Tue, 06 Jan 2015 21:39:09 +0100
Conditionally force memory storage according to privacy.thirdparty.isolate;
This solves Tor bug #9701, complying with disk avoidance documented in
https://www.torproject.org/projects/torbrowser/design/#disk-avoidance.
michael@0 | 1 | // Copyright 2010 the V8 project authors. All rights reserved. |
michael@0 | 2 | // Redistribution and use in source and binary forms, with or without |
michael@0 | 3 | // modification, are permitted provided that the following conditions are |
michael@0 | 4 | // met: |
michael@0 | 5 | // |
michael@0 | 6 | // * Redistributions of source code must retain the above copyright |
michael@0 | 7 | // notice, this list of conditions and the following disclaimer. |
michael@0 | 8 | // * Redistributions in binary form must reproduce the above |
michael@0 | 9 | // copyright notice, this list of conditions and the following |
michael@0 | 10 | // disclaimer in the documentation and/or other materials provided |
michael@0 | 11 | // with the distribution. |
michael@0 | 12 | // * Neither the name of Google Inc. nor the names of its |
michael@0 | 13 | // contributors may be used to endorse or promote products derived |
michael@0 | 14 | // from this software without specific prior written permission. |
michael@0 | 15 | // |
michael@0 | 16 | // THIS SOFTWARE IS PROVIDED BY THE COPYRIGHT HOLDERS AND CONTRIBUTORS |
michael@0 | 17 | // "AS IS" AND ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT |
michael@0 | 18 | // LIMITED TO, THE IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR |
michael@0 | 19 | // A PARTICULAR PURPOSE ARE DISCLAIMED. IN NO EVENT SHALL THE COPYRIGHT |
michael@0 | 20 | // OWNER OR CONTRIBUTORS BE LIABLE FOR ANY DIRECT, INDIRECT, INCIDENTAL, |
michael@0 | 21 | // SPECIAL, EXEMPLARY, OR CONSEQUENTIAL DAMAGES (INCLUDING, BUT NOT |
michael@0 | 22 | // LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS OR SERVICES; LOSS OF USE, |
michael@0 | 23 | // DATA, OR PROFITS; OR BUSINESS INTERRUPTION) HOWEVER CAUSED AND ON ANY |
michael@0 | 24 | // THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT LIABILITY, OR TORT |
michael@0 | 25 | // (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY OUT OF THE USE |
michael@0 | 26 | // OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF SUCH DAMAGE. |
michael@0 | 27 | |
michael@0 | 28 | #include "bignum.h" |
michael@0 | 29 | #include "utils.h" |
michael@0 | 30 | |
michael@0 | 31 | namespace double_conversion { |
michael@0 | 32 | |
michael@0 | 33 | Bignum::Bignum() |
michael@0 | 34 | : bigits_(bigits_buffer_, kBigitCapacity), used_digits_(0), exponent_(0) { |
michael@0 | 35 | for (int i = 0; i < kBigitCapacity; ++i) { |
michael@0 | 36 | bigits_[i] = 0; |
michael@0 | 37 | } |
michael@0 | 38 | } |
michael@0 | 39 | |
michael@0 | 40 | |
michael@0 | 41 | template<typename S> |
michael@0 | 42 | static int BitSize(S value) { |
michael@0 | 43 | return 8 * sizeof(value); |
michael@0 | 44 | } |
michael@0 | 45 | |
michael@0 | 46 | // Guaranteed to lie in one Bigit. |
michael@0 | 47 | void Bignum::AssignUInt16(uint16_t value) { |
michael@0 | 48 | ASSERT(kBigitSize >= BitSize(value)); |
michael@0 | 49 | Zero(); |
michael@0 | 50 | if (value == 0) return; |
michael@0 | 51 | |
michael@0 | 52 | EnsureCapacity(1); |
michael@0 | 53 | bigits_[0] = value; |
michael@0 | 54 | used_digits_ = 1; |
michael@0 | 55 | } |
michael@0 | 56 | |
michael@0 | 57 | |
michael@0 | 58 | void Bignum::AssignUInt64(uint64_t value) { |
michael@0 | 59 | const int kUInt64Size = 64; |
michael@0 | 60 | |
michael@0 | 61 | Zero(); |
michael@0 | 62 | if (value == 0) return; |
michael@0 | 63 | |
michael@0 | 64 | int needed_bigits = kUInt64Size / kBigitSize + 1; |
michael@0 | 65 | EnsureCapacity(needed_bigits); |
michael@0 | 66 | for (int i = 0; i < needed_bigits; ++i) { |
michael@0 | 67 | bigits_[i] = value & kBigitMask; |
michael@0 | 68 | value = value >> kBigitSize; |
michael@0 | 69 | } |
michael@0 | 70 | used_digits_ = needed_bigits; |
michael@0 | 71 | Clamp(); |
michael@0 | 72 | } |
michael@0 | 73 | |
michael@0 | 74 | |
michael@0 | 75 | void Bignum::AssignBignum(const Bignum& other) { |
michael@0 | 76 | exponent_ = other.exponent_; |
michael@0 | 77 | for (int i = 0; i < other.used_digits_; ++i) { |
michael@0 | 78 | bigits_[i] = other.bigits_[i]; |
michael@0 | 79 | } |
michael@0 | 80 | // Clear the excess digits (if there were any). |
michael@0 | 81 | for (int i = other.used_digits_; i < used_digits_; ++i) { |
michael@0 | 82 | bigits_[i] = 0; |
michael@0 | 83 | } |
