mfbt/double-conversion/bignum.cc

Tue, 06 Jan 2015 21:39:09 +0100

author
Michael Schloh von Bennewitz <michael@schloh.com>
date
Tue, 06 Jan 2015 21:39:09 +0100
branch
TOR_BUG_9701
changeset 8
97036ab72558
permissions
-rw-r--r--

Conditionally force memory storage according to privacy.thirdparty.isolate;
This solves Tor bug #9701, complying with disk avoidance documented in
https://www.torproject.org/projects/torbrowser/design/#disk-avoidance.

     1 // Copyright 2010 the V8 project authors. All rights reserved.
     2 // Redistribution and use in source and binary forms, with or without
     3 // modification, are permitted provided that the following conditions are
     4 // met:
     5 //
     6 //     * Redistributions of source code must retain the above copyright
     7 //       notice, this list of conditions and the following disclaimer.
     8 //     * Redistributions in binary form must reproduce the above
     9 //       copyright notice, this list of conditions and the following
    10 //       disclaimer in the documentation and/or other materials provided
    11 //       with the distribution.
    12 //     * Neither the name of Google Inc. nor the names of its
    13 //       contributors may be used to endorse or promote products derived
    14 //       from this software without specific prior written permission.
    15 //
    16 // THIS SOFTWARE IS PROVIDED BY THE COPYRIGHT HOLDERS AND CONTRIBUTORS
    17 // "AS IS" AND ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT
    18 // LIMITED TO, THE IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR
    19 // A PARTICULAR PURPOSE ARE DISCLAIMED. IN NO EVENT SHALL THE COPYRIGHT
    20 // OWNER OR CONTRIBUTORS BE LIABLE FOR ANY DIRECT, INDIRECT, INCIDENTAL,
    21 // SPECIAL, EXEMPLARY, OR CONSEQUENTIAL DAMAGES (INCLUDING, BUT NOT
    22 // LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS OR SERVICES; LOSS OF USE,
    23 // DATA, OR PROFITS; OR BUSINESS INTERRUPTION) HOWEVER CAUSED AND ON ANY
    24 // THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT LIABILITY, OR TORT
    25 // (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY OUT OF THE USE
    26 // OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF SUCH DAMAGE.
    28 #include "bignum.h"
    29 #include "utils.h"
    31 namespace double_conversion {
    33 Bignum::Bignum()
    34     : bigits_(bigits_buffer_, kBigitCapacity), used_digits_(0), exponent_(0) {
    35   for (int i = 0; i < kBigitCapacity; ++i) {
    36     bigits_[i] = 0;
    37   }
    38 }
    41 template<typename S>
    42 static int BitSize(S value) {
    43   return 8 * sizeof(value);
    44 }
    46 // Guaranteed to lie in one Bigit.
    47 void Bignum::AssignUInt16(uint16_t value) {
    48   ASSERT(kBigitSize >= BitSize(value));
    49   Zero();
    50   if (value == 0) return;
    52   EnsureCapacity(1);
    53   bigits_[0] = value;
    54   used_digits_ = 1;
    55 }
    58 void Bignum::AssignUInt64(uint64_t value) {
    59   const int kUInt64Size = 64;
    61   Zero();
    62   if (value == 0) return;
    64   int needed_bigits = kUInt64Size / kBigitSize + 1;
    65   EnsureCapacity(needed_bigits);
    66   for (int i = 0; i < needed_bigits; ++i) {
    67     bigits_[i] = value & kBigitMask;
    68     value = value >> kBigitSize;
    69   }
    70   used_digits_ = needed_bigits;
    71   Clamp();
    72 }
    75 void Bignum::AssignBignum(const Bignum& other) {
    76   exponent_ = other.exponent_;
    77   for (int i = 0; i < other.used_digits_; ++i) {
    78     bigits_[i] = other.bigits_[i];
    79   }
    80   // Clear the excess digits (if there were any).
