media/libjpeg/jquant1.c

Thu, 22 Jan 2015 13:21:57 +0100

author
Michael Schloh von Bennewitz <michael@schloh.com>
date
Thu, 22 Jan 2015 13:21:57 +0100
branch
TOR_BUG_9701
changeset 15
b8a032363ba2
permissions
-rw-r--r--

Incorporate requested changes from Mozilla in review:
https://bugzilla.mozilla.org/show_bug.cgi?id=1123480#c6

michael@0 1 /*
michael@0 2 * jquant1.c
michael@0 3 *
michael@0 4 * This file was part of the Independent JPEG Group's software:
michael@0 5 * Copyright (C) 1991-1996, Thomas G. Lane.
michael@0 6 * libjpeg-turbo Modifications:
michael@0 7 * Copyright (C) 2009, D. R. Commander
michael@0 8 * For conditions of distribution and use, see the accompanying README file.
michael@0 9 *
michael@0 10 * This file contains 1-pass color quantization (color mapping) routines.
michael@0 11 * These routines provide mapping to a fixed color map using equally spaced
michael@0 12 * color values. Optional Floyd-Steinberg or ordered dithering is available.
michael@0 13 */
michael@0 14
michael@0 15 #define JPEG_INTERNALS
michael@0 16 #include "jinclude.h"
michael@0 17 #include "jpeglib.h"
michael@0 18
michael@0 19 #ifdef QUANT_1PASS_SUPPORTED
michael@0 20
michael@0 21
michael@0 22 /*
michael@0 23 * The main purpose of 1-pass quantization is to provide a fast, if not very
michael@0 24 * high quality, colormapped output capability. A 2-pass quantizer usually
michael@0 25 * gives better visual quality; however, for quantized grayscale output this
michael@0 26 * quantizer is perfectly adequate. Dithering is highly recommended with this
michael@0 27 * quantizer, though you can turn it off if you really want to.
michael@0 28 *
michael@0 29 * In 1-pass quantization the colormap must be chosen in advance of seeing the
michael@0 30 * image. We use a map consisting of all combinations of Ncolors[i] color
michael@0 31 * values for the i'th component. The Ncolors[] values are chosen so that
michael@0 32 * their product, the total number of colors, is no more than that requested.
michael@0 33 * (In most cases, the product will be somewhat less.)
michael@0 34 *
michael@0 35 * Since the colormap is orthogonal, the representative value for each color
michael@0 36 * component can be determined without considering the other components;
michael@0 37 * then these indexes can be combined into a colormap index by a standard
michael@0 38 * N-dimensional-array-subscript calculation. Most of the arithmetic involved
michael@0 39 * can be precalculated and stored in the lookup table colorindex[].
michael@0 40 * colorindex[i][j] maps pixel value j in component i to the nearest
michael@0 41 * representative value (grid plane) for that component; this index is
michael@0 42 * multiplied by the array stride for component i, so that the
michael@0 43 * index of the colormap entry closest to a given pixel value is just
michael@0 44 * sum( colorindex[component-number][pixel-component-value] )
michael@0 45 * Aside from being fast, this scheme allows for variable spacing between
michael@0 46 * representative values with no additional lookup cost.
michael@0 47 *
michael@0 48 * If gamma correction has been applied in color conversion, it might be wise
michael@0 49 * to adjust the color grid spacing so that the representative colors are
michael@0 50 * equidistant in linear space. At this writing, gamma correction is not
michael@0 51 * implemented by jdcolor, so nothing is done here.
michael@0 52 */
michael@0 53
michael@0 54
michael@0 55 /* Declarations for ordered dithering.
michael@0 56 *
michael@0 57 * We use a standard 16x16 ordered dither array. The basic concept of ordered
michael@0 58 * dithering is described in many references, for instance Dale Schumacher's
michael@0 59 * chapter II.2 of Graphics Gems II (James Arvo, ed. Academic Press, 1991).
michael@0 60 * In place of Schumacher's comparisons against a "threshold" value, we add a
michael@0 61 * "dither" value to the input pixel and then round the result to the nearest
michael@0 62 * output value. The dither value is equivalent to (0.5 - threshold) times
michael@0 63 * the distance between output values. For ordered dithering, we assume that
michael@0 64 * the output colors are equally spaced; if not, results will probably be
michael@0 65 * worse, since the dither may be too much or too little at a given point.
michael@0 66 *
michael@0 67 * The normal calculation would be to form pixel value + dither, range-limit
michael@0 68 * this to 0..MAXJSAMPLE, and then index into the colorindex table as usual.
