mozglue/android/pbkdf2_sha256.c

Wed, 31 Dec 2014 06:09:35 +0100

author
Michael Schloh von Bennewitz <michael@schloh.com>
date
Wed, 31 Dec 2014 06:09:35 +0100
changeset 0
6474c204b198
permissions
-rw-r--r--

Cloned upstream origin tor-browser at tor-browser-31.3.0esr-4.5-1-build1
revision ID fc1c9ff7c1b2defdbc039f12214767608f46423f for hacking purpose.

michael@0 1 /*-
michael@0 2 * Copyright 2005,2007,2009 Colin Percival
michael@0 3 * All rights reserved.
michael@0 4 *
michael@0 5 * Redistribution and use in source and binary forms, with or without
michael@0 6 * modification, are permitted provided that the following conditions
michael@0 7 * are met:
michael@0 8 * 1. Redistributions of source code must retain the above copyright
michael@0 9 * notice, this list of conditions and the following disclaimer.
michael@0 10 * 2. Redistributions in binary form must reproduce the above copyright
michael@0 11 * notice, this list of conditions and the following disclaimer in the
michael@0 12 * documentation and/or other materials provided with the distribution.
michael@0 13 *
michael@0 14 * THIS SOFTWARE IS PROVIDED BY THE AUTHOR AND CONTRIBUTORS ``AS IS'' AND
michael@0 15 * ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE
michael@0 16 * IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE
michael@0 17 * ARE DISCLAIMED. IN NO EVENT SHALL THE AUTHOR OR CONTRIBUTORS BE LIABLE
michael@0 18 * FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR CONSEQUENTIAL
michael@0 19 * DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS
michael@0 20 * OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS INTERRUPTION)
michael@0 21 * HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT
michael@0 22 * LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY
michael@0 23 * OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF
michael@0 24 * SUCH DAMAGE.
michael@0 25 */
michael@0 26 #include <sys/types.h>
michael@0 27
michael@0 28 #include <stdint.h>
michael@0 29 #include <string.h>
michael@0 30
michael@0 31 #include <sys/endian.h>
michael@0 32
michael@0 33 #include "pbkdf2_sha256.h"
michael@0 34
michael@0 35 static inline uint32_t
michael@0 36 be32dec(const void *pp)
michael@0 37 {
michael@0 38 const uint8_t *p = (uint8_t const *)pp;
michael@0 39
michael@0 40 return ((uint32_t)(p[3]) +
michael@0 41 ((uint32_t)(p[2]) << 8) +
michael@0 42 ((uint32_t)(p[1]) << 16) +
michael@0 43 ((uint32_t)(p[0]) << 24));
michael@0 44 }
michael@0 45
michael@0 46 static inline void
michael@0 47 be32enc(void *pp, uint32_t x)
michael@0 48 {
michael@0 49 uint8_t * p = (uint8_t *)pp;
michael@0 50
michael@0 51 p[3] = x & 0xff;
michael@0 52 p[2] = (x >> 8) & 0xff;
michael@0 53 p[1] = (x >> 16) & 0xff;
michael@0 54 p[0] = (x >> 24) & 0xff;
michael@0 55 }
michael@0 56
michael@0 57 /*
michael@0 58 * Encode a length len/4 vector of (uint32_t) into a length len vector of
michael@0 59 * (unsigned char) in big-endian form. Assumes len is a multiple of 4.
michael@0 60 */
michael@0 61 static void
michael@0 62 be32enc_vect(unsigned char *dst, const uint32_t *src, size_t len)
michael@0 63 {
michael@0 64 size_t i;
michael@0 65
michael@0 66 for (i = 0; i < len / 4; i++)
michael@0 67 be32enc(dst + i * 4, src[i]);
michael@0 68 }
michael@0 69
michael@0 70 /*
michael@0 71 * Decode a big-endian length len vector of (unsigned char) into a length
michael@0 72 * len/4 vector of (uint32_t). Assumes len is a multiple of 4.
