 | 741 | ++uniqueCount; |
michael@0 | 742 | } |
michael@0 | 743 | } |
michael@0 | 744 | |
michael@0 | 745 | /* step 2: allocate the section; set count, section */ |
michael@0 | 746 | /* the fromUTable always stores for access via binary search */ |
michael@0 | 747 | count=uniqueCount; |
michael@0 | 748 | |
michael@0 | 749 | /* allocate the section: 1 entry for the header + count for the items */ |
michael@0 | 750 | sectionUChars=(UChar *)utm_allocN(extData->fromUTableUChars, 1+count); |
michael@0 | 751 | sectionValues=(uint32_t *)utm_allocN(extData->fromUTableValues, 1+count); |
michael@0 | 752 | |
michael@0 | 753 | /* write the section header */ |
michael@0 | 754 | *sectionUChars++=(UChar)count; |
michael@0 | 755 | *sectionValues++=defaultValue; |
michael@0 | 756 | |
michael@0 | 757 | /* step 3: write temporary section table with subsection starts */ |
michael@0 | 758 | prev=low-1; /* just before low to prevent empty subsections before low */ |
michael@0 | 759 | j=0; /* section table index */ |
michael@0 | 760 | for(i=start; i<limit; ++i) { |
michael@0 | 761 | m=mappings+map[i]; |
michael@0 | 762 | uchars=(UChar *)UCM_GET_CODE_POINTS(table, m); |
michael@0 | 763 | high=uchars[unitIndex]; |
michael@0 | 764 | |
michael@0 | 765 | if(high!=prev) { |
michael@0 | 766 | /* start of a new subsection for unit high */ |
michael@0 | 767 | prev=high; |
michael@0 | 768 | |
michael@0 | 769 | /* write the entry with the subsection start */ |
michael@0 | 770 | sectionUChars[j]=(UChar)high; |
michael@0 | 771 | sectionValues[j]=(uint32_t)i; |
michael@0 | 772 | ++j; |
michael@0 | 773 | } |
michael@0 | 774 | } |
michael@0 | 775 | /* assert(j==count) */ |
michael@0 | 776 | |
michael@0 | 777 | /* step 4: recurse and write results */ |
michael@0 | 778 | subLimit=(int32_t)(sectionValues[0]); |
michael@0 | 779 | for(j=0; j<count; ++j) { |
michael@0 | 780 | subStart=subLimit; |
michael@0 | 781 | subLimit= (j+1)<count ? (int32_t)(sectionValues[j+1]) : limit; |
michael@0 | 782 | |
michael@0 | 783 | /* see if there is exactly one input unit sequence of length unitIndex+1 */ |
michael@0 | 784 | defaultValue=0; |
michael@0 | 785 | m=mappings+map[subStart]; |
michael@0 | 786 | if(m->uLen==unitIndex+1) { |
michael@0 | 787 | /* do not include this in generateToUTable() */ |
michael@0 | 788 | ++subStart; |
michael@0 | 789 | |
michael@0 | 790 | if(subStart<subLimit && mappings[map[subStart]].uLen==unitIndex+1) { |
michael@0 | 791 | /* print error for multiple same-input-sequence mappings */ |
michael@0 | 792 | fprintf(stderr, "error: multiple mappings from same Unicode code points\n"); |
michael@0 | 793 | ucm_printMapping(table, m, stderr); |
michael@0 | 794 | ucm_printMapping(table, mappings+map[subStart], stderr); |
michael@0 | 795 | return FALSE; |
michael@0 | 796 | } |
michael@0 | 797 | |
michael@0 | 798 | defaultValue=getFromUBytesValue(extData, table, m); |
michael@0 | 799 | } |
michael@0 | 800 | |
michael@0 | 801 | if(subStart==subLimit) { |
michael@0 | 802 | /* write the result for the input sequence ending here */ |
michael@0 | 803 | sectionValues[j]=defaultValue; |
michael@0 | 804 | } else { |
michael@0 | 805 | /* write the index to the subsection table */ |
michael@0 | 806 | sectionValues[j]=(uint32_t)utm_countItems(extData->fromUTableValues); |