michael@0 69 * We can skip the separate range-limiting step by extending the colorindex
michael@0 70 * table in both directions.
michael@0 71 */
michael@0 72
michael@0 73 #define ODITHER_SIZE 16 /* dimension of dither matrix */
michael@0 74 /* NB: if ODITHER_SIZE is not a power of 2, ODITHER_MASK uses will break */
michael@0 75 #define ODITHER_CELLS (ODITHER_SIZE*ODITHER_SIZE) /* # cells in matrix */
michael@0 76 #define ODITHER_MASK (ODITHER_SIZE-1) /* mask for wrapping around counters */
michael@0 77
michael@0 78 typedef int ODITHER_MATRIX[ODITHER_SIZE][ODITHER_SIZE];
michael@0 79 typedef int (*ODITHER_MATRIX_PTR)[ODITHER_SIZE];
michael@0 80
michael@0 81 static const UINT8 base_dither_matrix[ODITHER_SIZE][ODITHER_SIZE] = {
michael@0 82 /* Bayer's order-4 dither array. Generated by the code given in
michael@0 83 * Stephen Hawley's article "Ordered Dithering" in Graphics Gems I.
michael@0 84 * The values in this array must range from 0 to ODITHER_CELLS-1.
michael@0 85 */
michael@0 86 { 0,192, 48,240, 12,204, 60,252, 3,195, 51,243, 15,207, 63,255 },
michael@0 87 { 128, 64,176,112,140, 76,188,124,131, 67,179,115,143, 79,191,127 },
michael@0 88 { 32,224, 16,208, 44,236, 28,220, 35,227, 19,211, 47,239, 31,223 },
michael@0 89 { 160, 96,144, 80,172,108,156, 92,163, 99,147, 83,175,111,159, 95 },
michael@0 90 { 8,200, 56,248, 4,196, 52,244, 11,203, 59,251, 7,199, 55,247 },
michael@0 91 { 136, 72,184,120,132, 68,180,116,139, 75,187,123,135, 71,183,119 },
michael@0 92 { 40,232, 24,216, 36,228, 20,212, 43,235, 27,219, 39,231, 23,215 },
michael@0 93 { 168,104,152, 88,164,100,148, 84,171,107,155, 91,167,103,151, 87 },
michael@0 94 { 2,194, 50,242, 14,206, 62,254, 1,193, 49,241, 13,205, 61,253 },
michael@0 95 { 130, 66,178,114,142, 78,190,126,129, 65,177,113,141, 77,189,125 },
michael@0 96 { 34,226, 18,210, 46,238, 30,222, 33,225, 17,209, 45,237, 29,221 },
michael@0 97 { 162, 98,146, 82,174,110,158, 94,161, 97,145, 81,173,109,157, 93 },
michael@0 98 { 10,202, 58,250, 6,198, 54,246, 9,201, 57,249, 5,197, 53,245 },
michael@0 99 { 138, 74,186,122,134, 70,182,118,137, 73,185,121,133, 69,181,117 },
michael@0 100 { 42,234, 26,218, 38,230, 22,214, 41,233, 25,217, 37,229, 21,213 },
michael@0 101 { 170,106,154, 90,166,102,150, 86,169,105,153, 89,165,101,149, 85 }
michael@0 102 };
michael@0 103
michael@0 104
michael@0 105 /* Declarations for Floyd-Steinberg dithering.
michael@0 106 *
michael@0 107 * Errors are accumulated into the array fserrors[], at a resolution of
michael@0 108 * 1/16th of a pixel count. The error at a given pixel is propagated
michael@0 109 * to its not-yet-processed neighbors using the standard F-S fractions,
michael@0 110 * ... (here) 7/16
michael@0 111 * 3/16 5/16 1/16
michael@0 112 * We work left-to-right on even rows, right-to-left on odd rows.
michael@0 113 *
michael@0 114 * We can get away with a single array (holding one row's worth of errors)
michael@0 115 * by using it to store the current row's errors at pixel columns not yet
michael@0 116 * processed, but the next row's errors at columns already processed. We
michael@0 117 * need only a few extra variables to hold the errors immediately around the
michael@0 118 * current column. (If we are lucky, those variables are in registers, but
michael@0 119 * even if not, they're probably cheaper to access than array elements are.)
michael@0 120 *
michael@0 121 * The fserrors[] array is indexed [component#][position].
michael@0 122 * We provide (#columns + 2) entries per component; the extra entry at each
michael@0 123 * end saves us from special-casing the first and last pixels.
