|
1 // Copyright 2010 the V8 project authors. All rights reserved. |
|
2 // Redistribution and use in source and binary forms, with or without |
|
3 // modification, are permitted provided that the following conditions are |
|
4 // met: |
|
5 // |
|
6 // * Redistributions of source code must retain the above copyright |
|
7 // notice, this list of conditions and the following disclaimer. |
|
8 // * Redistributions in binary form must reproduce the above |
|
9 // copyright notice, this list of conditions and the following |
|
10 // disclaimer in the documentation and/or other materials provided |
|
11 // with the distribution. |
|
12 // * Neither the name of Google Inc. nor the names of its |
|
13 // contributors may be used to endorse or promote products derived |
|
14 // from this software without specific prior written permission. |
|
15 // |
|
16 // THIS SOFTWARE IS PROVIDED BY THE COPYRIGHT HOLDERS AND CONTRIBUTORS |
|
17 // "AS IS" AND ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT |
|
18 // LIMITED TO, THE IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR |
|
19 // A PARTICULAR PURPOSE ARE DISCLAIMED. IN NO EVENT SHALL THE COPYRIGHT |
|
20 // OWNER OR CONTRIBUTORS BE LIABLE FOR ANY DIRECT, INDIRECT, INCIDENTAL, |
|
21 // SPECIAL, EXEMPLARY, OR CONSEQUENTIAL DAMAGES (INCLUDING, BUT NOT |
|
22 // LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS OR SERVICES; LOSS OF USE, |
|
23 // DATA, OR PROFITS; OR BUSINESS INTERRUPTION) HOWEVER CAUSED AND ON ANY |
|
24 // THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT LIABILITY, OR TORT |
|
25 // (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY OUT OF THE USE |
|
26 // OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF SUCH DAMAGE. |
|
27 |
|
28 #include "bignum.h" |
|
29 #include "utils.h" |
|
30 |
|
31 namespace double_conversion { |
|
32 |
|
33 Bignum::Bignum() |
|
34 : bigits_(bigits_buffer_, kBigitCapacity), used_digits_(0), exponent_(0) { |
|
35 for (int i = 0; i < kBigitCapacity; ++i) { |
|
36 bigits_[i] = 0; |
|
37 } |
|
38 } |
|
39 |
|
40 |
|
41 template<typename S> |
|
42 static int BitSize(S value) { |
|
43 return 8 * sizeof(value); |
|
44 } |
|
45 |
|
46 // Guaranteed to lie in one Bigit. |
|
47 void Bignum::AssignUInt16(uint16_t value) { |
|
48 ASSERT(kBigitSize >= BitSize(value)); |
|
49 Zero(); |
|
50 if (value == 0) return; |
|
51 |
|
52 EnsureCapacity(1); |
|
53 bigits_[0] = value; |
|
54 used_digits_ = 1; |
|
55 } |
|
56 |
|
57 |
|
58 void Bignum::AssignUInt64(uint64_t value) { |
|
59 const int kUInt64Size = 64; |
|
60 |
|
61 Zero(); |
|
62 if (value == 0) return; |
|
63 |
|
64 int needed_bigits = kUInt64Size / kBigitSize + 1; |
|
65 EnsureCapacity(needed_bigits); |
|
66 for (int i = 0; i < needed_bigits; ++i) { |
|
67 bigits_[i] = value & kBigitMask; |
|
68 value = value >> kBigitSize; |
|
69 } |
|
70 used_digits_ = needed_bigits; |
|
71 Clamp(); |
|
72 } |
|
73 |
|
74 |
|
75 void Bignum::AssignBignum(const Bignum& other) { |
|
76 exponent_ = other.exponent_; |
|
77 for (int i = 0; i < other.used_digits_; ++i) { |
|
78 bigits_[i] = other.bigits_[i]; |
|
79 } |
|
80 // Clear the excess digits (if there were any). |
|
81 for (int i = other.used_digits_; i < used_digits_; ++i) { |
|
82 bigits_[i] = 0; |
|
83 } |
|
84 used_digits_ = other.used_digits_; |
|
85 } |
|
86 |
|
87 |
|