    81   for (int i = other.used_digits_; i < used_digits_; ++i) {
    82     bigits_[i] = 0;
    83   }
    84   used_digits_ = other.used_digits_;
    85 }
    88 static uint64_t ReadUInt64(Vector<const char> buffer,
    89                            int from,
    90                            int digits_to_read) {
    91   uint64_t result = 0;
    92   for (int i = from; i < from + digits_to_read; ++i) {
    93     int digit = buffer[i] - '0';
    94     ASSERT(0 <= digit && digit <= 9);
    95     result = result * 10 + digit;
    96   }
    97   return result;
    98 }
   101 void Bignum::AssignDecimalString(Vector<const char> value) {
   102   // 2^64 = 18446744073709551616 > 10^19
   103   const int kMaxUint64DecimalDigits = 19;
   104   Zero();
   105   int length = value.length();
   106   int pos = 0;
   107   // Let's just say that each digit needs 4 bits.
   108   while (length >= kMaxUint64DecimalDigits) {
   109     uint64_t digits = ReadUInt64(value, pos, kMaxUint64DecimalDigits);
   110     pos += kMaxUint64DecimalDigits;
   111     length -= kMaxUint64DecimalDigits;
   112     MultiplyByPowerOfTen(kMaxUint64DecimalDigits);
   113     AddUInt64(digits);
   114   }
   115   uint64_t digits = ReadUInt64(value, pos, length);
   116   MultiplyByPowerOfTen(length);
   117   AddUInt64(digits);
   118   Clamp();
   119 }
   122 static int HexCharValue(char c) {
   123   if ('0' <= c && c <= '9') return c - '0';
   124   if ('a' <= c && c <= 'f') return 10 + c - 'a';
   125   if ('A' <= c && c <= 'F') return 10 + c - 'A';
   126   UNREACHABLE();
   127   return 0;  // To make compiler happy.
   128 }
   131 void Bignum::AssignHexString(Vector<const char> value) {
   132   Zero();
   133   int length = value.length();
   135   int needed_bigits = length * 4 / kBigitSize + 1;
   136   EnsureCapacity(needed_bigits);
   137   int string_index = length - 1;
   138   for (int i = 0; i < needed_bigits - 1; ++i) {
   139     // These bigits are guaranteed to be "full".
   140     Chunk current_bigit = 0;
   141     for (int j = 0; j < kBigitSize / 4; j++) {
   142       current_bigit += HexCharValue(value[string_index--]) << (j * 4);
   143     }
   144     bigits_[i] = current_bigit;
   145   }
   146   used_digits_ = needed_bigits - 1;
   148   Chunk most_significant_bigit = 0;  // Could be = 0;
   149   for (int j = 0; j <= string_index; ++j) {
   150     most_significant_bigit <<= 4;
   151     most_significant_bigit += HexCharValue(value[j]);
   152   }
   153   if (most_significant_bigit != 0) {
   154     bigits_[used_digits_] = most_significant_bigit;
   155     used_digits_++;
   156   }
   157   Clamp();
   158 }
   161 void Bignum::AddUInt64(uint64_t operand) {
   162   if (operand == 0) return;
   163   Bignum other;
   164   other.AssignUInt64(operand);
   165   AddBignum(other);
   166 }
   169 void Bignum::AddBignum(const Bignum& other) {
   170   ASSERT(IsClamped());
   171   ASSERT(other.IsClamped());
   173   // If this has a greater exponent than other append zero-bigits to this.
   174   // After this call exponent_ <= other.exponent_.
   175   Align(other);
   177   // There are two possibilities:
   178   //   aaaaaaaaaaa 0000  (where the 0s represent a's exponent)
   179   //     bbbbb 00000000
   180   //   ----------------
   181   //   ccccccccccc 0000
   182   // or
   183   //    aaaaaaaaaa 0000
   184   //  bbbbbbbbb 0000000
   185   //  -----------------
   186   //  cccccccccccc 0000
   187   // In both cases we might need a carry bigit.