michael@0 | 84 | used_digits_ = other.used_digits_; |
michael@0 | 85 | } |
michael@0 | 86 | |
michael@0 | 87 | |
michael@0 | 88 | static uint64_t ReadUInt64(Vector<const char> buffer, |
michael@0 | 89 | int from, |
michael@0 | 90 | int digits_to_read) { |
michael@0 | 91 | uint64_t result = 0; |
michael@0 | 92 | for (int i = from; i < from + digits_to_read; ++i) { |
michael@0 | 93 | int digit = buffer[i] - '0'; |
michael@0 | 94 | ASSERT(0 <= digit && digit <= 9); |
michael@0 | 95 | result = result * 10 + digit; |
michael@0 | 96 | } |
michael@0 | 97 | return result; |
michael@0 | 98 | } |
michael@0 | 99 | |
michael@0 | 100 | |
michael@0 | 101 | void Bignum::AssignDecimalString(Vector<const char> value) { |
michael@0 | 102 | // 2^64 = 18446744073709551616 > 10^19 |
michael@0 | 103 | const int kMaxUint64DecimalDigits = 19; |
michael@0 | 104 | Zero(); |
michael@0 | 105 | int length = value.length(); |
michael@0 | 106 | int pos = 0; |
michael@0 | 107 | // Let's just say that each digit needs 4 bits. |
michael@0 | 108 | while (length >= kMaxUint64DecimalDigits) { |
michael@0 | 109 | uint64_t digits = ReadUInt64(value, pos, kMaxUint64DecimalDigits); |
michael@0 | 110 | pos += kMaxUint64DecimalDigits; |
michael@0 | 111 | length -= kMaxUint64DecimalDigits; |
michael@0 | 112 | MultiplyByPowerOfTen(kMaxUint64DecimalDigits); |
michael@0 | 113 | AddUInt64(digits); |
michael@0 | 114 | } |
michael@0 | 115 | uint64_t digits = ReadUInt64(value, pos, length); |
michael@0 | 116 | MultiplyByPowerOfTen(length); |
michael@0 | 117 | AddUInt64(digits); |
michael@0 | 118 | Clamp(); |
michael@0 | 119 | } |
michael@0 | 120 | |
michael@0 | 121 | |
michael@0 | 122 | static int HexCharValue(char c) { |
michael@0 | 123 | if ('0' <= c && c <= '9') return c - '0'; |
michael@0 | 124 | if ('a' <= c && c <= 'f') return 10 + c - 'a'; |
michael@0 | 125 | if ('A' <= c && c <= 'F') return 10 + c - 'A'; |
michael@0 | 126 | UNREACHABLE(); |
michael@0 | 127 | return 0; // To make compiler happy. |
michael@0 | 128 | } |
michael@0 | 129 | |
michael@0 | 130 | |
michael@0 | 131 | void Bignum::AssignHexString(Vector<const char> value) { |
michael@0 | 132 | Zero(); |
michael@0 | 133 | int length = value.length(); |
michael@0 | 134 | |
michael@0 | 135 | int needed_bigits = length * 4 / kBigitSize + 1; |
michael@0 | 136 | EnsureCapacity(needed_bigits); |
michael@0 | 137 | int string_index = length - 1; |
michael@0 | 138 | for (int i = 0; i < needed_bigits - 1; ++i) { |
michael@0 | 139 | // These bigits are guaranteed to be "full". |
michael@0 | 140 | Chunk current_bigit = 0; |
michael@0 | 141 | for (int j = 0; j < kBigitSize / 4; j++) { |
michael@0 | 142 | current_bigit += HexCharValue(value[string_index--]) << (j * 4); |
michael@0 | 143 | } |
michael@0 | 144 | bigits_[i] = current_bigit; |
michael@0 | 145 | } |
michael@0 | 146 | used_digits_ = needed_bigits - 1; |
michael@0 | 147 | |
michael@0 | 148 | Chunk most_significant_bigit = 0; // Could be = 0; |
michael@0 | 149 | for (int j = 0; j <= string_index; ++j) { |
michael@0 | 150 | most_significant_bigit <<= 4; |
michael@0 | 151 | most_significant_bigit += HexCharValue(value[j]); |
michael@0 | 152 | } |
michael@0 | 153 | if (most_significant_bigit != 0) { |
michael@0 | 154 | bigits_[used_digits_] = most_significant_bigit; |
michael@0 | 155 | used_digits_++; |
michael@0 | 156 | } |
michael@0 | 157 | Clamp(); |
michael@0 | 158 | } |
michael@0 | 159 | |
michael@0 | 160 | |
michael@0 | 161 | void Bignum::AddUInt64(uint64_t operand) { |
michael@0 | 162 | if (operand == 0) return; |
michael@0 | 163 | Bignum other; |
michael@0 | 164 | other.AssignUInt64(operand); |
michael@0 | 165 | AddBignum(other); |
michael@0 | 166 | } |
michael@0 | 167 | |
michael@0 | 168 | |
michael@0 | 169 | void Bignum::AddBignum(const Bignum& other) { |
michael@0 | 170 | ASSERT(IsClamped()); |
michael@0 | 171 | ASSERT(other.IsClamped()); |
michael@0 | 172 | |
michael@0 | 173 | // If this has a greater exponent than other append zero-bigits to this. |
michael@0 | 174 | // After this call exponent_ <= other.exponent_. |
michael@0 | 175 | Align(other); |
michael@0 | 176 | |
michael@0 | 177 | // There are two possibilities: |
michael@0 | 178 | // aaaaaaaaaaa 0000 (where the 0s represent a's exponent) |
michael@0 | 179 | // bbbbb 00000000 |
michael@0 | 180 | // ---------------- |
michael@0 | 181 | // ccccccccccc 0000 |
michael@0 | 182 | // or |
michael@0 | 183 | // aaaaaaaaaa 0000 |
michael@0 | 184 | // bbbbbbbbb 0000000 |
michael@0 | 185 | // ----------------- |
michael@0 | 186 | // cccccccccccc 0000 |