michael@0 73 */
michael@0 74 static void
michael@0 75 be32dec_vect(uint32_t *dst, const unsigned char *src, size_t len)
michael@0 76 {
michael@0 77 size_t i;
michael@0 78
michael@0 79 for (i = 0; i < len / 4; i++)
michael@0 80 dst[i] = be32dec(src + i * 4);
michael@0 81 }
michael@0 82
michael@0 83 /* Elementary functions used by SHA256 */
michael@0 84 #define Ch(x, y, z) ((x & (y ^ z)) ^ z)
michael@0 85 #define Maj(x, y, z) ((x & (y | z)) | (y & z))
michael@0 86 #define SHR(x, n) (x >> n)
michael@0 87 #define ROTR(x, n) ((x >> n) | (x << (32 - n)))
michael@0 88 #define S0(x) (ROTR(x, 2) ^ ROTR(x, 13) ^ ROTR(x, 22))
michael@0 89 #define S1(x) (ROTR(x, 6) ^ ROTR(x, 11) ^ ROTR(x, 25))
michael@0 90 #define s0(x) (ROTR(x, 7) ^ ROTR(x, 18) ^ SHR(x, 3))
michael@0 91 #define s1(x) (ROTR(x, 17) ^ ROTR(x, 19) ^ SHR(x, 10))
michael@0 92
michael@0 93 /* SHA256 round function */
michael@0 94 #define RND(a, b, c, d, e, f, g, h, k) \
michael@0 95 t0 = h + S1(e) + Ch(e, f, g) + k; \
michael@0 96 t1 = S0(a) + Maj(a, b, c); \
michael@0 97 d += t0; \
michael@0 98 h = t0 + t1;
michael@0 99
michael@0 100 /* Adjusted round function for rotating state */
michael@0 101 #define RNDr(S, W, i, k) \
michael@0 102 RND(S[(64 - i) % 8], S[(65 - i) % 8], \
michael@0 103 S[(66 - i) % 8], S[(67 - i) % 8], \
michael@0 104 S[(68 - i) % 8], S[(69 - i) % 8], \
michael@0 105 S[(70 - i) % 8], S[(71 - i) % 8], \
michael@0 106 W[i] + k)
michael@0 107
michael@0 108 /*
michael@0 109 * SHA256 block compression function. The 256-bit state is transformed via
michael@0 110 * the 512-bit input block to produce a new state.
michael@0 111 */
michael@0 112 static void
michael@0 113 SHA256_Transform(uint32_t * state, const unsigned char block[64])
michael@0 114 {
michael@0 115 uint32_t W[64];
michael@0 116 uint32_t S[8];
michael@0 117 uint32_t t0, t1;
michael@0 118 int i;
michael@0 119
michael@0 120 /* 1. Prepare message schedule W. */
michael@0 121 be32dec_vect(W, block, 64);
michael@0 122 for (i = 16; i < 64; i++)
michael@0 123 W[i] = s1(W[i - 2]) + W[i - 7] + s0(W[i - 15]) + W[i - 16];
michael@0 124
michael@0 125 /* 2. Initialize working variables. */
michael@0 126 memcpy(S, state, 32);
michael@0 127
michael@0 128 /* 3. Mix. */
michael@0 129 RNDr(S, W, 0, 0x428a2f98);
michael@0 130 RNDr(S, W, 1, 0x71374491);
michael@0 131 RNDr(S, W, 2, 0xb5c0fbcf);
michael@0 132 RNDr(S, W, 3, 0xe9b5dba5);
michael@0 133 RNDr(S, W, 4, 0x3956c25b);
michael@0 134 RNDr(S, W, 5, 0x59f111f1);
michael@0 135 RNDr(S, W, 6, 0x923f82a4);
michael@0 136 RNDr(S, W, 7, 0xab1c5ed5);
michael@0 137 RNDr(S, W, 8, 0xd807aa98);
michael@0 138 RNDr(S, W, 9, 0x12835b01);
michael@0 139 RNDr(S, W, 10, 0x243185be);
michael@0 140 RNDr(S, W, 11, 0x550c7dc3);
michael@0 141 RNDr(S, W, 12, 0x72be5d74);
michael@0 142 RNDr(S, W, 13, 0x80deb1fe);
michael@0 143 RNDr(S, W, 14, 0x9bdc06a7);
michael@0 144 RNDr(S, W, 15, 0xc19bf174);
michael@0 145 RNDr(S, W, 16, 0xe49b69c1);
michael@0 146 RNDr(S, W, 17, 0xefbe4786);
michael@0 147 RNDr(S, W, 18, 0x0fc19dc6);