   189   EnsureCapacity(1 + Max(BigitLength(), other.BigitLength()) - exponent_);
   190   Chunk carry = 0;
   191   int bigit_pos = other.exponent_ - exponent_;
   192   ASSERT(bigit_pos >= 0);
   193   for (int i = 0; i < other.used_digits_; ++i) {
   194     Chunk sum = bigits_[bigit_pos] + other.bigits_[i] + carry;
   195     bigits_[bigit_pos] = sum & kBigitMask;
   196     carry = sum >> kBigitSize;
   197     bigit_pos++;
   198   }
   200   while (carry != 0) {
   201     Chunk sum = bigits_[bigit_pos] + carry;
   202     bigits_[bigit_pos] = sum & kBigitMask;
   203     carry = sum >> kBigitSize;
   204     bigit_pos++;
   205   }
   206   used_digits_ = Max(bigit_pos, used_digits_);
   207   ASSERT(IsClamped());
   208 }
   211 void Bignum::SubtractBignum(const Bignum& other) {
   212   ASSERT(IsClamped());
   213   ASSERT(other.IsClamped());
   214   // We require this to be bigger than other.
   215   ASSERT(LessEqual(other, *this));
   217   Align(other);
   219   int offset = other.exponent_ - exponent_;
   220   Chunk borrow = 0;
   221   int i;
   222   for (i = 0; i < other.used_digits_; ++i) {
   223     ASSERT((borrow == 0) || (borrow == 1));
   224     Chunk difference = bigits_[i + offset] - other.bigits_[i] - borrow;
   225     bigits_[i + offset] = difference & kBigitMask;
   226     borrow = difference >> (kChunkSize - 1);
   227   }
   228   while (borrow != 0) {
   229     Chunk difference = bigits_[i + offset] - borrow;
   230     bigits_[i + offset] = difference & kBigitMask;
   231     borrow = difference >> (kChunkSize - 1);
   232     ++i;
   233   }
   234   Clamp();
   235 }
   238 void Bignum::ShiftLeft(int shift_amount) {
   239   if (used_digits_ == 0) return;
   240   exponent_ += shift_amount / kBigitSize;
   241   int local_shift = shift_amount % kBigitSize;
   242   EnsureCapacity(used_digits_ + 1);
   243   BigitsShiftLeft(local_shift);
   244 }
   247 void Bignum::MultiplyByUInt32(uint32_t factor) {
   248   if (factor == 1) return;
   249   if (factor == 0) {
   250     Zero();
   251     return;
   252   }
   253   if (used_digits_ == 0) return;
   255   // The product of a bigit with the factor is of size kBigitSize + 32.
   256   // Assert that this number + 1 (for the carry) fits into double chunk.
   257   ASSERT(kDoubleChunkSize >= kBigitSize + 32 + 1);
   258   DoubleChunk carry = 0;
   259   for (int i = 0; i < used_digits_; ++i) {
   260     DoubleChunk product = static_cast<DoubleChunk>(factor) * bigits_[i] + carry;
   261     bigits_[i] = static_cast<Chunk>(product & kBigitMask);
   262     carry = (product >> kBigitSize);
   263   }
   264   while (carry != 0) {
   265     EnsureCapacity(used_digits_ + 1);
   266     bigits_[used_digits_] = carry & kBigitMask;
   267     used_digits_++;
   268     carry >>= kBigitSize;
   269   }
   270 }
   273 void Bignum::MultiplyByUInt64(uint64_t factor) {
   274   if (factor == 1) return;
   275   if (factor == 0) {
   276     Zero();
   277     return;
   278   }
   279   ASSERT(kBigitSize < 32);
   280   uint64_t carry = 0;
   281   uint64_t low = factor & 0xFFFFFFFF;
   282   uint64_t high = factor >> 32;
   283   for (int i = 0; i < used_digits_; ++i) {
   284     uint64_t product_low = low * bigits_[i];