michael@0 | 187 | // In both cases we might need a carry bigit. |
michael@0 | 188 | |
michael@0 | 189 | EnsureCapacity(1 + Max(BigitLength(), other.BigitLength()) - exponent_); |
michael@0 | 190 | Chunk carry = 0; |
michael@0 | 191 | int bigit_pos = other.exponent_ - exponent_; |
michael@0 | 192 | ASSERT(bigit_pos >= 0); |
michael@0 | 193 | for (int i = 0; i < other.used_digits_; ++i) { |
michael@0 | 194 | Chunk sum = bigits_[bigit_pos] + other.bigits_[i] + carry; |
michael@0 | 195 | bigits_[bigit_pos] = sum & kBigitMask; |
michael@0 | 196 | carry = sum >> kBigitSize; |
michael@0 | 197 | bigit_pos++; |
michael@0 | 198 | } |
michael@0 | 199 | |
michael@0 | 200 | while (carry != 0) { |
michael@0 | 201 | Chunk sum = bigits_[bigit_pos] + carry; |
michael@0 | 202 | bigits_[bigit_pos] = sum & kBigitMask; |
michael@0 | 203 | carry = sum >> kBigitSize; |
michael@0 | 204 | bigit_pos++; |
michael@0 | 205 | } |
michael@0 | 206 | used_digits_ = Max(bigit_pos, used_digits_); |
michael@0 | 207 | ASSERT(IsClamped()); |
michael@0 | 208 | } |
michael@0 | 209 | |
michael@0 | 210 | |
michael@0 | 211 | void Bignum::SubtractBignum(const Bignum& other) { |
michael@0 | 212 | ASSERT(IsClamped()); |
michael@0 | 213 | ASSERT(other.IsClamped()); |
michael@0 | 214 | // We require this to be bigger than other. |
michael@0 | 215 | ASSERT(LessEqual(other, *this)); |
michael@0 | 216 | |
michael@0 | 217 | Align(other); |
michael@0 | 218 | |
michael@0 | 219 | int offset = other.exponent_ - exponent_; |
michael@0 | 220 | Chunk borrow = 0; |
michael@0 | 221 | int i; |
michael@0 | 222 | for (i = 0; i < other.used_digits_; ++i) { |
michael@0 | 223 | ASSERT((borrow == 0) || (borrow == 1)); |
michael@0 | 224 | Chunk difference = bigits_[i + offset] - other.bigits_[i] - borrow; |
michael@0 | 225 | bigits_[i + offset] = difference & kBigitMask; |
michael@0 | 226 | borrow = difference >> (kChunkSize - 1); |
michael@0 | 227 | } |
michael@0 | 228 | while (borrow != 0) { |
michael@0 | 229 | Chunk difference = bigits_[i + offset] - borrow; |
michael@0 | 230 | bigits_[i + offset] = difference & kBigitMask; |
michael@0 | 231 | borrow = difference >> (kChunkSize - 1); |
michael@0 | 232 | ++i; |
michael@0 | 233 | } |
michael@0 | 234 | Clamp(); |
michael@0 | 235 | } |
michael@0 | 236 | |
michael@0 | 237 | |
michael@0 | 238 | void Bignum::ShiftLeft(int shift_amount) { |
michael@0 | 239 | if (used_digits_ == 0) return; |
michael@0 | 240 | exponent_ += shift_amount / kBigitSize; |
michael@0 | 241 | int local_shift = shift_amount % kBigitSize; |
michael@0 | 242 | EnsureCapacity(used_digits_ + 1); |
michael@0 | 243 | BigitsShiftLeft(local_shift); |
michael@0 | 244 | } |
michael@0 | 245 | |
michael@0 | 246 | |
michael@0 | 247 | void Bignum::MultiplyByUInt32(uint32_t factor) { |
michael@0 | 248 | if (factor == 1) return; |
michael@0 | 249 | if (factor == 0) { |
michael@0 | 250 | Zero(); |
michael@0 | 251 | return; |
michael@0 | 252 | } |
michael@0 | 253 | if (used_digits_ == 0) return; |
michael@0 | 254 | |
michael@0 | 255 | // The product of a bigit with the factor is of size kBigitSize + 32. |
michael@0 | 256 | // Assert that this number + 1 (for the carry) fits into double chunk. |
michael@0 | 257 | ASSERT(kDoubleChunkSize >= kBigitSize + 32 + 1); |
michael@0 | 258 | DoubleChunk carry = 0; |
michael@0 | 259 | for (int i = 0; i < used_digits_; ++i) { |
michael@0 | 260 | DoubleChunk product = static_cast<DoubleChunk>(factor) * bigits_[i] + carry; |
michael@0 | 261 | bigits_[i] = static_cast<Chunk>(product & kBigitMask); |
michael@0 | 262 | carry = (product >> kBigitSize); |
michael@0 | 263 | } |
michael@0 | 264 | while (carry != 0) { |
michael@0 | 265 | EnsureCapacity(used_digits_ + 1); |
michael@0 | 266 | bigits_[used_digits_] = carry & kBigitMask; |
michael@0 | 267 | used_digits_++; |
michael@0 | 268 | carry >>= kBigitSize; |
michael@0 | 269 | } |
michael@0 | 270 | } |
michael@0 | 271 | |
michael@0 | 272 | |
michael@0 | 273 | void Bignum::MultiplyByUInt64(uint64_t factor) { |
michael@0 | 274 | if (factor == 1) return; |
michael@0 | 275 | if (factor == 0) { |
michael@0 | 276 | Zero(); |
michael@0 | 277 | return; |
michael@0 | 278 | } |
michael@0 | 279 | ASSERT(kBigitSize < 32); |
michael@0 | 280 | uint64_t carry = 0; |
michael@0 | 281 | uint64_t low = factor & 0xFFFFFFFF; |
michael@0 | 282 | uint64_t high = factor >> 32; |
michael@0 | 283 | for (int i = 0; i < used_digits_; ++i) { |
michael@0 | 284 | uint64_t product_low = low * bigits_[i]; |
michael@0 | 285 | uint64_t product_high = high * bigits_[i]; |