michael@0 | 807 | |
michael@0 | 808 | /* recurse */ |
michael@0 | 809 | if(!generateFromUTable(extData, table, subStart, subLimit, unitIndex+1, defaultValue)) { |
michael@0 | 810 | return FALSE; |
michael@0 | 811 | } |
michael@0 | 812 | } |
michael@0 | 813 | } |
michael@0 | 814 | return TRUE; |
michael@0 | 815 | } |
michael@0 | 816 | |
michael@0 | 817 | /* |
michael@0 | 818 | * add entries to the fromUnicode trie, |
michael@0 | 819 | * assume to be called with code points in ascending order |
michael@0 | 820 | * and use that to build the trie in precompacted form |
michael@0 | 821 | */ |
michael@0 | 822 | static void |
michael@0 | 823 | addFromUTrieEntry(CnvExtData *extData, UChar32 c, uint32_t value) { |
michael@0 | 824 | int32_t i1, i2, i3, i3b, nextOffset, min, newBlock; |
michael@0 | 825 | |
michael@0 | 826 | if(value==0) { |
michael@0 | 827 | return; |
michael@0 | 828 | } |
michael@0 | 829 | |
michael@0 | 830 | /* |
michael@0 | 831 | * compute the index for each stage, |
michael@0 | 832 | * allocate a stage block if necessary, |
michael@0 | 833 | * and write the stage value |
michael@0 | 834 | */ |
michael@0 | 835 | i1=c>>10; |
michael@0 | 836 | if(i1>=extData->stage1Top) { |
michael@0 | 837 | extData->stage1Top=i1+1; |
michael@0 | 838 | } |
michael@0 | 839 | |
michael@0 | 840 | nextOffset=(c>>4)&0x3f; |
michael@0 | 841 | |
michael@0 | 842 | if(extData->stage1[i1]==0) { |
michael@0 | 843 | /* allocate another block in stage 2; overlap with the previous block */ |
michael@0 | 844 | newBlock=extData->stage2Top; |
michael@0 | 845 | min=newBlock-nextOffset; /* minimum block start with overlap */ |
michael@0 | 846 | while(min<newBlock && extData->stage2[newBlock-1]==0) { |
michael@0 | 847 | --newBlock; |
michael@0 | 848 | } |
michael@0 | 849 | |
michael@0 | 850 | extData->stage1[i1]=(uint16_t)newBlock; |
michael@0 | 851 | extData->stage2Top=newBlock+MBCS_STAGE_2_BLOCK_SIZE; |
michael@0 | 852 | if(extData->stage2Top>LENGTHOF(extData->stage2)) { |
michael@0 | 853 | fprintf(stderr, "error: too many stage 2 entries at U+%04x\n", (int)c); |
michael@0 | 854 | exit(U_MEMORY_ALLOCATION_ERROR); |
michael@0 | 855 | } |
michael@0 | 856 | } |
michael@0 | 857 | |
michael@0 | 858 | i2=extData->stage1[i1]+nextOffset; |
michael@0 | 859 | nextOffset=c&0xf; |
michael@0 | 860 | |
michael@0 | 861 | if(extData->stage2[i2]==0) { |
michael@0 | 862 | /* allocate another block in stage 3; overlap with the previous block */ |
michael@0 | 863 | newBlock=extData->stage3Top; |
michael@0 | 864 | min=newBlock-nextOffset; /* minimum block start with overlap */ |
michael@0 | 865 | while(min<newBlock && extData->stage3[newBlock-1]==0) { |
michael@0 | 866 | --newBlock; |
michael@0 | 867 | } |
michael@0 | 868 | |
michael@0 | 869 | /* round up to a multiple of stage 3 granularity >1 (similar to utrie.c) */ |
michael@0 | 870 | newBlock=(newBlock+(UCNV_EXT_STAGE_3_GRANULARITY-1))&~(UCNV_EXT_STAGE_3_GRANULARITY-1); |
michael@0 | 871 | extData->stage2[i2]=(uint16_t)(newBlock>>UCNV_EXT_STAGE_2_LEFT_SHIFT); |
michael@0 | 872 | |
michael@0 | 873 | extData->stage3Top=newBlock+MBCS_STAGE_3_BLOCK_SIZE; |
michael@0 | 874 | if(extData->stage3Top>LENGTHOF(extData->stage3)) { |
michael@0 | 875 | fprintf(stderr, "error: too many stage 3 entries at U+%04x\n", (int)c); |