michael@0 148 RNDr(S, W, 19, 0x240ca1cc);
michael@0 149 RNDr(S, W, 20, 0x2de92c6f);
michael@0 150 RNDr(S, W, 21, 0x4a7484aa);
michael@0 151 RNDr(S, W, 22, 0x5cb0a9dc);
michael@0 152 RNDr(S, W, 23, 0x76f988da);
michael@0 153 RNDr(S, W, 24, 0x983e5152);
michael@0 154 RNDr(S, W, 25, 0xa831c66d);
michael@0 155 RNDr(S, W, 26, 0xb00327c8);
michael@0 156 RNDr(S, W, 27, 0xbf597fc7);
michael@0 157 RNDr(S, W, 28, 0xc6e00bf3);
michael@0 158 RNDr(S, W, 29, 0xd5a79147);
michael@0 159 RNDr(S, W, 30, 0x06ca6351);
michael@0 160 RNDr(S, W, 31, 0x14292967);
michael@0 161 RNDr(S, W, 32, 0x27b70a85);
michael@0 162 RNDr(S, W, 33, 0x2e1b2138);
michael@0 163 RNDr(S, W, 34, 0x4d2c6dfc);
michael@0 164 RNDr(S, W, 35, 0x53380d13);
michael@0 165 RNDr(S, W, 36, 0x650a7354);
michael@0 166 RNDr(S, W, 37, 0x766a0abb);
michael@0 167 RNDr(S, W, 38, 0x81c2c92e);
michael@0 168 RNDr(S, W, 39, 0x92722c85);
michael@0 169 RNDr(S, W, 40, 0xa2bfe8a1);
michael@0 170 RNDr(S, W, 41, 0xa81a664b);
michael@0 171 RNDr(S, W, 42, 0xc24b8b70);
michael@0 172 RNDr(S, W, 43, 0xc76c51a3);
michael@0 173 RNDr(S, W, 44, 0xd192e819);
michael@0 174 RNDr(S, W, 45, 0xd6990624);
michael@0 175 RNDr(S, W, 46, 0xf40e3585);
michael@0 176 RNDr(S, W, 47, 0x106aa070);
michael@0 177 RNDr(S, W, 48, 0x19a4c116);
michael@0 178 RNDr(S, W, 49, 0x1e376c08);
michael@0 179 RNDr(S, W, 50, 0x2748774c);
michael@0 180 RNDr(S, W, 51, 0x34b0bcb5);
michael@0 181 RNDr(S, W, 52, 0x391c0cb3);
michael@0 182 RNDr(S, W, 53, 0x4ed8aa4a);
michael@0 183 RNDr(S, W, 54, 0x5b9cca4f);
michael@0 184 RNDr(S, W, 55, 0x682e6ff3);
michael@0 185 RNDr(S, W, 56, 0x748f82ee);
michael@0 186 RNDr(S, W, 57, 0x78a5636f);
michael@0 187 RNDr(S, W, 58, 0x84c87814);
michael@0 188 RNDr(S, W, 59, 0x8cc70208);
michael@0 189 RNDr(S, W, 60, 0x90befffa);
michael@0 190 RNDr(S, W, 61, 0xa4506ceb);
michael@0 191 RNDr(S, W, 62, 0xbef9a3f7);
michael@0 192 RNDr(S, W, 63, 0xc67178f2);
michael@0 193
michael@0 194 /* 4. Mix local working variables into global state. */
michael@0 195 for (i = 0; i < 8; i++)
michael@0 196 state[i] += S[i];
michael@0 197
michael@0 198 /* Clean the stack. */
michael@0 199 memset(W, 0, 256);
michael@0 200 memset(S, 0, 32);
michael@0 201 t0 = t1 = 0;
michael@0 202 }
michael@0 203
michael@0 204 static unsigned char PAD[64] = {
michael@0 205 0x80, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0,
michael@0 206 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0,
michael@0 207 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0,
michael@0 208 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0
michael@0 209 };
michael@0 210
michael@0 211 /* Add padding and terminating bit-count. */
michael@0 212 static void
michael@0 213 SHA256_Pad(SHA256_CTX * ctx)
michael@0 214 {
michael@0 215 unsigned char len[8];
michael@0 216 uint32_t r, plen;
michael@0 217
michael@0 218 /*
michael@0 219 * Convert length to a vector of bytes -- we do this now rather
michael@0 220 * than later because the length will change after we pad.