michael@0 | 286 | uint64_t tmp = (carry & kBigitMask) + product_low; |
michael@0 | 287 | bigits_[i] = tmp & kBigitMask; |
michael@0 | 288 | carry = (carry >> kBigitSize) + (tmp >> kBigitSize) + |
michael@0 | 289 | (product_high << (32 - kBigitSize)); |
michael@0 | 290 | } |
michael@0 | 291 | while (carry != 0) { |
michael@0 | 292 | EnsureCapacity(used_digits_ + 1); |
michael@0 | 293 | bigits_[used_digits_] = carry & kBigitMask; |
michael@0 | 294 | used_digits_++; |
michael@0 | 295 | carry >>= kBigitSize; |
michael@0 | 296 | } |
michael@0 | 297 | } |
michael@0 | 298 | |
michael@0 | 299 | |
michael@0 | 300 | void Bignum::MultiplyByPowerOfTen(int exponent) { |
michael@0 | 301 | const uint64_t kFive27 = UINT64_2PART_C(0x6765c793, fa10079d); |
michael@0 | 302 | const uint16_t kFive1 = 5; |
michael@0 | 303 | const uint16_t kFive2 = kFive1 * 5; |
michael@0 | 304 | const uint16_t kFive3 = kFive2 * 5; |
michael@0 | 305 | const uint16_t kFive4 = kFive3 * 5; |
michael@0 | 306 | const uint16_t kFive5 = kFive4 * 5; |
michael@0 | 307 | const uint16_t kFive6 = kFive5 * 5; |
michael@0 | 308 | const uint32_t kFive7 = kFive6 * 5; |
michael@0 | 309 | const uint32_t kFive8 = kFive7 * 5; |
michael@0 | 310 | const uint32_t kFive9 = kFive8 * 5; |
michael@0 | 311 | const uint32_t kFive10 = kFive9 * 5; |
michael@0 | 312 | const uint32_t kFive11 = kFive10 * 5; |
michael@0 | 313 | const uint32_t kFive12 = kFive11 * 5; |
michael@0 | 314 | const uint32_t kFive13 = kFive12 * 5; |
michael@0 | 315 | const uint32_t kFive1_to_12[] = |
michael@0 | 316 | { kFive1, kFive2, kFive3, kFive4, kFive5, kFive6, |
michael@0 | 317 | kFive7, kFive8, kFive9, kFive10, kFive11, kFive12 }; |
michael@0 | 318 | |
michael@0 | 319 | ASSERT(exponent >= 0); |
michael@0 | 320 | if (exponent == 0) return; |
michael@0 | 321 | if (used_digits_ == 0) return; |
michael@0 | 322 | |
michael@0 | 323 | // We shift by exponent at the end just before returning. |
michael@0 | 324 | int remaining_exponent = exponent; |
michael@0 | 325 | while (remaining_exponent >= 27) { |
michael@0 | 326 | MultiplyByUInt64(kFive27); |
michael@0 | 327 | remaining_exponent -= 27; |
michael@0 | 328 | } |
michael@0 | 329 | while (remaining_exponent >= 13) { |
michael@0 | 330 | MultiplyByUInt32(kFive13); |
michael@0 | 331 | remaining_exponent -= 13; |
michael@0 | 332 | } |
michael@0 | 333 | if (remaining_exponent > 0) { |
michael@0 | 334 | MultiplyByUInt32(kFive1_to_12[remaining_exponent - 1]); |
michael@0 | 335 | } |
michael@0 | 336 | ShiftLeft(exponent); |
michael@0 | 337 | } |
michael@0 | 338 | |
michael@0 | 339 | |
michael@0 | 340 | void Bignum::Square() { |
michael@0 | 341 | ASSERT(IsClamped()); |
michael@0 | 342 | int product_length = 2 * used_digits_; |
michael@0 | 343 | EnsureCapacity(product_length); |
michael@0 | 344 | |
michael@0 | 345 | // Comba multiplication: compute each column separately. |
michael@0 | 346 | // Example: r = a2a1a0 * b2b1b0. |
michael@0 | 347 | // r = 1 * a0b0 + |
michael@0 | 348 | // 10 * (a1b0 + a0b1) + |
michael@0 | 349 | // 100 * (a2b0 + a1b1 + a0b2) + |
michael@0 | 350 | // 1000 * (a2b1 + a1b2) + |
michael@0 | 351 | // 10000 * a2b2 |
michael@0 | 352 | // |
michael@0 | 353 | // In the worst case we have to accumulate nb-digits products of digit*digit. |
michael@0 | 354 | // |
michael@0 | 355 | // Assert that the additional number of bits in a DoubleChunk are enough to |
michael@0 | 356 | // sum up used_digits of Bigit*Bigit. |
michael@0 | 357 | if ((1 << (2 * (kChunkSize - kBigitSize))) <= used_digits_) { |
michael@0 | 358 | UNIMPLEMENTED(); |
michael@0 | 359 | } |
michael@0 | 360 | DoubleChunk accumulator = 0; |
michael@0 | 361 | // First shift the digits so we don't overwrite them. |
michael@0 | 362 | int copy_offset = used_digits_; |
michael@0 | 363 | for (int i = 0; i < used_digits_; ++i) { |
michael@0 | 364 | bigits_[copy_offset + i] = bigits_[i]; |
michael@0 | 365 | } |
michael@0 | 366 | // We have two loops to avoid some 'if's in the loop. |
michael@0 | 367 | for (int i = 0; i < used_digits_; ++i) { |
michael@0 | 368 | // Process temporary digit i with power i. |
michael@0 | 369 | // The sum of the two indices must be equal to i. |
michael@0 | 370 | int bigit_index1 = i; |
michael@0 | 371 | int bigit_index2 = 0; |
michael@0 | 372 | // Sum all of the sub-products. |
michael@0 | 373 | while (bigit_index1 >= 0) { |
michael@0 | 374 | Chunk chunk1 = bigits_[copy_offset + bigit_index1]; |
michael@0 | 375 | Chunk chunk2 = bigits_[copy_offset + bigit_index2]; |
michael@0 | 376 | accumulator += static_cast<DoubleChunk>(chunk1) * chunk2; |