   285     uint64_t product_high = high * bigits_[i];
   286     uint64_t tmp = (carry & kBigitMask) + product_low;
   287     bigits_[i] = tmp & kBigitMask;
   288     carry = (carry >> kBigitSize) + (tmp >> kBigitSize) +
   289         (product_high << (32 - kBigitSize));
   290   }
   291   while (carry != 0) {
   292     EnsureCapacity(used_digits_ + 1);
   293     bigits_[used_digits_] = carry & kBigitMask;
   294     used_digits_++;
   295     carry >>= kBigitSize;
   296   }
   297 }
   300 void Bignum::MultiplyByPowerOfTen(int exponent) {
   301   const uint64_t kFive27 = UINT64_2PART_C(0x6765c793, fa10079d);
   302   const uint16_t kFive1 = 5;
   303   const uint16_t kFive2 = kFive1 * 5;
   304   const uint16_t kFive3 = kFive2 * 5;
   305   const uint16_t kFive4 = kFive3 * 5;
   306   const uint16_t kFive5 = kFive4 * 5;
   307   const uint16_t kFive6 = kFive5 * 5;
   308   const uint32_t kFive7 = kFive6 * 5;
   309   const uint32_t kFive8 = kFive7 * 5;
   310   const uint32_t kFive9 = kFive8 * 5;
   311   const uint32_t kFive10 = kFive9 * 5;
   312   const uint32_t kFive11 = kFive10 * 5;
   313   const uint32_t kFive12 = kFive11 * 5;
   314   const uint32_t kFive13 = kFive12 * 5;
   315   const uint32_t kFive1_to_12[] =
   316       { kFive1, kFive2, kFive3, kFive4, kFive5, kFive6,
   317         kFive7, kFive8, kFive9, kFive10, kFive11, kFive12 };
   319   ASSERT(exponent >= 0);
   320   if (exponent == 0) return;
   321   if (used_digits_ == 0) return;
   323   // We shift by exponent at the end just before returning.
   324   int remaining_exponent = exponent;
   325   while (remaining_exponent >= 27) {
   326     MultiplyByUInt64(kFive27);
   327     remaining_exponent -= 27;
   328   }
   329   while (remaining_exponent >= 13) {
   330     MultiplyByUInt32(kFive13);
   331     remaining_exponent -= 13;
   332   }
   333   if (remaining_exponent > 0) {
   334     MultiplyByUInt32(kFive1_to_12[remaining_exponent - 1]);
   335   }
   336   ShiftLeft(exponent);
   337 }
   340 void Bignum::Square() {
   341   ASSERT(IsClamped());
   342   int product_length = 2 * used_digits_;
   343   EnsureCapacity(product_length);
   345   // Comba multiplication: compute each column separately.
   346   // Example: r = a2a1a0 * b2b1b0.
   347   //    r =  1    * a0b0 +
   348   //        10    * (a1b0 + a0b1) +
   349   //        100   * (a2b0 + a1b1 + a0b2) +
   350   //        1000  * (a2b1 + a1b2) +
   351   //        10000 * a2b2
   352   //
   353   // In the worst case we have to accumulate nb-digits products of digit*digit.
   354   //
   355   // Assert that the additional number of bits in a DoubleChunk are enough to
   356   // sum up used_digits of Bigit*Bigit.
   357   if ((1 << (2 * (kChunkSize - kBigitSize))) <= used_digits_) {
   358     UNIMPLEMENTED();
   359   }
   360   DoubleChunk accumulator = 0;
   361   // First shift the digits so we don't overwrite them.
   362   int copy_offset = used_digits_;
   363   for (int i = 0; i < used_digits_; ++i) {
   364     bigits_[copy_offset + i] = bigits_[i];
   365   }
   366   // We have two loops to avoid some 'if's in the loop.
   367   for (int i = 0; i < used_digits_; ++i) {
   368     // Process temporary digit i with power i.
   369     // The sum of the two indices must be equal to i.