michael@0 221 */
michael@0 222 be32enc_vect(len, ctx->count, 8);
michael@0 223
michael@0 224 /* Add 1--64 bytes so that the resulting length is 56 mod 64. */
michael@0 225 r = (ctx->count[1] >> 3) & 0x3f;
michael@0 226 plen = (r < 56) ? (56 - r) : (120 - r);
michael@0 227 SHA256_Update(ctx, PAD, (size_t)plen);
michael@0 228
michael@0 229 /* Add the terminating bit-count. */
michael@0 230 SHA256_Update(ctx, len, 8);
michael@0 231 }
michael@0 232
michael@0 233 /* SHA-256 initialization. Begins a SHA-256 operation. */
michael@0 234 void
michael@0 235 SHA256_Init(SHA256_CTX * ctx)
michael@0 236 {
michael@0 237
michael@0 238 /* Zero bits processed so far. */
michael@0 239 ctx->count[0] = ctx->count[1] = 0;
michael@0 240
michael@0 241 /* Magic initialization constants. */
michael@0 242 ctx->state[0] = 0x6A09E667;
michael@0 243 ctx->state[1] = 0xBB67AE85;
michael@0 244 ctx->state[2] = 0x3C6EF372;
michael@0 245 ctx->state[3] = 0xA54FF53A;
michael@0 246 ctx->state[4] = 0x510E527F;
michael@0 247 ctx->state[5] = 0x9B05688C;
michael@0 248 ctx->state[6] = 0x1F83D9AB;
michael@0 249 ctx->state[7] = 0x5BE0CD19;
michael@0 250 }
michael@0 251
michael@0 252 /* Add bytes into the hash. */
michael@0 253 void
michael@0 254 SHA256_Update(SHA256_CTX * ctx, const void *in, size_t len)
michael@0 255 {
michael@0 256 uint32_t bitlen[2];
michael@0 257 uint32_t r;
michael@0 258 const unsigned char *src = in;
michael@0 259
michael@0 260 /* Number of bytes left in the buffer from previous updates. */
michael@0 261 r = (ctx->count[1] >> 3) & 0x3f;
michael@0 262
michael@0 263 /* Convert the length into a number of bits. */
michael@0 264 bitlen[1] = ((uint32_t)len) << 3;
michael@0 265 bitlen[0] = (uint32_t)(len >> 29);
michael@0 266
michael@0 267 /* Update number of bits. */
michael@0 268 if ((ctx->count[1] += bitlen[1]) < bitlen[1])
michael@0 269 ctx->count[0]++;
michael@0 270 ctx->count[0] += bitlen[0];
michael@0 271
michael@0 272 /* Handle the case where we don't need to perform any transforms. */
michael@0 273 if (len < 64 - r) {
michael@0 274 memcpy(&ctx->buf[r], src, len);
michael@0 275 return;
michael@0 276 }
michael@0 277
michael@0 278 /* Finish the current block. */
michael@0 279 memcpy(&ctx->buf[r], src, 64 - r);
michael@0 280 SHA256_Transform(ctx->state, ctx->buf);
michael@0 281 src += 64 - r;
michael@0 282 len -= 64 - r;
michael@0 283
michael@0 284 /* Perform complete blocks. */
michael@0 285 while (len >= 64) {
michael@0 286 SHA256_Transform(ctx->state, src);
michael@0 287 src += 64;
michael@0 288 len -= 64;
michael@0 289 }
michael@0 290
michael@0 291 /* Copy left over data into buffer. */
michael@0 292 memcpy(ctx->buf, src, len);
michael@0 293 }
michael@0 294
michael@0 295 /*
michael@0 296 * SHA-256 finalization. Pads the input data, exports the hash value,
michael@0 297 * and clears the context state.