michael@0 | 876 | exit(U_MEMORY_ALLOCATION_ERROR); |
michael@0 | 877 | } |
michael@0 | 878 | } |
michael@0 | 879 | |
michael@0 | 880 | i3=((int32_t)extData->stage2[i2]<<UCNV_EXT_STAGE_2_LEFT_SHIFT)+nextOffset; |
michael@0 | 881 | /* |
michael@0 | 882 | * assume extData->stage3[i3]==0 because we get |
michael@0 | 883 | * code points in strictly ascending order |
michael@0 | 884 | */ |
michael@0 | 885 | |
michael@0 | 886 | if(value==UCNV_EXT_FROM_U_SUBCHAR1) { |
michael@0 | 887 | /* <subchar1> SUB mapping, see getFromUBytesValue() and prepareFromUMappings() */ |
michael@0 | 888 | extData->stage3[i3]=1; |
michael@0 | 889 | |
michael@0 | 890 | /* |
michael@0 | 891 | * precompaction is not optimal for <subchar1> |2 mappings because |
michael@0 | 892 | * stage3 values for them are all the same, unlike for other mappings |
michael@0 | 893 | * which all have unique values; |
michael@0 | 894 | * use a simple compaction of reusing a whole block filled with these |
michael@0 | 895 | * mappings |
michael@0 | 896 | */ |
michael@0 | 897 | |
michael@0 | 898 | /* is the entire block filled with <subchar1> |2 mappings? */ |
michael@0 | 899 | if(nextOffset==MBCS_STAGE_3_BLOCK_SIZE-1) { |
michael@0 | 900 | for(min=i3-nextOffset; |
michael@0 | 901 | min<i3 && extData->stage3[min]==1; |
michael@0 | 902 | ++min) {} |
michael@0 | 903 | |
michael@0 | 904 | if(min==i3) { |
michael@0 | 905 | /* the entire block is filled with these mappings */ |
michael@0 | 906 | if(extData->stage3Sub1Block!=0) { |
michael@0 | 907 | /* point to the previous such block and remove this block from stage3 */ |
michael@0 | 908 | extData->stage2[i2]=extData->stage3Sub1Block; |
michael@0 | 909 | extData->stage3Top-=MBCS_STAGE_3_BLOCK_SIZE; |
michael@0 | 910 | uprv_memset(extData->stage3+extData->stage3Top, 0, MBCS_STAGE_3_BLOCK_SIZE*2); |
michael@0 | 911 | } else { |
michael@0 | 912 | /* remember this block's stage2 entry */ |
michael@0 | 913 | extData->stage3Sub1Block=extData->stage2[i2]; |
michael@0 | 914 | } |
michael@0 | 915 | } |
michael@0 | 916 | } |
michael@0 | 917 | } else { |
michael@0 | 918 | if((i3b=extData->stage3bTop++)>=LENGTHOF(extData->stage3b)) { |
michael@0 | 919 | fprintf(stderr, "error: too many stage 3b entries at U+%04x\n", (int)c); |
michael@0 | 920 | exit(U_MEMORY_ALLOCATION_ERROR); |
michael@0 | 921 | } |
michael@0 | 922 | |
michael@0 | 923 | /* roundtrip or fallback mapping */ |
michael@0 | 924 | extData->stage3[i3]=(uint16_t)i3b; |
michael@0 | 925 | extData->stage3b[i3b]=value; |
michael@0 | 926 | } |
michael@0 | 927 | } |
michael@0 | 928 | |
michael@0 | 929 | static UBool |
michael@0 | 930 | generateFromUTrie(CnvExtData *extData, UCMTable *table, int32_t mapLength) { |
michael@0 | 931 | UCMapping *mappings, *m; |
michael@0 | 932 | int32_t *map; |
michael@0 | 933 | uint32_t value; |
michael@0 | 934 | int32_t subStart, subLimit; |
michael@0 | 935 | |
michael@0 | 936 | UChar32 *codePoints; |
michael@0 | 937 | UChar32 c, next; |
michael@0 | 938 | |
michael@0 | 939 | if(mapLength==0) { |
michael@0 | 940 | return TRUE; |
michael@0 | 941 | } |
michael@0 | 942 | |
michael@0 | 943 | mappings=table->mappings; |
michael@0 | 944 | map=table->reverseMap; |
michael@0 | 945 | |
michael@0 | 946 | /* |