88 static uint64_t ReadUInt64(Vector<const char> buffer, |
|
89 int from, |
|
90 int digits_to_read) { |
|
91 uint64_t result = 0; |
|
92 for (int i = from; i < from + digits_to_read; ++i) { |
|
93 int digit = buffer[i] - '0'; |
|
94 ASSERT(0 <= digit && digit <= 9); |
|
95 result = result * 10 + digit; |
|
96 } |
|
97 return result; |
|
98 } |
|
99 |
|
100 |
|
101 void Bignum::AssignDecimalString(Vector<const char> value) { |
|
102 // 2^64 = 18446744073709551616 > 10^19 |
|
103 const int kMaxUint64DecimalDigits = 19; |
|
104 Zero(); |
|
105 int length = value.length(); |
|
106 int pos = 0; |
|
107 // Let's just say that each digit needs 4 bits. |
|
108 while (length >= kMaxUint64DecimalDigits) { |
|
109 uint64_t digits = ReadUInt64(value, pos, kMaxUint64DecimalDigits); |
|
110 pos += kMaxUint64DecimalDigits; |
|
111 length -= kMaxUint64DecimalDigits; |
|
112 MultiplyByPowerOfTen(kMaxUint64DecimalDigits); |
|
113 AddUInt64(digits); |
|
114 } |
|
115 uint64_t digits = ReadUInt64(value, pos, length); |
|
116 MultiplyByPowerOfTen(length); |
|
117 AddUInt64(digits); |
|
118 Clamp(); |
|
119 } |
|
120 |
|
121 |
|
122 static int HexCharValue(char c) { |
|
123 if ('0' <= c && c <= '9') return c - '0'; |
|
124 if ('a' <= c && c <= 'f') return 10 + c - 'a'; |
|
125 if ('A' <= c && c <= 'F') return 10 + c - 'A'; |
|
126 UNREACHABLE(); |
|
127 return 0; // To make compiler happy. |
|
128 } |
|
129 |
|
130 |
|
131 void Bignum::AssignHexString(Vector<const char> value) { |
|
132 Zero(); |
|
133 int length = value.length(); |
|
134 |
|
135 int needed_bigits = length * 4 / kBigitSize + 1; |
|
136 EnsureCapacity(needed_bigits); |
|
137 int string_index = length - 1; |
|
138 for (int i = 0; i < needed_bigits - 1; ++i) { |
|
139 // These bigits are guaranteed to be "full". |
|
140 Chunk current_bigit = 0; |
|
141 for (int j = 0; j < kBigitSize / 4; j++) { |
|
142 current_bigit += HexCharValue(value[string_index--]) << (j * 4); |
|
143 } |
|
144 bigits_[i] = current_bigit; |
|
145 } |
|
146 used_digits_ = needed_bigits - 1; |
|
147 |
|
148 Chunk most_significant_bigit = 0; // Could be = 0; |
|
149 for (int j = 0; j <= string_index; ++j) { |
|
150 most_significant_bigit <<= 4; |
|
151 most_significant_bigit += HexCharValue(value[j]); |
|
152 } |
|
153 if (most_significant_bigit != 0) { |
|
154 bigits_[used_digits_] = most_significant_bigit; |
|
155 used_digits_++; |
|
156 } |
|
157 Clamp(); |
|
158 } |
|
159 |
|
160 |
|
161 void Bignum::AddUInt64(uint64_t operand) { |
|
162 if (operand == 0) return; |
|
163 Bignum other; |
|
164 other.AssignUInt64(operand); |
|
165 AddBignum(other); |
|
166 } |
|
167 |
|
168 |
|
169 void Bignum::AddBignum(const Bignum& other) { |
|
170 ASSERT(IsClamped()); |
|
171 ASSERT(other.IsClamped()); |
|
172 |
|
173 // If this has a greater exponent than other append zero-bigits to this. |
|
174 // After this call exponent_ <= other.exponent_. |
|
175 Align(other); |
|
176 |
|
177 // There are two possibilities: |
|
178 // aaaaaaaaaaa 0000 (where the 0s represent a's exponent) |
|
179 // bbbbb 00000000 |
|
180 // ---------------- |
|
181 // ccccccccccc 0000 |
|
182 // or |
|
183 // aaaaaaaaaa 0000 |
|
184 // bbbbbbbbb 0000000 |
|
185 // ----------------- |
|
186 // cccccccccccc 0000 |
|
187 // In both cases we might need a carry bigit. |
|
188 |
|
189 EnsureCapacity(1 + Max(BigitLength(), other.BigitLength()) - exponent_); |