michael@0 298 */
michael@0 299 void
michael@0 300 SHA256_Final(unsigned char digest[32], SHA256_CTX * ctx)
michael@0 301 {
michael@0 302
michael@0 303 /* Add padding. */
michael@0 304 SHA256_Pad(ctx);
michael@0 305
michael@0 306 /* Write the hash. */
michael@0 307 be32enc_vect(digest, ctx->state, 32);
michael@0 308
michael@0 309 /* Clear the context state. */
michael@0 310 memset((void *)ctx, 0, sizeof(*ctx));
michael@0 311 }
michael@0 312
michael@0 313 /* Initialize an HMAC-SHA256 operation with the given key. */
michael@0 314 void
michael@0 315 HMAC_SHA256_Init(HMAC_SHA256_CTX * ctx, const void * _K, size_t Klen)
michael@0 316 {
michael@0 317 unsigned char pad[64];
michael@0 318 unsigned char khash[32];
michael@0 319 const unsigned char * K = _K;
michael@0 320 size_t i;
michael@0 321
michael@0 322 /* If Klen > 64, the key is really SHA256(K). */
michael@0 323 if (Klen > 64) {
michael@0 324 SHA256_Init(&ctx->ictx);
michael@0 325 SHA256_Update(&ctx->ictx, K, Klen);
michael@0 326 SHA256_Final(khash, &ctx->ictx);
michael@0 327 K = khash;
michael@0 328 Klen = 32;
michael@0 329 }
michael@0 330
michael@0 331 /* Inner SHA256 operation is SHA256(K xor [block of 0x36] || data). */
michael@0 332 SHA256_Init(&ctx->ictx);
michael@0 333 memset(pad, 0x36, 64);
michael@0 334 for (i = 0; i < Klen; i++)
michael@0 335 pad[i] ^= K[i];
michael@0 336 SHA256_Update(&ctx->ictx, pad, 64);
michael@0 337
michael@0 338 /* Outer SHA256 operation is SHA256(K xor [block of 0x5c] || hash). */
michael@0 339 SHA256_Init(&ctx->octx);
michael@0 340 memset(pad, 0x5c, 64);
michael@0 341 for (i = 0; i < Klen; i++)
michael@0 342 pad[i] ^= K[i];
michael@0 343 SHA256_Update(&ctx->octx, pad, 64);
michael@0 344
michael@0 345 /* Clean the stack. */
michael@0 346 memset(khash, 0, 32);
michael@0 347 }
michael@0 348
michael@0 349 /* Add bytes to the HMAC-SHA256 operation. */
michael@0 350 void
michael@0 351 HMAC_SHA256_Update(HMAC_SHA256_CTX * ctx, const void *in, size_t len)
michael@0 352 {
michael@0 353
michael@0 354 /* Feed data to the inner SHA256 operation. */
michael@0 355 SHA256_Update(&ctx->ictx, in, len);
michael@0 356 }
michael@0 357
michael@0 358 /* Finish an HMAC-SHA256 operation. */
michael@0 359 void
michael@0 360 HMAC_SHA256_Final(unsigned char digest[32], HMAC_SHA256_CTX * ctx)
michael@0 361 {
michael@0 362 unsigned char ihash[32];
michael@0 363
michael@0 364 /* Finish the inner SHA256 operation. */
michael@0 365 SHA256_Final(ihash, &ctx->ictx);
michael@0 366
michael@0 367 /* Feed the inner hash to the outer SHA256 operation. */