michael@0 | 947 | * iterate over same-initial-code point mappings, |
michael@0 | 948 | * enter the initial code point into the trie, |
michael@0 | 949 | * and start a recursion on the corresponding mappings section |
michael@0 | 950 | * with generateFromUTable() |
michael@0 | 951 | */ |
michael@0 | 952 | m=mappings+map[0]; |
michael@0 | 953 | codePoints=UCM_GET_CODE_POINTS(table, m); |
michael@0 | 954 | next=codePoints[0]; |
michael@0 | 955 | subLimit=0; |
michael@0 | 956 | while(subLimit<mapLength) { |
michael@0 | 957 | /* get a new subsection of mappings starting with the same code point */ |
michael@0 | 958 | subStart=subLimit; |
michael@0 | 959 | c=next; |
michael@0 | 960 | while(next==c && ++subLimit<mapLength) { |
michael@0 | 961 | m=mappings+map[subLimit]; |
michael@0 | 962 | codePoints=UCM_GET_CODE_POINTS(table, m); |
michael@0 | 963 | next=codePoints[0]; |
michael@0 | 964 | } |
michael@0 | 965 | |
michael@0 | 966 | /* |
michael@0 | 967 | * compute the value for this code point; |
michael@0 | 968 | * if there is a mapping for this code point alone, it is at subStart |
michael@0 | 969 | * because the table is sorted lexically |
michael@0 | 970 | */ |
michael@0 | 971 | value=0; |
michael@0 | 972 | m=mappings+map[subStart]; |
michael@0 | 973 | codePoints=UCM_GET_CODE_POINTS(table, m); |
michael@0 | 974 | if(m->uLen==1) { |
michael@0 | 975 | /* do not include this in generateFromUTable() */ |
michael@0 | 976 | ++subStart; |
michael@0 | 977 | |
michael@0 | 978 | if(subStart<subLimit && mappings[map[subStart]].uLen==1) { |
michael@0 | 979 | /* print error for multiple same-input-sequence mappings */ |
michael@0 | 980 | fprintf(stderr, "error: multiple mappings from same Unicode code points\n"); |
michael@0 | 981 | ucm_printMapping(table, m, stderr); |
michael@0 | 982 | ucm_printMapping(table, mappings+map[subStart], stderr); |
michael@0 | 983 | return FALSE; |
michael@0 | 984 | } |
michael@0 | 985 | |
michael@0 | 986 | value=getFromUBytesValue(extData, table, m); |
michael@0 | 987 | } |
michael@0 | 988 | |
michael@0 | 989 | if(subStart==subLimit) { |
michael@0 | 990 | /* write the result for this one code point */ |
michael@0 | 991 | addFromUTrieEntry(extData, c, value); |
michael@0 | 992 | } else { |
michael@0 | 993 | /* write the index to the subsection table */ |
michael@0 | 994 | addFromUTrieEntry(extData, c, (uint32_t)utm_countItems(extData->fromUTableValues)); |
michael@0 | 995 | |
michael@0 | 996 | /* recurse, starting from 16-bit-unit index 2, the first 16-bit unit after c */ |
michael@0 | 997 | if(!generateFromUTable(extData, table, subStart, subLimit, 2, value)) { |
michael@0 | 998 | return FALSE; |
michael@0 | 999 | } |
michael@0 | 1000 | } |
michael@0 | 1001 | } |
michael@0 | 1002 | return TRUE; |
michael@0 | 1003 | } |
michael@0 | 1004 | |
michael@0 | 1005 | /* |
michael@0 | 1006 | * Generate the fromU data structures from the input table. |
michael@0 | 1007 | * The input table must be sorted, and all precision flags must be 0..3. |
michael@0 | 1008 | * This function will modify the table's reverseMap. |
michael@0 | 1009 | */ |
michael@0 | 1010 | static UBool |
michael@0 | 1011 | makeFromUTable(CnvExtData *extData, UCMTable *table) { |
michael@0 | 1012 | uint16_t *stage1; |
michael@0 | 1013 | int32_t i, stage1Top, fromUCount; |