|
190 Chunk carry = 0; |
|
191 int bigit_pos = other.exponent_ - exponent_; |
|
192 ASSERT(bigit_pos >= 0); |
|
193 for (int i = 0; i < other.used_digits_; ++i) { |
|
194 Chunk sum = bigits_[bigit_pos] + other.bigits_[i] + carry; |
|
195 bigits_[bigit_pos] = sum & kBigitMask; |
|
196 carry = sum >> kBigitSize; |
|
197 bigit_pos++; |
|
198 } |
|
199 |
|
200 while (carry != 0) { |
|
201 Chunk sum = bigits_[bigit_pos] + carry; |
|
202 bigits_[bigit_pos] = sum & kBigitMask; |
|
203 carry = sum >> kBigitSize; |
|
204 bigit_pos++; |
|
205 } |
|
206 used_digits_ = Max(bigit_pos, used_digits_); |
|
207 ASSERT(IsClamped()); |
|
208 } |
|
209 |
|
210 |
|
211 void Bignum::SubtractBignum(const Bignum& other) { |
|
212 ASSERT(IsClamped()); |
|
213 ASSERT(other.IsClamped()); |
|
214 // We require this to be bigger than other. |
|
215 ASSERT(LessEqual(other, *this)); |
|
216 |
|
217 Align(other); |
|
218 |
|
219 int offset = other.exponent_ - exponent_; |
|
220 Chunk borrow = 0; |
|
221 int i; |
|
222 for (i = 0; i < other.used_digits_; ++i) { |
|
223 ASSERT((borrow == 0) || (borrow == 1)); |
|
224 Chunk difference = bigits_[i + offset] - other.bigits_[i] - borrow; |
|
225 bigits_[i + offset] = difference & kBigitMask; |
|
226 borrow = difference >> (kChunkSize - 1); |
|
227 } |
|
228 while (borrow != 0) { |
|
229 Chunk difference = bigits_[i + offset] - borrow; |
|
230 bigits_[i + offset] = difference & kBigitMask; |
|
231 borrow = difference >> (kChunkSize - 1); |
|
232 ++i; |
|
233 } |
|
234 Clamp(); |
|
235 } |
|
236 |
|
237 |
|
238 void Bignum::ShiftLeft(int shift_amount) { |
|
239 if (used_digits_ == 0) return; |
|
240 exponent_ += shift_amount / kBigitSize; |
|
241 int local_shift = shift_amount % kBigitSize; |
|
242 EnsureCapacity(used_digits_ + 1); |
|
243 BigitsShiftLeft(local_shift); |
|
244 } |
|
245 |
|
246 |
|
247 void Bignum::MultiplyByUInt32(uint32_t factor) { |
|
248 if (factor == 1) return; |
|
249 if (factor == 0) { |
|
250 Zero(); |
|
251 return; |
|
252 } |
|
253 if (used_digits_ == 0) return; |
|
254 |
|
255 // The product of a bigit with the factor is of size kBigitSize + 32. |
|
256 // Assert that this number + 1 (for the carry) fits into double chunk. |
|
257 ASSERT(kDoubleChunkSize >= kBigitSize + 32 + 1); |
|
258 DoubleChunk carry = 0; |
|
259 for (int i = 0; i < used_digits_; ++i) { |
|
260 DoubleChunk product = static_cast<DoubleChunk>(factor) * bigits_[i] + carry; |
|
261 bigits_[i] = static_cast<Chunk>(product & kBigitMask); |
|
262 carry = (product >> kBigitSize); |
|
263 } |
|
264 while (carry != 0) { |
|
265 EnsureCapacity(used_digits_ + 1); |
|
266 bigits_[used_digits_] = carry & kBigitMask; |
|
267 used_digits_++; |
|
268 carry >>= kBigitSize; |
|
269 } |
|
270 } |
|
271 |
|
272 |
|
273 void Bignum::MultiplyByUInt64(uint64_t factor) { |
|
274 if (factor == 1) return; |
|
275 if (factor == 0) { |
|
276 Zero(); |
|
277 return; |
|
278 } |
|
279 ASSERT(kBigitSize < 32); |
|
280 uint64_t carry = 0; |
|
281 uint64_t low = factor & 0xFFFFFFFF; |
|
282 uint64_t high = factor >> 32; |
|
283 for (int i = 0; i < used_digits_; ++i) { |
|
284 uint64_t product_low = low * bigits_[i]; |
|
285 uint64_t product_high = high * bigits_[i]; |
|
286 uint64_t tmp = (carry & kBigitMask) + product_low; |
|
287 bigits_[i] = tmp & kBigitMask; |
|
288 carry = (carry >> kBigitSize) + (tmp >> kBigitSize) + |