michael@0 | 377 | bigit_index1--; |
michael@0 | 378 | bigit_index2++; |
michael@0 | 379 | } |
michael@0 | 380 | bigits_[i] = static_cast<Chunk>(accumulator) & kBigitMask; |
michael@0 | 381 | accumulator >>= kBigitSize; |
michael@0 | 382 | } |
michael@0 | 383 | for (int i = used_digits_; i < product_length; ++i) { |
michael@0 | 384 | int bigit_index1 = used_digits_ - 1; |
michael@0 | 385 | int bigit_index2 = i - bigit_index1; |
michael@0 | 386 | // Invariant: sum of both indices is again equal to i. |
michael@0 | 387 | // Inner loop runs 0 times on last iteration, emptying accumulator. |
michael@0 | 388 | while (bigit_index2 < used_digits_) { |
michael@0 | 389 | Chunk chunk1 = bigits_[copy_offset + bigit_index1]; |
michael@0 | 390 | Chunk chunk2 = bigits_[copy_offset + bigit_index2]; |
michael@0 | 391 | accumulator += static_cast<DoubleChunk>(chunk1) * chunk2; |
michael@0 | 392 | bigit_index1--; |
michael@0 | 393 | bigit_index2++; |
michael@0 | 394 | } |
michael@0 | 395 | // The overwritten bigits_[i] will never be read in further loop iterations, |
michael@0 | 396 | // because bigit_index1 and bigit_index2 are always greater |
michael@0 | 397 | // than i - used_digits_. |
michael@0 | 398 | bigits_[i] = static_cast<Chunk>(accumulator) & kBigitMask; |
michael@0 | 399 | accumulator >>= kBigitSize; |
michael@0 | 400 | } |
michael@0 | 401 | // Since the result was guaranteed to lie inside the number the |
michael@0 | 402 | // accumulator must be 0 now. |
michael@0 | 403 | ASSERT(accumulator == 0); |
michael@0 | 404 | |
michael@0 | 405 | // Don't forget to update the used_digits and the exponent. |
michael@0 | 406 | used_digits_ = product_length; |
michael@0 | 407 | exponent_ *= 2; |
michael@0 | 408 | Clamp(); |
michael@0 | 409 | } |
michael@0 | 410 | |
michael@0 | 411 | |
michael@0 | 412 | void Bignum::AssignPowerUInt16(uint16_t base, int power_exponent) { |
michael@0 | 413 | ASSERT(base != 0); |
michael@0 | 414 | ASSERT(power_exponent >= 0); |
michael@0 | 415 | if (power_exponent == 0) { |
michael@0 | 416 | AssignUInt16(1); |
michael@0 | 417 | return; |
michael@0 | 418 | } |
michael@0 | 419 | Zero(); |
michael@0 | 420 | int shifts = 0; |
michael@0 | 421 | // We expect base to be in range 2-32, and most often to be 10. |
michael@0 | 422 | // It does not make much sense to implement different algorithms for counting |
michael@0 | 423 | // the bits. |
michael@0 | 424 | while ((base & 1) == 0) { |
michael@0 | 425 | base >>= 1; |
michael@0 | 426 | shifts++; |
michael@0 | 427 | } |
michael@0 | 428 | int bit_size = 0; |
michael@0 | 429 | int tmp_base = base; |
michael@0 | 430 | while (tmp_base != 0) { |
michael@0 | 431 | tmp_base >>= 1; |
michael@0 | 432 | bit_size++; |
michael@0 | 433 | } |
michael@0 | 434 | int final_size = bit_size * power_exponent; |
michael@0 | 435 | // 1 extra bigit for the shifting, and one for rounded final_size. |
michael@0 | 436 | EnsureCapacity(final_size / kBigitSize + 2); |
michael@0 | 437 | |
michael@0 | 438 | // Left to Right exponentiation. |
michael@0 | 439 | int mask = 1; |
michael@0 | 440 | while (power_exponent >= mask) mask <<= 1; |
michael@0 | 441 | |
michael@0 | 442 | // The mask is now pointing to the bit above the most significant 1-bit of |
michael@0 | 443 | // power_exponent. |
michael@0 | 444 | // Get rid of first 1-bit; |
michael@0 | 445 | mask >>= 2; |
michael@0 | 446 | uint64_t this_value = base; |
michael@0 | 447 | |
michael@0 | 448 | bool delayed_multipliciation = false; |
michael@0 | 449 | const uint64_t max_32bits = 0xFFFFFFFF; |
michael@0 | 450 | while (mask != 0 && this_value <= max_32bits) { |
michael@0 | 451 | this_value = this_value * this_value; |
michael@0 | 452 | // Verify that there is enough space in this_value to perform the |
michael@0 | 453 | // multiplication. The first bit_size bits must be 0. |
michael@0 | 454 | if ((power_exponent & mask) != 0) { |
michael@0 | 455 | uint64_t base_bits_mask = |
michael@0 | 456 | ~((static_cast<uint64_t>(1) << (64 - bit_size)) - 1); |
michael@0 | 457 | bool high_bits_zero = (this_value & base_bits_mask) == 0; |
michael@0 | 458 | if (high_bits_zero) { |
michael@0 | 459 | this_value *= base; |
michael@0 | 460 | } else { |
michael@0 | 461 | delayed_multipliciation = true; |
michael@0 | 462 | } |
michael@0 | 463 | } |
michael@0 | 464 | mask >>= 1; |
michael@0 | 465 | } |
michael@0 | 466 | AssignUInt64(this_value); |
michael@0 | 467 | if (delayed_multipliciation) { |
michael@0 | 468 | MultiplyByUInt32(base); |
michael@0 | 469 | } |
michael@0 | 470 | |