michael@0 368 SHA256_Update(&ctx->octx, ihash, 32);
michael@0 369
michael@0 370 /* Finish the outer SHA256 operation. */
michael@0 371 SHA256_Final(digest, &ctx->octx);
michael@0 372
michael@0 373 /* Clean the stack. */
michael@0 374 memset(ihash, 0, 32);
michael@0 375 }
michael@0 376
michael@0 377 /**
michael@0 378 * PBKDF2_SHA256(passwd, passwdlen, salt, saltlen, c, buf, dkLen):
michael@0 379 * Compute PBKDF2(passwd, salt, c, dkLen) using HMAC-SHA256 as the PRF, and
michael@0 380 * write the output to buf. The value dkLen must be at most 32 * (2^32 - 1).
michael@0 381 */
michael@0 382 void
michael@0 383 PBKDF2_SHA256(const uint8_t * passwd, size_t passwdlen, const uint8_t * salt,
michael@0 384 size_t saltlen, uint64_t c, uint8_t * buf, size_t dkLen)
michael@0 385 {
michael@0 386 HMAC_SHA256_CTX PShctx, hctx;
michael@0 387 size_t i;
michael@0 388 uint8_t ivec[4];
michael@0 389 uint8_t U[32];
michael@0 390 uint8_t T[32];
michael@0 391 uint64_t j;
michael@0 392 int k;
michael@0 393 size_t clen;
michael@0 394
michael@0 395 /* Compute HMAC state after processing P and S. */
michael@0 396 HMAC_SHA256_Init(&PShctx, passwd, passwdlen);
michael@0 397 HMAC_SHA256_Update(&PShctx, salt, saltlen);
michael@0 398
michael@0 399 /* Iterate through the blocks. */
michael@0 400 for (i = 0; i * 32 < dkLen; i++) {
michael@0 401 /* Generate INT(i + 1). */
michael@0 402 be32enc(ivec, (uint32_t)(i + 1));
michael@0 403
michael@0 404 /* Compute U_1 = PRF(P, S || INT(i)). */
michael@0 405 memcpy(&hctx, &PShctx, sizeof(HMAC_SHA256_CTX));
michael@0 406 HMAC_SHA256_Update(&hctx, ivec, 4);
michael@0 407 HMAC_SHA256_Final(U, &hctx);
michael@0 408
michael@0 409 /* T_i = U_1 ... */
michael@0 410 memcpy(T, U, 32);
michael@0 411
michael@0 412 for (j = 2; j <= c; j++) {
michael@0 413 /* Compute U_j. */
michael@0 414 HMAC_SHA256_Init(&hctx, passwd, passwdlen);
michael@0 415 HMAC_SHA256_Update(&hctx, U, 32);
michael@0 416 HMAC_SHA256_Final(U, &hctx);
michael@0 417
michael@0 418 /* ... xor U_j ... */
michael@0 419 for (k = 0; k < 32; k++)
michael@0 420 T[k] ^= U[k];
michael@0 421 }
michael@0 422
michael@0 423 /* Copy as many bytes as necessary into buf. */
michael@0 424 clen = dkLen - i * 32;
michael@0 425 if (clen > 32)
michael@0 426 clen = 32;
michael@0 427 memcpy(&buf[i * 32], T, clen);
michael@0 428 }
michael@0 429
michael@0 430 /* Clean PShctx, since we never called _Final on it. */
michael@0 431 memset(&PShctx, 0, sizeof(HMAC_SHA256_CTX));
michael@0 432 }

mercurial