   370     int bigit_index1 = i;
   371     int bigit_index2 = 0;
   372     // Sum all of the sub-products.
   373     while (bigit_index1 >= 0) {
   374       Chunk chunk1 = bigits_[copy_offset + bigit_index1];
   375       Chunk chunk2 = bigits_[copy_offset + bigit_index2];
   376       accumulator += static_cast<DoubleChunk>(chunk1) * chunk2;
   377       bigit_index1--;
   378       bigit_index2++;
   379     }
   380     bigits_[i] = static_cast<Chunk>(accumulator) & kBigitMask;
   381     accumulator >>= kBigitSize;
   382   }
   383   for (int i = used_digits_; i < product_length; ++i) {
   384     int bigit_index1 = used_digits_ - 1;
   385     int bigit_index2 = i - bigit_index1;
   386     // Invariant: sum of both indices is again equal to i.
   387     // Inner loop runs 0 times on last iteration, emptying accumulator.
   388     while (bigit_index2 < used_digits_) {
   389       Chunk chunk1 = bigits_[copy_offset + bigit_index1];
   390       Chunk chunk2 = bigits_[copy_offset + bigit_index2];
   391       accumulator += static_cast<DoubleChunk>(chunk1) * chunk2;
   392       bigit_index1--;
   393       bigit_index2++;
   394     }
   395     // The overwritten bigits_[i] will never be read in further loop iterations,
   396     // because bigit_index1 and bigit_index2 are always greater
   397     // than i - used_digits_.
   398     bigits_[i] = static_cast<Chunk>(accumulator) & kBigitMask;
   399     accumulator >>= kBigitSize;
   400   }
   401   // Since the result was guaranteed to lie inside the number the
   402   // accumulator must be 0 now.
   403   ASSERT(accumulator == 0);
   405   // Don't forget to update the used_digits and the exponent.
   406   used_digits_ = product_length;
   407   exponent_ *= 2;
   408   Clamp();
   409 }
   412 void Bignum::AssignPowerUInt16(uint16_t base, int power_exponent) {
   413   ASSERT(base != 0);
   414   ASSERT(power_exponent >= 0);
   415   if (power_exponent == 0) {
   416     AssignUInt16(1);
   417     return;
   418   }
   419   Zero();
   420   int shifts = 0;
   421   // We expect base to be in range 2-32, and most often to be 10.
   422   // It does not make much sense to implement different algorithms for counting
   423   // the bits.
   424   while ((base & 1) == 0) {
   425     base >>= 1;
   426     shifts++;
   427   }
   428   int bit_size = 0;
   429   int tmp_base = base;
   430   while (tmp_base != 0) {
   431     tmp_base >>= 1;
   432     bit_size++;
   433   }
   434   int final_size = bit_size * power_exponent;
   435   // 1 extra bigit for the shifting, and one for rounded final_size.
   436   EnsureCapacity(final_size / kBigitSize + 2);
   438   // Left to Right exponentiation.
   439   int mask = 1;
   440   while (power_exponent >= mask) mask <<= 1;
   442   // The mask is now pointing to the bit above the most significant 1-bit of
   443   // power_exponent.
   444   // Get rid of first 1-bit;
   445   mask >>= 2;
   446   uint64_t this_value = base;
   448   bool delayed_multipliciation = false;
   449   const uint64_t max_32bits = 0xFFFFFFFF;
   450   while (mask != 0 && this_value <= max_32bits) {
   451     this_value = this_value * this_value;
   452     // Verify that there is enough space in this_value to perform the
   453     // multiplication.  The first bit_size bits must be 0.
   454     if ((power_exponent & mask) != 0) {
   455       uint64_t base_bits_mask =
   456           ~((static_cast<uint64_t>(1) << (64 - bit_size)) - 1);
   457       bool high_bits_zero = (this_value & base_bits_mask) == 0;
   458       if (high_bits_zero) {
   459         this_value *= base;
   460       } else {
   461         delayed_multipliciation = true;
   462       }
   463     }
   464     mask >>= 1;
   465   }
   466   AssignUInt64(this_value);
   467   if (delayed_multipliciation) {
   468     MultiplyByUInt32(base);
   469   }
   471   // Now do the same thing as a bignum.