michael@0 | 471 | // Now do the same thing as a bignum. |
michael@0 | 472 | while (mask != 0) { |
michael@0 | 473 | Square(); |
michael@0 | 474 | if ((power_exponent & mask) != 0) { |
michael@0 | 475 | MultiplyByUInt32(base); |
michael@0 | 476 | } |
michael@0 | 477 | mask >>= 1; |
michael@0 | 478 | } |
michael@0 | 479 | |
michael@0 | 480 | // And finally add the saved shifts. |
michael@0 | 481 | ShiftLeft(shifts * power_exponent); |
michael@0 | 482 | } |
michael@0 | 483 | |
michael@0 | 484 | |
michael@0 | 485 | // Precondition: this/other < 16bit. |
michael@0 | 486 | uint16_t Bignum::DivideModuloIntBignum(const Bignum& other) { |
michael@0 | 487 | ASSERT(IsClamped()); |
michael@0 | 488 | ASSERT(other.IsClamped()); |
michael@0 | 489 | ASSERT(other.used_digits_ > 0); |
michael@0 | 490 | |
michael@0 | 491 | // Easy case: if we have less digits than the divisor than the result is 0. |
michael@0 | 492 | // Note: this handles the case where this == 0, too. |
michael@0 | 493 | if (BigitLength() < other.BigitLength()) { |
michael@0 | 494 | return 0; |
michael@0 | 495 | } |
michael@0 | 496 | |
michael@0 | 497 | Align(other); |
michael@0 | 498 | |
michael@0 | 499 | uint16_t result = 0; |
michael@0 | 500 | |
michael@0 | 501 | // Start by removing multiples of 'other' until both numbers have the same |
michael@0 | 502 | // number of digits. |
michael@0 | 503 | while (BigitLength() > other.BigitLength()) { |
michael@0 | 504 | // This naive approach is extremely inefficient if `this` divided by other |
michael@0 | 505 | // is big. This function is implemented for doubleToString where |
michael@0 | 506 | // the result should be small (less than 10). |
michael@0 | 507 | ASSERT(other.bigits_[other.used_digits_ - 1] >= ((1 << kBigitSize) / 16)); |
michael@0 | 508 | // Remove the multiples of the first digit. |
michael@0 | 509 | // Example this = 23 and other equals 9. -> Remove 2 multiples. |
michael@0 | 510 | result += bigits_[used_digits_ - 1]; |
michael@0 | 511 | SubtractTimes(other, bigits_[used_digits_ - 1]); |
michael@0 | 512 | } |
michael@0 | 513 | |
michael@0 | 514 | ASSERT(BigitLength() == other.BigitLength()); |
michael@0 | 515 | |
michael@0 | 516 | // Both bignums are at the same length now. |
michael@0 | 517 | // Since other has more than 0 digits we know that the access to |
michael@0 | 518 | // bigits_[used_digits_ - 1] is safe. |
michael@0 | 519 | Chunk this_bigit = bigits_[used_digits_ - 1]; |
michael@0 | 520 | Chunk other_bigit = other.bigits_[other.used_digits_ - 1]; |
michael@0 | 521 | |
michael@0 | 522 | if (other.used_digits_ == 1) { |
michael@0 | 523 | // Shortcut for easy (and common) case. |
michael@0 | 524 | int quotient = this_bigit / other_bigit; |
michael@0 | 525 | bigits_[used_digits_ - 1] = this_bigit - other_bigit * quotient; |
michael@0 | 526 | result += quotient; |
michael@0 | 527 | Clamp(); |
michael@0 | 528 | return result; |
michael@0 | 529 | } |
michael@0 | 530 | |
michael@0 | 531 | int division_estimate = this_bigit / (other_bigit + 1); |
michael@0 | 532 | result += division_estimate; |
michael@0 | 533 | SubtractTimes(other, division_estimate); |
michael@0 | 534 | |
michael@0 | 535 | if (other_bigit * (division_estimate + 1) > this_bigit) { |
michael@0 | 536 | // No need to even try to subtract. Even if other's remaining digits were 0 |
michael@0 | 537 | // another subtraction would be too much. |
michael@0 | 538 | return result; |
michael@0 | 539 | } |
michael@0 | 540 | |
michael@0 | 541 | while (LessEqual(other, *this)) { |
michael@0 | 542 | SubtractBignum(other); |
michael@0 | 543 | result++; |
michael@0 | 544 | } |
michael@0 | 545 | return result; |
michael@0 | 546 | } |
michael@0 | 547 | |
michael@0 | 548 | |
michael@0 | 549 | template<typename S> |
michael@0 | 550 | static int SizeInHexChars(S number) { |
michael@0 | 551 | ASSERT(number > 0); |
michael@0 | 552 | int result = 0; |
michael@0 | 553 | while (number != 0) { |
michael@0 | 554 | number >>= 4; |
michael@0 | 555 | result++; |
michael@0 | 556 | } |
michael@0 | 557 | return result; |
michael@0 | 558 | } |
michael@0 | 559 | |
michael@0 | 560 | |
michael@0 | 561 | static char HexCharOfValue(int value) { |
michael@0 | 562 | ASSERT(0 <= value && value <= 16); |
michael@0 | 563 | if (value < 10) return value + '0'; |
michael@0 | 564 | return value - 10 + 'A'; |
michael@0 | 565 | } |
michael@0 | 566 | |
michael@0 | 567 | |
michael@0 | 568 | bool Bignum::ToHexString(char* buffer, int buffer_size) const { |
michael@0 | 569 | ASSERT(IsClamped()); |
michael@0 | 570 | // Each bigit must be printable as separate hex-character. |