michael@0 124 *
michael@0 125 * Note: on a wide image, we might not have enough room in a PC's near data
michael@0 126 * segment to hold the error array; so it is allocated with alloc_large.
michael@0 127 */
michael@0 128
michael@0 129 #if BITS_IN_JSAMPLE == 8
michael@0 130 typedef INT16 FSERROR; /* 16 bits should be enough */
michael@0 131 typedef int LOCFSERROR; /* use 'int' for calculation temps */
michael@0 132 #else
michael@0 133 typedef INT32 FSERROR; /* may need more than 16 bits */
michael@0 134 typedef INT32 LOCFSERROR; /* be sure calculation temps are big enough */
michael@0 135 #endif
michael@0 136
michael@0 137 typedef FSERROR FAR *FSERRPTR; /* pointer to error array (in FAR storage!) */
michael@0 138
michael@0 139
michael@0 140 /* Private subobject */
michael@0 141
michael@0 142 #define MAX_Q_COMPS 4 /* max components I can handle */
michael@0 143
michael@0 144 typedef struct {
michael@0 145 struct jpeg_color_quantizer pub; /* public fields */
michael@0 146
michael@0 147 /* Initially allocated colormap is saved here */
michael@0 148 JSAMPARRAY sv_colormap; /* The color map as a 2-D pixel array */
michael@0 149 int sv_actual; /* number of entries in use */
michael@0 150
michael@0 151 JSAMPARRAY colorindex; /* Precomputed mapping for speed */
michael@0 152 /* colorindex[i][j] = index of color closest to pixel value j in component i,
michael@0 153 * premultiplied as described above. Since colormap indexes must fit into
michael@0 154 * JSAMPLEs, the entries of this array will too.
michael@0 155 */
michael@0 156 boolean is_padded; /* is the colorindex padded for odither? */
michael@0 157
michael@0 158 int Ncolors[MAX_Q_COMPS]; /* # of values alloced to each component */
michael@0 159
michael@0 160 /* Variables for ordered dithering */
michael@0 161 int row_index; /* cur row's vertical index in dither matrix */
michael@0 162 ODITHER_MATRIX_PTR odither[MAX_Q_COMPS]; /* one dither array per component */
michael@0 163
michael@0 164 /* Variables for Floyd-Steinberg dithering */
michael@0 165 FSERRPTR fserrors[MAX_Q_COMPS]; /* accumulated errors */
michael@0 166 boolean on_odd_row; /* flag to remember which row we are on */
michael@0 167 } my_cquantizer;
michael@0 168
michael@0 169 typedef my_cquantizer * my_cquantize_ptr;
michael@0 170
michael@0 171
michael@0 172 /*
michael@0 173 * Policy-making subroutines for create_colormap and create_colorindex.
michael@0 174 * These routines determine the colormap to be used. The rest of the module
michael@0 175 * only assumes that the colormap is orthogonal.
michael@0 176 *
michael@0 177 * * select_ncolors decides how to divvy up the available colors
michael@0 178 * among the components.
michael@0 179 * * output_value defines the set of representative values for a component.
michael@0 180 * * largest_input_value defines the mapping from input values to
michael@0 181 * representative values for a component.
michael@0 182 * Note that the latter two routines may impose different policies for
michael@0 183 * different components, though this is not currently done.
michael@0 184 */
michael@0 185
michael@0 186
michael@0 187 LOCAL(int)
michael@0 188 select_ncolors (j_decompress_ptr cinfo, int Ncolors[])
michael@0 189 /* Determine allocation of desired colors to components, */
michael@0 190 /* and fill in Ncolors[] array to indicate choice. */
michael@0 191 /* Return value is total number of colors (product of Ncolors[] values). */
michael@0 192 {
michael@0 193 int nc = cinfo->out_color_components; /* number of color components */
michael@0 194 int max_colors = cinfo->desired_number_of_colors;
michael@0 195 int total_colors, iroot, i, j;
michael@0 196 boolean changed;
michael@0 197 long temp;
michael@0 198 int RGB_order[3] = { RGB_GREEN, RGB_RED, RGB_BLUE };
michael@0 199 RGB_order[0] = rgb_green[cinfo->out_color_space];
michael@0 200 RGB_order[1] = rgb_red[cinfo->out_color_space];
michael@0 201 RGB_order[2] = rgb_blue[cinfo->out_color_space];
michael@0 202
michael@0 203 /* We can allocate at least the nc'th root of max_colors per component. */
michael@0 204 /* Compute floor(nc'th root of max_colors). */
michael@0 205 iroot = 1;
michael@0 206 do {
michael@0 207 iroot++;
michael@0 208 temp = iroot; /* set temp = iroot ** nc */
michael@0 209 for (i = 1; i < nc; i++)
michael@0 210 temp *= iroot;
michael@0 211 } while (temp <= (long) max_colors); /* repeat till iroot exceeds root */
michael@0 212 iroot--; /* now iroot = floor(root) */
michael@0 213
michael@0 214 /* Must have at least 2 color values per component */
michael@0 215 if (iroot < 2)
michael@0 216 ERREXIT1(cinfo, JERR_QUANT_FEW_COLORS, (int) temp);
michael@0 217
michael@0 218 /* Initialize to iroot color values for each component */
michael@0 219 total_colors = 1;
michael@0 220 for (i = 0; i < nc; i++) {
michael@0 221 Ncolors[i] = iroot;
michael@0 222 total_colors *= iroot;
michael@0 223 }
michael@0 224 /* We may be able to increment the count for one or more components without
michael@0 225 * exceeding max_colors, though we know not all can be incremented.