|
289 (product_high << (32 - kBigitSize)); |
|
290 } |
|
291 while (carry != 0) { |
|
292 EnsureCapacity(used_digits_ + 1); |
|
293 bigits_[used_digits_] = carry & kBigitMask; |
|
294 used_digits_++; |
|
295 carry >>= kBigitSize; |
|
296 } |
|
297 } |
|
298 |
|
299 |
|
300 void Bignum::MultiplyByPowerOfTen(int exponent) { |
|
301 const uint64_t kFive27 = UINT64_2PART_C(0x6765c793, fa10079d); |
|
302 const uint16_t kFive1 = 5; |
|
303 const uint16_t kFive2 = kFive1 * 5; |
|
304 const uint16_t kFive3 = kFive2 * 5; |
|
305 const uint16_t kFive4 = kFive3 * 5; |
|
306 const uint16_t kFive5 = kFive4 * 5; |
|
307 const uint16_t kFive6 = kFive5 * 5; |
|
308 const uint32_t kFive7 = kFive6 * 5; |
|
309 const uint32_t kFive8 = kFive7 * 5; |
|
310 const uint32_t kFive9 = kFive8 * 5; |
|
311 const uint32_t kFive10 = kFive9 * 5; |
|
312 const uint32_t kFive11 = kFive10 * 5; |
|
313 const uint32_t kFive12 = kFive11 * 5; |
|
314 const uint32_t kFive13 = kFive12 * 5; |
|
315 const uint32_t kFive1_to_12[] = |
|
316 { kFive1, kFive2, kFive3, kFive4, kFive5, kFive6, |
|
317 kFive7, kFive8, kFive9, kFive10, kFive11, kFive12 }; |
|
318 |
|
319 ASSERT(exponent >= 0); |
|
320 if (exponent == 0) return; |
|
321 if (used_digits_ == 0) return; |
|
322 |
|
323 // We shift by exponent at the end just before returning. |
|
324 int remaining_exponent = exponent; |
|
325 while (remaining_exponent >= 27) { |
|
326 MultiplyByUInt64(kFive27); |
|
327 remaining_exponent -= 27; |
|
328 } |
|
329 while (remaining_exponent >= 13) { |
|
330 MultiplyByUInt32(kFive13); |
|
331 remaining_exponent -= 13; |
|
332 } |
|
333 if (remaining_exponent > 0) { |
|
334 MultiplyByUInt32(kFive1_to_12[remaining_exponent - 1]); |
|
335 } |
|
336 ShiftLeft(exponent); |
|
337 } |
|
338 |
|
339 |
|
340 void Bignum::Square() { |
|
341 ASSERT(IsClamped()); |
|
342 int product_length = 2 * used_digits_; |
|
343 EnsureCapacity(product_length); |
|
344 |
|
345 // Comba multiplication: compute each column separately. |
|
346 // Example: r = a2a1a0 * b2b1b0. |
|
347 // r = 1 * a0b0 + |
|
348 // 10 * (a1b0 + a0b1) + |
|
349 // 100 * (a2b0 + a1b1 + a0b2) + |
|
350 // 1000 * (a2b1 + a1b2) + |
|
351 // 10000 * a2b2 |
|
352 // |
|
353 // In the worst case we have to accumulate nb-digits products of digit*digit. |
|
354 // |
|
355 // Assert that the additional number of bits in a DoubleChunk are enough to |
|
356 // sum up used_digits of Bigit*Bigit. |
|
357 if ((1 << (2 * (kChunkSize - kBigitSize))) <= used_digits_) { |
|
358 UNIMPLEMENTED(); |
|
359 } |
|
360 DoubleChunk accumulator = 0; |
|
361 // First shift the digits so we don't overwrite them. |
|
362 int copy_offset = used_digits_; |
|
363 for (int i = 0; i < used_digits_; ++i) { |
|
364 bigits_[copy_offset + i] = bigits_[i]; |
|
365 } |
|
366 // We have two loops to avoid some 'if's in the loop. |
|
367 for (int i = 0; i < used_digits_; ++i) { |
|
368 // Process temporary digit i with power i. |
|
369 // The sum of the two indices must be equal to i. |
|
370 int bigit_index1 = i; |
|
371 int bigit_index2 = 0; |
|
372 // Sum all of the sub-products. |
|
373 while (bigit_index1 >= 0) { |
|
374 Chunk chunk1 = bigits_[copy_offset + bigit_index1]; |
|
375 Chunk chunk2 = bigits_[copy_offset + bigit_index2]; |
|
376 accumulator += static_cast<DoubleChunk>(chunk1) * chunk2; |
|
377 bigit_index1--; |
|
378 bigit_index2++; |