michael@0 | 571 | ASSERT(kBigitSize % 4 == 0); |
michael@0 | 572 | const int kHexCharsPerBigit = kBigitSize / 4; |
michael@0 | 573 | |
michael@0 | 574 | if (used_digits_ == 0) { |
michael@0 | 575 | if (buffer_size < 2) return false; |
michael@0 | 576 | buffer[0] = '0'; |
michael@0 | 577 | buffer[1] = '\0'; |
michael@0 | 578 | return true; |
michael@0 | 579 | } |
michael@0 | 580 | // We add 1 for the terminating '\0' character. |
michael@0 | 581 | int needed_chars = (BigitLength() - 1) * kHexCharsPerBigit + |
michael@0 | 582 | SizeInHexChars(bigits_[used_digits_ - 1]) + 1; |
michael@0 | 583 | if (needed_chars > buffer_size) return false; |
michael@0 | 584 | int string_index = needed_chars - 1; |
michael@0 | 585 | buffer[string_index--] = '\0'; |
michael@0 | 586 | for (int i = 0; i < exponent_; ++i) { |
michael@0 | 587 | for (int j = 0; j < kHexCharsPerBigit; ++j) { |
michael@0 | 588 | buffer[string_index--] = '0'; |
michael@0 | 589 | } |
michael@0 | 590 | } |
michael@0 | 591 | for (int i = 0; i < used_digits_ - 1; ++i) { |
michael@0 | 592 | Chunk current_bigit = bigits_[i]; |
michael@0 | 593 | for (int j = 0; j < kHexCharsPerBigit; ++j) { |
michael@0 | 594 | buffer[string_index--] = HexCharOfValue(current_bigit & 0xF); |
michael@0 | 595 | current_bigit >>= 4; |
michael@0 | 596 | } |
michael@0 | 597 | } |
michael@0 | 598 | // And finally the last bigit. |
michael@0 | 599 | Chunk most_significant_bigit = bigits_[used_digits_ - 1]; |
michael@0 | 600 | while (most_significant_bigit != 0) { |
michael@0 | 601 | buffer[string_index--] = HexCharOfValue(most_significant_bigit & 0xF); |
michael@0 | 602 | most_significant_bigit >>= 4; |
michael@0 | 603 | } |
michael@0 | 604 | return true; |
michael@0 | 605 | } |
michael@0 | 606 | |
michael@0 | 607 | |
michael@0 | 608 | Bignum::Chunk Bignum::BigitAt(int index) const { |
michael@0 | 609 | if (index >= BigitLength()) return 0; |
michael@0 | 610 | if (index < exponent_) return 0; |
michael@0 | 611 | return bigits_[index - exponent_]; |
michael@0 | 612 | } |
michael@0 | 613 | |
michael@0 | 614 | |
michael@0 | 615 | int Bignum::Compare(const Bignum& a, const Bignum& b) { |
michael@0 | 616 | ASSERT(a.IsClamped()); |
michael@0 | 617 | ASSERT(b.IsClamped()); |
michael@0 | 618 | int bigit_length_a = a.BigitLength(); |
michael@0 | 619 | int bigit_length_b = b.BigitLength(); |
michael@0 | 620 | if (bigit_length_a < bigit_length_b) return -1; |
michael@0 | 621 | if (bigit_length_a > bigit_length_b) return +1; |
michael@0 | 622 | for (int i = bigit_length_a - 1; i >= Min(a.exponent_, b.exponent_); --i) { |
michael@0 | 623 | Chunk bigit_a = a.BigitAt(i); |
michael@0 | 624 | Chunk bigit_b = b.BigitAt(i); |
michael@0 | 625 | if (bigit_a < bigit_b) return -1; |
michael@0 | 626 | if (bigit_a > bigit_b) return +1; |
michael@0 | 627 | // Otherwise they are equal up to this digit. Try the next digit. |
michael@0 | 628 | } |
michael@0 | 629 | return 0; |
michael@0 | 630 | } |
michael@0 | 631 | |
michael@0 | 632 | |
michael@0 | 633 | int Bignum::PlusCompare(const Bignum& a, const Bignum& b, const Bignum& c) { |
michael@0 | 634 | ASSERT(a.IsClamped()); |
michael@0 | 635 | ASSERT(b.IsClamped()); |
michael@0 | 636 | ASSERT(c.IsClamped()); |
michael@0 | 637 | if (a.BigitLength() < b.BigitLength()) { |
michael@0 | 638 | return PlusCompare(b, a, c); |
michael@0 | 639 | } |
michael@0 | 640 | if (a.BigitLength() + 1 < c.BigitLength()) return -1; |
michael@0 | 641 | if (a.BigitLength() > c.BigitLength()) return +1; |
michael@0 | 642 | // The exponent encodes 0-bigits. So if there are more 0-digits in 'a' than |
michael@0 | 643 | // 'b' has digits, then the bigit-length of 'a'+'b' must be equal to the one |
michael@0 | 644 | // of 'a'. |
michael@0 | 645 | if (a.exponent_ >= b.BigitLength() && a.BigitLength() < c.BigitLength()) { |
michael@0 | 646 | return -1; |
michael@0 | 647 | } |
michael@0 | 648 | |
michael@0 | 649 | Chunk borrow = 0; |
michael@0 | 650 | // Starting at min_exponent all digits are == 0. So no need to compare them. |
michael@0 | 651 | int min_exponent = Min(Min(a.exponent_, b.exponent_), c.exponent_); |
michael@0 | 652 | for (int i = c.BigitLength() - 1; i >= min_exponent; --i) { |
michael@0 | 653 | Chunk chunk_a = a.BigitAt(i); |
michael@0 | 654 | Chunk chunk_b = b.BigitAt(i); |
michael@0 | 655 | Chunk chunk_c = c.BigitAt(i); |
michael@0 | 656 | Chunk sum = chunk_a + chunk_b; |
michael@0 | 657 | if (sum > chunk_c + borrow) { |
michael@0 | 658 | return +1; |
michael@0 | 659 | } else { |