   472   while (mask != 0) {
   473     Square();
   474     if ((power_exponent & mask) != 0) {
   475       MultiplyByUInt32(base);
   476     }
   477     mask >>= 1;
   478   }
   480   // And finally add the saved shifts.
   481   ShiftLeft(shifts * power_exponent);
   482 }
   485 // Precondition: this/other < 16bit.
   486 uint16_t Bignum::DivideModuloIntBignum(const Bignum& other) {
   487   ASSERT(IsClamped());
   488   ASSERT(other.IsClamped());
   489   ASSERT(other.used_digits_ > 0);
   491   // Easy case: if we have less digits than the divisor than the result is 0.
   492   // Note: this handles the case where this == 0, too.
   493   if (BigitLength() < other.BigitLength()) {
   494     return 0;
   495   }
   497   Align(other);
   499   uint16_t result = 0;
   501   // Start by removing multiples of 'other' until both numbers have the same
   502   // number of digits.
   503   while (BigitLength() > other.BigitLength()) {
   504     // This naive approach is extremely inefficient if `this` divided by other
   505     // is big. This function is implemented for doubleToString where
   506     // the result should be small (less than 10).
   507     ASSERT(other.bigits_[other.used_digits_ - 1] >= ((1 << kBigitSize) / 16));
   508     // Remove the multiples of the first digit.
   509     // Example this = 23 and other equals 9. -> Remove 2 multiples.
   510     result += bigits_[used_digits_ - 1];
   511     SubtractTimes(other, bigits_[used_digits_ - 1]);
   512   }
   514   ASSERT(BigitLength() == other.BigitLength());
   516   // Both bignums are at the same length now.
   517   // Since other has more than 0 digits we know that the access to
   518   // bigits_[used_digits_ - 1] is safe.
   519   Chunk this_bigit = bigits_[used_digits_ - 1];
   520   Chunk other_bigit = other.bigits_[other.used_digits_ - 1];
   522   if (other.used_digits_ == 1) {
   523     // Shortcut for easy (and common) case.
   524     int quotient = this_bigit / other_bigit;
   525     bigits_[used_digits_ - 1] = this_bigit - other_bigit * quotient;
   526     result += quotient;
   527     Clamp();
   528     return result;
   529   }
   531   int division_estimate = this_bigit / (other_bigit + 1);
   532   result += division_estimate;
   533   SubtractTimes(other, division_estimate);
   535   if (other_bigit * (division_estimate + 1) > this_bigit) {
   536     // No need to even try to subtract. Even if other's remaining digits were 0
   537     // another subtraction would be too much.
   538     return result;
   539   }
   541   while (LessEqual(other, *this)) {
   542     SubtractBignum(other);
   543     result++;
   544   }
   545   return result;
   546 }
   549 template<typename S>
   550 static int SizeInHexChars(S number) {
   551   ASSERT(number > 0);
   552   int result = 0;
   553   while (number != 0) {
   554     number >>= 4;
   555     result++;
   556   }
   557   return result;
   558 }
   561 static char HexCharOfValue(int value) {
   562   ASSERT(0 <= value && value <= 16);
   563   if (value < 10) return value + '0';
   564   return value - 10 + 'A';
   565 }
   568 bool Bignum::ToHexString(char* buffer, int buffer_size) const {
   569   ASSERT(IsClamped());
   570   // Each bigit must be printable as separate hex-character.
   571   ASSERT(kBigitSize % 4 == 0);
   572   const int kHexCharsPerBigit = kBigitSize / 4;
   574   if (used_digits_ == 0) {
   575     if (buffer_size < 2) return false;
   576     buffer[0] = '0';
   577     buffer[1] = '\0';
   578     return true;
   579   }
   580   // We add 1 for the terminating '\0' character.