|
379 } |
|
380 bigits_[i] = static_cast<Chunk>(accumulator) & kBigitMask; |
|
381 accumulator >>= kBigitSize; |
|
382 } |
|
383 for (int i = used_digits_; i < product_length; ++i) { |
|
384 int bigit_index1 = used_digits_ - 1; |
|
385 int bigit_index2 = i - bigit_index1; |
|
386 // Invariant: sum of both indices is again equal to i. |
|
387 // Inner loop runs 0 times on last iteration, emptying accumulator. |
|
388 while (bigit_index2 < used_digits_) { |
|
389 Chunk chunk1 = bigits_[copy_offset + bigit_index1]; |
|
390 Chunk chunk2 = bigits_[copy_offset + bigit_index2]; |
|
391 accumulator += static_cast<DoubleChunk>(chunk1) * chunk2; |
|
392 bigit_index1--; |
|
393 bigit_index2++; |
|
394 } |
|
395 // The overwritten bigits_[i] will never be read in further loop iterations, |
|
396 // because bigit_index1 and bigit_index2 are always greater |
|
397 // than i - used_digits_. |
|
398 bigits_[i] = static_cast<Chunk>(accumulator) & kBigitMask; |
|
399 accumulator >>= kBigitSize; |
|
400 } |
|
401 // Since the result was guaranteed to lie inside the number the |
|
402 // accumulator must be 0 now. |
|
403 ASSERT(accumulator == 0); |
|
404 |
|
405 // Don't forget to update the used_digits and the exponent. |
|
406 used_digits_ = product_length; |
|
407 exponent_ *= 2; |
|
408 Clamp(); |
|
409 } |
|
410 |
|
411 |
|
412 void Bignum::AssignPowerUInt16(uint16_t base, int power_exponent) { |
|
413 ASSERT(base != 0); |
|
414 ASSERT(power_exponent >= 0); |
|
415 if (power_exponent == 0) { |
|
416 AssignUInt16(1); |
|
417 return; |
|
418 } |
|
419 Zero(); |
|
420 int shifts = 0; |
|
421 // We expect base to be in range 2-32, and most often to be 10. |
|
422 // It does not make much sense to implement different algorithms for counting |
|
423 // the bits. |
|
424 while ((base & 1) == 0) { |
|
425 base >>= 1; |
|
426 shifts++; |
|
427 } |
|
428 int bit_size = 0; |
|
429 int tmp_base = base; |
|
430 while (tmp_base != 0) { |
|
431 tmp_base >>= 1; |
|
432 bit_size++; |
|
433 } |
|
434 int final_size = bit_size * power_exponent; |
|
435 // 1 extra bigit for the shifting, and one for rounded final_size. |
|
436 EnsureCapacity(final_size / kBigitSize + 2); |
|
437 |
|
438 // Left to Right exponentiation. |
|
439 int mask = 1; |
|
440 while (power_exponent >= mask) mask <<= 1; |
|
441 |
|
442 // The mask is now pointing to the bit above the most significant 1-bit of |
|
443 // power_exponent. |
|
444 // Get rid of first 1-bit; |
|
445 mask >>= 2; |
|
446 uint64_t this_value = base; |
|
447 |
|
448 bool delayed_multipliciation = false; |
|
449 const uint64_t max_32bits = 0xFFFFFFFF; |
|
450 while (mask != 0 && this_value <= max_32bits) { |
|
451 this_value = this_value * this_value; |
|
452 // Verify that there is enough space in this_value to perform the |
|
453 // multiplication. The first bit_size bits must be 0. |
|
454 if ((power_exponent & mask) != 0) { |
|
455 uint64_t base_bits_mask = |
|
456 ~((static_cast<uint64_t>(1) << (64 - bit_size)) - 1); |
|
457 bool high_bits_zero = (this_value & base_bits_mask) == 0; |
|
458 if (high_bits_zero) { |
|
459 this_value *= base; |
|
460 } else { |
|
461 delayed_multipliciation = true; |
|
462 } |
|
463 } |
|
464 mask >>= 1; |
|
465 } |
|
466 AssignUInt64(this_value); |
|
467 if (delayed_multipliciation) { |
|
468 MultiplyByUInt32(base); |
|
469 } |
|
470 |
|