michael@0 | 660 | borrow = chunk_c + borrow - sum; |
michael@0 | 661 | if (borrow > 1) return -1; |
michael@0 | 662 | borrow <<= kBigitSize; |
michael@0 | 663 | } |
michael@0 | 664 | } |
michael@0 | 665 | if (borrow == 0) return 0; |
michael@0 | 666 | return -1; |
michael@0 | 667 | } |
michael@0 | 668 | |
michael@0 | 669 | |
michael@0 | 670 | void Bignum::Clamp() { |
michael@0 | 671 | while (used_digits_ > 0 && bigits_[used_digits_ - 1] == 0) { |
michael@0 | 672 | used_digits_--; |
michael@0 | 673 | } |
michael@0 | 674 | if (used_digits_ == 0) { |
michael@0 | 675 | // Zero. |
michael@0 | 676 | exponent_ = 0; |
michael@0 | 677 | } |
michael@0 | 678 | } |
michael@0 | 679 | |
michael@0 | 680 | |
michael@0 | 681 | bool Bignum::IsClamped() const { |
michael@0 | 682 | return used_digits_ == 0 || bigits_[used_digits_ - 1] != 0; |
michael@0 | 683 | } |
michael@0 | 684 | |
michael@0 | 685 | |
michael@0 | 686 | void Bignum::Zero() { |
michael@0 | 687 | for (int i = 0; i < used_digits_; ++i) { |
michael@0 | 688 | bigits_[i] = 0; |
michael@0 | 689 | } |
michael@0 | 690 | used_digits_ = 0; |
michael@0 | 691 | exponent_ = 0; |
michael@0 | 692 | } |
michael@0 | 693 | |
michael@0 | 694 | |
michael@0 | 695 | void Bignum::Align(const Bignum& other) { |
michael@0 | 696 | if (exponent_ > other.exponent_) { |
michael@0 | 697 | // If "X" represents a "hidden" digit (by the exponent) then we are in the |
michael@0 | 698 | // following case (a == this, b == other): |
michael@0 | 699 | // a: aaaaaaXXXX or a: aaaaaXXX |
michael@0 | 700 | // b: bbbbbbX b: bbbbbbbbXX |
michael@0 | 701 | // We replace some of the hidden digits (X) of a with 0 digits. |
michael@0 | 702 | // a: aaaaaa000X or a: aaaaa0XX |
michael@0 | 703 | int zero_digits = exponent_ - other.exponent_; |
michael@0 | 704 | EnsureCapacity(used_digits_ + zero_digits); |
michael@0 | 705 | for (int i = used_digits_ - 1; i >= 0; --i) { |
michael@0 | 706 | bigits_[i + zero_digits] = bigits_[i]; |
michael@0 | 707 | } |
michael@0 | 708 | for (int i = 0; i < zero_digits; ++i) { |
michael@0 | 709 | bigits_[i] = 0; |
michael@0 | 710 | } |
michael@0 | 711 | used_digits_ += zero_digits; |
michael@0 | 712 | exponent_ -= zero_digits; |
michael@0 | 713 | ASSERT(used_digits_ >= 0); |
michael@0 | 714 | ASSERT(exponent_ >= 0); |
michael@0 | 715 | } |
michael@0 | 716 | } |
michael@0 | 717 | |
michael@0 | 718 | |
michael@0 | 719 | void Bignum::BigitsShiftLeft(int shift_amount) { |
michael@0 | 720 | ASSERT(shift_amount < kBigitSize); |
michael@0 | 721 | ASSERT(shift_amount >= 0); |
michael@0 | 722 | Chunk carry = 0; |
michael@0 | 723 | for (int i = 0; i < used_digits_; ++i) { |
michael@0 | 724 | Chunk new_carry = bigits_[i] >> (kBigitSize - shift_amount); |
michael@0 | 725 | bigits_[i] = ((bigits_[i] << shift_amount) + carry) & kBigitMask; |
michael@0 | 726 | carry = new_carry; |
michael@0 | 727 | } |
michael@0 | 728 | if (carry != 0) { |
michael@0 | 729 | bigits_[used_digits_] = carry; |
michael@0 | 730 | used_digits_++; |
michael@0 | 731 | } |
michael@0 | 732 | } |
michael@0 | 733 | |
michael@0 | 734 | |
michael@0 | 735 | void Bignum::SubtractTimes(const Bignum& other, int factor) { |
michael@0 | 736 | ASSERT(exponent_ <= other.exponent_); |
michael@0 | 737 | if (factor < 3) { |
michael@0 | 738 | for (int i = 0; i < factor; ++i) { |
michael@0 | 739 | SubtractBignum(other); |
michael@0 | 740 | } |
michael@0 | 741 | return; |
michael@0 | 742 | } |
michael@0 | 743 | Chunk borrow = 0; |
michael@0 | 744 | int exponent_diff = other.exponent_ - exponent_; |
michael@0 | 745 | for (int i = 0; i < other.used_digits_; ++i) { |
michael@0 | 746 | DoubleChunk product = static_cast<DoubleChunk>(factor) * other.bigits_[i]; |
michael@0 | 747 | DoubleChunk remove = borrow + product; |
michael@0 | 748 | Chunk difference = bigits_[i + exponent_diff] - (remove & kBigitMask); |
michael@0 | 749 | bigits_[i + exponent_diff] = difference & kBigitMask; |
michael@0 | 750 | borrow = static_cast<Chunk>((difference >> (kChunkSize - 1)) + |
michael@0 | 751 | (remove >> kBigitSize)); |
michael@0 | 752 | } |
michael@0 | 753 | for (int i = other.used_digits_ + exponent_diff; i < used_digits_; ++i) { |
michael@0 | 754 | if (borrow == 0) return; |
michael@0 | 755 | Chunk difference = bigits_[i] - borrow; |
michael@0 | 756 | bigits_[i] = difference & kBigitMask; |
michael@0 | 757 | borrow = difference >> (kChunkSize - 1); |
michael@0 | 758 | } |
michael@0 | 759 | Clamp(); |
michael@0 | 760 | } |
michael@0 | 761 | |
michael@0 | 762 | |
michael@0 | 763 | } // namespace double_conversion |