michael@0 | 1014 | |
michael@0 | 1015 | fromUCount=prepareFromUMappings(table); |
michael@0 | 1016 | |
michael@0 | 1017 | extData->fromUTableUChars=utm_open("cnv extension fromUTableUChars", 0x10000, UCNV_EXT_FROM_U_DATA_MASK+1, 2); |
michael@0 | 1018 | extData->fromUTableValues=utm_open("cnv extension fromUTableValues", 0x10000, UCNV_EXT_FROM_U_DATA_MASK+1, 4); |
michael@0 | 1019 | extData->fromUBytes=utm_open("cnv extension fromUBytes", 0x10000, UCNV_EXT_FROM_U_DATA_MASK+1, 1); |
michael@0 | 1020 | |
michael@0 | 1021 | /* allocate all-unassigned stage blocks */ |
michael@0 | 1022 | extData->stage2Top=MBCS_STAGE_2_FIRST_ASSIGNED; |
michael@0 | 1023 | extData->stage3Top=MBCS_STAGE_3_FIRST_ASSIGNED; |
michael@0 | 1024 | |
michael@0 | 1025 | /* |
michael@0 | 1026 | * stage 3b stores only unique values, and in |
michael@0 | 1027 | * index 0: 0 for "no mapping" |
michael@0 | 1028 | * index 1: "no mapping" with preference for <subchar1> rather than <subchar> |
michael@0 | 1029 | */ |
michael@0 | 1030 | extData->stage3b[1]=UCNV_EXT_FROM_U_SUBCHAR1; |
michael@0 | 1031 | extData->stage3bTop=2; |
michael@0 | 1032 | |
michael@0 | 1033 | /* allocate the first entry in the fromUTable because index 0 means "no result" */ |
michael@0 | 1034 | utm_alloc(extData->fromUTableUChars); |
michael@0 | 1035 | utm_alloc(extData->fromUTableValues); |
michael@0 | 1036 | |
michael@0 | 1037 | if(!generateFromUTrie(extData, table, fromUCount)) { |
michael@0 | 1038 | return FALSE; |
michael@0 | 1039 | } |
michael@0 | 1040 | |
michael@0 | 1041 | /* |
michael@0 | 1042 | * offset the stage 1 trie entries by stage1Top because they will |
michael@0 | 1043 | * be stored in a single array |
michael@0 | 1044 | */ |
michael@0 | 1045 | stage1=extData->stage1; |
michael@0 | 1046 | stage1Top=extData->stage1Top; |
michael@0 | 1047 | for(i=0; i<stage1Top; ++i) { |
michael@0 | 1048 | stage1[i]=(uint16_t)(stage1[i]+stage1Top); |
michael@0 | 1049 | } |
michael@0 | 1050 | |
michael@0 | 1051 | return TRUE; |
michael@0 | 1052 | } |
michael@0 | 1053 | |
michael@0 | 1054 | /* -------------------------------------------------------------------------- */ |
michael@0 | 1055 | |
michael@0 | 1056 | static UBool |
michael@0 | 1057 | CnvExtAddTable(NewConverter *cnvData, UCMTable *table, UConverterStaticData *staticData) { |
michael@0 | 1058 | CnvExtData *extData; |
michael@0 | 1059 | |
michael@0 | 1060 | if(table->unicodeMask&UCNV_HAS_SURROGATES) { |
michael@0 | 1061 | fprintf(stderr, "error: contains mappings for surrogate code points\n"); |
michael@0 | 1062 | return FALSE; |
michael@0 | 1063 | } |
michael@0 | 1064 | |
michael@0 | 1065 | staticData->conversionType=UCNV_MBCS; |
michael@0 | 1066 | |
michael@0 | 1067 | extData=(CnvExtData *)cnvData; |
michael@0 | 1068 | |
michael@0 | 1069 | /* |
michael@0 | 1070 | * assume that the table is sorted |
michael@0 | 1071 | * |
michael@0 | 1072 | * call the functions in this order because |
michael@0 | 1073 | * makeToUTable() modifies the original reverseMap, |
michael@0 | 1074 | * makeFromUTable() writes a whole new mapping into reverseMap |
michael@0 | 1075 | */ |
michael@0 | 1076 | return |
michael@0 | 1077 | makeToUTable(extData, table) && |
michael@0 | 1078 | makeFromUTable(extData, table); |
michael@0 | 1079 | } |