471 // Now do the same thing as a bignum. |
|
472 while (mask != 0) { |
|
473 Square(); |
|
474 if ((power_exponent & mask) != 0) { |
|
475 MultiplyByUInt32(base); |
|
476 } |
|
477 mask >>= 1; |
|
478 } |
|
479 |
|
480 // And finally add the saved shifts. |
|
481 ShiftLeft(shifts * power_exponent); |
|
482 } |
|
483 |
|
484 |
|
485 // Precondition: this/other < 16bit. |
|
486 uint16_t Bignum::DivideModuloIntBignum(const Bignum& other) { |
|
487 ASSERT(IsClamped()); |
|
488 ASSERT(other.IsClamped()); |
|
489 ASSERT(other.used_digits_ > 0); |
|
490 |
|
491 // Easy case: if we have less digits than the divisor than the result is 0. |
|
492 // Note: this handles the case where this == 0, too. |
|
493 if (BigitLength() < other.BigitLength()) { |
|
494 return 0; |
|
495 } |
|
496 |
|
497 Align(other); |
|
498 |
|
499 uint16_t result = 0; |
|
500 |
|
501 // Start by removing multiples of 'other' until both numbers have the same |
|
502 // number of digits. |
|
503 while (BigitLength() > other.BigitLength()) { |
|
504 // This naive approach is extremely inefficient if `this` divided by other |
|
505 // is big. This function is implemented for doubleToString where |
|
506 // the result should be small (less than 10). |
|
507 ASSERT(other.bigits_[other.used_digits_ - 1] >= ((1 << kBigitSize) / 16)); |
|
508 // Remove the multiples of the first digit. |
|
509 // Example this = 23 and other equals 9. -> Remove 2 multiples. |
|
510 result += bigits_[used_digits_ - 1]; |
|
511 SubtractTimes(other, bigits_[used_digits_ - 1]); |
|
512 } |
|
513 |
|
514 ASSERT(BigitLength() == other.BigitLength()); |
|
515 |
|
516 // Both bignums are at the same length now. |
|
517 // Since other has more than 0 digits we know that the access to |
|
518 // bigits_[used_digits_ - 1] is safe. |
|
519 Chunk this_bigit = bigits_[used_digits_ - 1]; |
|
520 Chunk other_bigit = other.bigits_[other.used_digits_ - 1]; |
|
521 |
|
522 if (other.used_digits_ == 1) { |
|
523 // Shortcut for easy (and common) case. |
|
524 int quotient = this_bigit / other_bigit; |
|
525 bigits_[used_digits_ - 1] = this_bigit - other_bigit * quotient; |
|
526 result += quotient; |
|
527 Clamp(); |
|
528 return result; |
|
529 } |
|
530 |
|
531 int division_estimate = this_bigit / (other_bigit + 1); |
|
532 result += division_estimate; |
|
533 SubtractTimes(other, division_estimate); |
|
534 |
|
535 if (other_bigit * (division_estimate + 1) > this_bigit) { |
|
536 // No need to even try to subtract. Even if other's remaining digits were 0 |
|
537 // another subtraction would be too much. |
|
538 return result; |
|
539 } |
|
540 |
|
541 while (LessEqual(other, *this)) { |
|
542 SubtractBignum(other); |
|
543 result++; |
|
544 } |
|
545 return result; |
|
546 } |
|
547 |
|
548 |
|
549 template<typename S> |
|
550 static int SizeInHexChars(S number) { |
|
551 ASSERT(number > 0); |
|
552 int result = 0; |
|
553 while (number != 0) { |
|
554 number >>= 4; |
|
555 result++; |
|
556 } |
|
557 return result; |
|
558 } |
|
559 |
|
560 |
|
561 static char HexCharOfValue(int value) { |
|
562 ASSERT(0 <= value && value <= 16); |
|
563 if (value < 10) return value + '0'; |
|
564 return value - 10 + 'A'; |
|
565 } |
|
566 |
|
567 |
|
568 bool Bignum::ToHexString(char* buffer, int buffer_size) const { |
|
569 ASSERT(IsClamped()); |
|
570 // Each bigit must be printable as separate hex-character. |