   581   int needed_chars = (BigitLength() - 1) * kHexCharsPerBigit +
   582       SizeInHexChars(bigits_[used_digits_ - 1]) + 1;
   583   if (needed_chars > buffer_size) return false;
   584   int string_index = needed_chars - 1;
   585   buffer[string_index--] = '\0';
   586   for (int i = 0; i < exponent_; ++i) {
   587     for (int j = 0; j < kHexCharsPerBigit; ++j) {
   588       buffer[string_index--] = '0';
   589     }
   590   }
   591   for (int i = 0; i < used_digits_ - 1; ++i) {
   592     Chunk current_bigit = bigits_[i];
   593     for (int j = 0; j < kHexCharsPerBigit; ++j) {
   594       buffer[string_index--] = HexCharOfValue(current_bigit & 0xF);
   595       current_bigit >>= 4;
   596     }
   597   }
   598   // And finally the last bigit.
   599   Chunk most_significant_bigit = bigits_[used_digits_ - 1];
   600   while (most_significant_bigit != 0) {
   601     buffer[string_index--] = HexCharOfValue(most_significant_bigit & 0xF);
   602     most_significant_bigit >>= 4;
   603   }
   604   return true;
   605 }
   608 Bignum::Chunk Bignum::BigitAt(int index) const {
   609   if (index >= BigitLength()) return 0;
   610   if (index < exponent_) return 0;
   611   return bigits_[index - exponent_];
   612 }
   615 int Bignum::Compare(const Bignum& a, const Bignum& b) {
   616   ASSERT(a.IsClamped());
   617   ASSERT(b.IsClamped());
   618   int bigit_length_a = a.BigitLength();
   619   int bigit_length_b = b.BigitLength();
   620   if (bigit_length_a < bigit_length_b) return -1;
   621   if (bigit_length_a > bigit_length_b) return +1;
   622   for (int i = bigit_length_a - 1; i >= Min(a.exponent_, b.exponent_); --i) {
   623     Chunk bigit_a = a.BigitAt(i);
   624     Chunk bigit_b = b.BigitAt(i);
   625     if (bigit_a < bigit_b) return -1;
   626     if (bigit_a > bigit_b) return +1;
   627     // Otherwise they are equal up to this digit. Try the next digit.
   628   }
   629   return 0;
   630 }
   633 int Bignum::PlusCompare(const Bignum& a, const Bignum& b, const Bignum& c) {
   634   ASSERT(a.IsClamped());
   635   ASSERT(b.IsClamped());
   636   ASSERT(c.IsClamped());
   637   if (a.BigitLength() < b.BigitLength()) {
   638     return PlusCompare(b, a, c);
   639   }
   640   if (a.BigitLength() + 1 < c.BigitLength()) return -1;
   641   if (a.BigitLength() > c.BigitLength()) return +1;
   642   // The exponent encodes 0-bigits. So if there are more 0-digits in 'a' than
   643   // 'b' has digits, then the bigit-length of 'a'+'b' must be equal to the one
   644   // of 'a'.
   645   if (a.exponent_ >= b.BigitLength() && a.BigitLength() < c.BigitLength()) {
   646     return -1;
   647   }
   649   Chunk borrow = 0;
   650   // Starting at min_exponent all digits are == 0. So no need to compare them.
   651   int min_exponent = Min(Min(a.exponent_, b.exponent_), c.exponent_);
   652   for (int i = c.BigitLength() - 1; i >= min_exponent; --i) {
   653     Chunk chunk_a = a.BigitAt(i);
   654     Chunk chunk_b = b.BigitAt(i);
   655     Chunk chunk_c = c.BigitAt(i);
   656     Chunk sum = chunk_a + chunk_b;
   657     if (sum > chunk_c + borrow) {
   658       return +1;
   659     } else {
   660       borrow = chunk_c + borrow - sum;
   661       if (borrow > 1) return -1;
   662       borrow <<= kBigitSize;
   663     }
   664   }
   665   if (borrow == 0) return 0;
   666   return -1;
   667 }
   670 void Bignum::Clamp() {
   671   while (used_digits_ > 0 && bigits_[used_digits_ - 1] == 0) {
   672     used_digits_--;
   673   }
   674   if (used_digits_ == 0) {
   675     // Zero.