|
571 ASSERT(kBigitSize % 4 == 0); |
|
572 const int kHexCharsPerBigit = kBigitSize / 4; |
|
573 |
|
574 if (used_digits_ == 0) { |
|
575 if (buffer_size < 2) return false; |
|
576 buffer[0] = '0'; |
|
577 buffer[1] = '\0'; |
|
578 return true; |
|
579 } |
|
580 // We add 1 for the terminating '\0' character. |
|
581 int needed_chars = (BigitLength() - 1) * kHexCharsPerBigit + |
|
582 SizeInHexChars(bigits_[used_digits_ - 1]) + 1; |
|
583 if (needed_chars > buffer_size) return false; |
|
584 int string_index = needed_chars - 1; |
|
585 buffer[string_index--] = '\0'; |
|
586 for (int i = 0; i < exponent_; ++i) { |
|
587 for (int j = 0; j < kHexCharsPerBigit; ++j) { |
|
588 buffer[string_index--] = '0'; |
|
589 } |
|
590 } |
|
591 for (int i = 0; i < used_digits_ - 1; ++i) { |
|
592 Chunk current_bigit = bigits_[i]; |
|
593 for (int j = 0; j < kHexCharsPerBigit; ++j) { |
|
594 buffer[string_index--] = HexCharOfValue(current_bigit & 0xF); |
|
595 current_bigit >>= 4; |
|
596 } |
|
597 } |
|
598 // And finally the last bigit. |
|
599 Chunk most_significant_bigit = bigits_[used_digits_ - 1]; |
|
600 while (most_significant_bigit != 0) { |
|
601 buffer[string_index--] = HexCharOfValue(most_significant_bigit & 0xF); |
|
602 most_significant_bigit >>= 4; |
|
603 } |
|
604 return true; |
|
605 } |
|
606 |
|
607 |
|
608 Bignum::Chunk Bignum::BigitAt(int index) const { |
|
609 if (index >= BigitLength()) return 0; |
|
610 if (index < exponent_) return 0; |
|
611 return bigits_[index - exponent_]; |
|
612 } |
|
613 |
|
614 |
|
615 int Bignum::Compare(const Bignum& a, const Bignum& b) { |
|
616 ASSERT(a.IsClamped()); |
|
617 ASSERT(b.IsClamped()); |
|
618 int bigit_length_a = a.BigitLength(); |
|
619 int bigit_length_b = b.BigitLength(); |
|
620 if (bigit_length_a < bigit_length_b) return -1; |
|
621 if (bigit_length_a > bigit_length_b) return +1; |
|
622 for (int i = bigit_length_a - 1; i >= Min(a.exponent_, b.exponent_); --i) { |
|
623 Chunk bigit_a = a.BigitAt(i); |
|
624 Chunk bigit_b = b.BigitAt(i); |
|
625 if (bigit_a < bigit_b) return -1; |
|
626 if (bigit_a > bigit_b) return +1; |
|
627 // Otherwise they are equal up to this digit. Try the next digit. |
|
628 } |
|
629 return 0; |
|
630 } |
|
631 |
|
632 |
|
633 int Bignum::PlusCompare(const Bignum& a, const Bignum& b, const Bignum& c) { |
|
634 ASSERT(a.IsClamped()); |
|
635 ASSERT(b.IsClamped()); |
|
636 ASSERT(c.IsClamped()); |
|
637 if (a.BigitLength() < b.BigitLength()) { |
|
638 return PlusCompare(b, a, c); |
|
639 } |
|
640 if (a.BigitLength() + 1 < c.BigitLength()) return -1; |
|
641 if (a.BigitLength() > c.BigitLength()) return +1; |
|
642 // The exponent encodes 0-bigits. So if there are more 0-digits in 'a' than |
|
643 // 'b' has digits, then the bigit-length of 'a'+'b' must be equal to the one |
|
644 // of 'a'. |
|
645 if (a.exponent_ >= b.BigitLength() && a.BigitLength() < c.BigitLength()) { |
|
646 return -1; |
|
647 } |
|
648 |
|
649 Chunk borrow = 0; |
|
650 // Starting at min_exponent all digits are == 0. So no need to compare them. |
|
651 int min_exponent = Min(Min(a.exponent_, b.exponent_), c.exponent_); |
|
652 for (int i = c.BigitLength() - 1; i >= min_exponent; --i) { |
|
653 Chunk chunk_a = a.BigitAt(i); |
|
654 Chunk chunk_b = b.BigitAt(i); |
|
655 Chunk chunk_c = c.BigitAt(i); |
|
656 Chunk sum = chunk_a + chunk_b; |
|