   676     exponent_ = 0;
   677   }
   678 }
   681 bool Bignum::IsClamped() const {
   682   return used_digits_ == 0 || bigits_[used_digits_ - 1] != 0;
   683 }
   686 void Bignum::Zero() {
   687   for (int i = 0; i < used_digits_; ++i) {
   688     bigits_[i] = 0;
   689   }
   690   used_digits_ = 0;
   691   exponent_ = 0;
   692 }
   695 void Bignum::Align(const Bignum& other) {
   696   if (exponent_ > other.exponent_) {
   697     // If "X" represents a "hidden" digit (by the exponent) then we are in the
   698     // following case (a == this, b == other):
   699     // a:  aaaaaaXXXX   or a:   aaaaaXXX
   700     // b:     bbbbbbX      b: bbbbbbbbXX
   701     // We replace some of the hidden digits (X) of a with 0 digits.
   702     // a:  aaaaaa000X   or a:   aaaaa0XX
   703     int zero_digits = exponent_ - other.exponent_;
   704     EnsureCapacity(used_digits_ + zero_digits);
   705     for (int i = used_digits_ - 1; i >= 0; --i) {
   706       bigits_[i + zero_digits] = bigits_[i];
   707     }
   708     for (int i = 0; i < zero_digits; ++i) {
   709       bigits_[i] = 0;
   710     }
   711     used_digits_ += zero_digits;
   712     exponent_ -= zero_digits;
   713     ASSERT(used_digits_ >= 0);
   714     ASSERT(exponent_ >= 0);
   715   }
   716 }
   719 void Bignum::BigitsShiftLeft(int shift_amount) {
   720   ASSERT(shift_amount < kBigitSize);
   721   ASSERT(shift_amount >= 0);
   722   Chunk carry = 0;
   723   for (int i = 0; i < used_digits_; ++i) {
   724     Chunk new_carry = bigits_[i] >> (kBigitSize - shift_amount);
   725     bigits_[i] = ((bigits_[i] << shift_amount) + carry) & kBigitMask;
   726     carry = new_carry;
   727   }
   728   if (carry != 0) {
   729     bigits_[used_digits_] = carry;
   730     used_digits_++;
   731   }
   732 }
   735 void Bignum::SubtractTimes(const Bignum& other, int factor) {
   736   ASSERT(exponent_ <= other.exponent_);
   737   if (factor < 3) {
   738     for (int i = 0; i < factor; ++i) {
   739       SubtractBignum(other);
   740     }
   741     return;
   742   }
   743   Chunk borrow = 0;
   744   int exponent_diff = other.exponent_ - exponent_;
   745   for (int i = 0; i < other.used_digits_; ++i) {
   746     DoubleChunk product = static_cast<DoubleChunk>(factor) * other.bigits_[i];
   747     DoubleChunk remove = borrow + product;
   748     Chunk difference = bigits_[i + exponent_diff] - (remove & kBigitMask);
   749     bigits_[i + exponent_diff] = difference & kBigitMask;
   750     borrow = static_cast<Chunk>((difference >> (kChunkSize - 1)) +
   751                                 (remove >> kBigitSize));
   752   }
   753   for (int i = other.used_digits_ + exponent_diff; i < used_digits_; ++i) {
   754     if (borrow == 0) return;
   755     Chunk difference = bigits_[i] - borrow;
   756     bigits_[i] = difference & kBigitMask;
   757     borrow = difference >> (kChunkSize - 1);
   758   }
   759   Clamp();
   760 }
   763 }  // namespace double_conversion

mercurial