657 if (sum > chunk_c + borrow) { |
|
658 return +1; |
|
659 } else { |
|
660 borrow = chunk_c + borrow - sum; |
|
661 if (borrow > 1) return -1; |
|
662 borrow <<= kBigitSize; |
|
663 } |
|
664 } |
|
665 if (borrow == 0) return 0; |
|
666 return -1; |
|
667 } |
|
668 |
|
669 |
|
670 void Bignum::Clamp() { |
|
671 while (used_digits_ > 0 && bigits_[used_digits_ - 1] == 0) { |
|
672 used_digits_--; |
|
673 } |
|
674 if (used_digits_ == 0) { |
|
675 // Zero. |
|
676 exponent_ = 0; |
|
677 } |
|
678 } |
|
679 |
|
680 |
|
681 bool Bignum::IsClamped() const { |
|
682 return used_digits_ == 0 || bigits_[used_digits_ - 1] != 0; |
|
683 } |
|
684 |
|
685 |
|
686 void Bignum::Zero() { |
|
687 for (int i = 0; i < used_digits_; ++i) { |
|
688 bigits_[i] = 0; |
|
689 } |
|
690 used_digits_ = 0; |
|
691 exponent_ = 0; |
|
692 } |
|
693 |
|
694 |
|
695 void Bignum::Align(const Bignum& other) { |
|
696 if (exponent_ > other.exponent_) { |
|
697 // If "X" represents a "hidden" digit (by the exponent) then we are in the |
|
698 // following case (a == this, b == other): |
|
699 // a: aaaaaaXXXX or a: aaaaaXXX |
|
700 // b: bbbbbbX b: bbbbbbbbXX |
|
701 // We replace some of the hidden digits (X) of a with 0 digits. |
|
702 // a: aaaaaa000X or a: aaaaa0XX |
|
703 int zero_digits = exponent_ - other.exponent_; |
|
704 EnsureCapacity(used_digits_ + zero_digits); |
|
705 for (int i = used_digits_ - 1; i >= 0; --i) { |
|
706 bigits_[i + zero_digits] = bigits_[i]; |
|
707 } |
|
708 for (int i = 0; i < zero_digits; ++i) { |
|
709 bigits_[i] = 0; |
|
710 } |
|
711 used_digits_ += zero_digits; |
|
712 exponent_ -= zero_digits; |
|
713 ASSERT(used_digits_ >= 0); |
|
714 ASSERT(exponent_ >= 0); |
|
715 } |
|
716 } |
|
717 |
|
718 |
|
719 void Bignum::BigitsShiftLeft(int shift_amount) { |
|
720 ASSERT(shift_amount < kBigitSize); |
|
721 ASSERT(shift_amount >= 0); |
|
722 Chunk carry = 0; |
|
723 for (int i = 0; i < used_digits_; ++i) { |
|
724 Chunk new_carry = bigits_[i] >> (kBigitSize - shift_amount); |
|
725 bigits_[i] = ((bigits_[i] << shift_amount) + carry) & kBigitMask; |
|
726 carry = new_carry; |
|
727 } |
|
728 if (carry != 0) { |
|
729 bigits_[used_digits_] = carry; |
|
730 used_digits_++; |
|
731 } |
|
732 } |
|
733 |
|
734 |
|
735 void Bignum::SubtractTimes(const Bignum& other, int factor) { |
|
736 ASSERT(exponent_ <= other.exponent_); |
|
737 if (factor < 3) { |
|
738 for (int i = 0; i < factor; ++i) { |
|
739 SubtractBignum(other); |
|
740 } |
|
741 return; |
|
742 } |
|
743 Chunk borrow = 0; |
|
744 int exponent_diff = other.exponent_ - exponent_; |
|
745 for (int i = 0; i < other.used_digits_; ++i) { |
|
746 DoubleChunk product = static_cast<DoubleChunk>(factor) * other.bigits_[i]; |
|
747 DoubleChunk remove = borrow + product; |
|
748 Chunk difference = bigits_[i + exponent_diff] - (remove & kBigitMask); |
|
749 bigits_[i + exponent_diff] = difference & kBigitMask; |
|
750 borrow = static_cast<Chunk>((difference >> (kChunkSize - 1)) + |
|
751 (remove >> kBigitSize)); |
|
752 } |
|
753 for (int i = other.used_digits_ + exponent_diff; i < used_digits_; ++i) { |
|
754 if (borrow == 0) return; |
|
755 Chunk difference = bigits_[i] - borrow; |
|
756 bigits_[i] = difference & kBigitMask; |
|
757 borrow = difference >> (kChunkSize - 1); |
|
758 } |
|
759 Clamp(); |
|
760 } |
|
761 |
|
762 |
|
763 } // namespace double_conversion |