michael@0 226 * Sometimes, the first component can be incremented more than once!
michael@0 227 * (Example: for 16 colors, we start at 2*2*2, go to 3*2*2, then 4*2*2.)
michael@0 228 * In RGB colorspace, try to increment G first, then R, then B.
michael@0 229 */
michael@0 230 do {
michael@0 231 changed = FALSE;
michael@0 232 for (i = 0; i < nc; i++) {
michael@0 233 j = (cinfo->out_color_space == JCS_RGB ? RGB_order[i] : i);
michael@0 234 /* calculate new total_colors if Ncolors[j] is incremented */
michael@0 235 temp = total_colors / Ncolors[j];
michael@0 236 temp *= Ncolors[j]+1; /* done in long arith to avoid oflo */
michael@0 237 if (temp > (long) max_colors)
michael@0 238 break; /* won't fit, done with this pass */
michael@0 239 Ncolors[j]++; /* OK, apply the increment */
michael@0 240 total_colors = (int) temp;
michael@0 241 changed = TRUE;
michael@0 242 }
michael@0 243 } while (changed);
michael@0 244
michael@0 245 return total_colors;
michael@0 246 }
michael@0 247
michael@0 248
michael@0 249 LOCAL(int)
michael@0 250 output_value (j_decompress_ptr cinfo, int ci, int j, int maxj)
michael@0 251 /* Return j'th output value, where j will range from 0 to maxj */
michael@0 252 /* The output values must fall in 0..MAXJSAMPLE in increasing order */
michael@0 253 {
michael@0 254 /* We always provide values 0 and MAXJSAMPLE for each component;
michael@0 255 * any additional values are equally spaced between these limits.
michael@0 256 * (Forcing the upper and lower values to the limits ensures that
michael@0 257 * dithering can't produce a color outside the selected gamut.)
michael@0 258 */
michael@0 259 return (int) (((INT32) j * MAXJSAMPLE + maxj/2) / maxj);
michael@0 260 }
michael@0 261
michael@0 262
michael@0 263 LOCAL(int)
michael@0 264 largest_input_value (j_decompress_ptr cinfo, int ci, int j, int maxj)
michael@0 265 /* Return largest input value that should map to j'th output value */
michael@0 266 /* Must have largest(j=0) >= 0, and largest(j=maxj) >= MAXJSAMPLE */
michael@0 267 {
michael@0 268 /* Breakpoints are halfway between values returned by output_value */
michael@0 269 return (int) (((INT32) (2*j + 1) * MAXJSAMPLE + maxj) / (2*maxj));
michael@0 270 }
michael@0 271
michael@0 272
michael@0 273 /*
michael@0 274 * Create the colormap.
michael@0 275 */
michael@0 276
michael@0 277 LOCAL(void)
michael@0 278 create_colormap (j_decompress_ptr cinfo)
michael@0 279 {
michael@0 280 my_cquantize_ptr cquantize = (my_cquantize_ptr) cinfo->cquantize;
michael@0 281 JSAMPARRAY colormap; /* Created colormap */
michael@0 282 int total_colors; /* Number of distinct output colors */
michael@0 283 int i,j,k, nci, blksize, blkdist, ptr, val;
michael@0 284
michael@0 285 /* Select number of colors for each component */
michael@0 286 total_colors = select_ncolors(cinfo, cquantize->Ncolors);
michael@0 287
michael@0 288 /* Report selected color counts */
michael@0 289 if (cinfo->out_color_components == 3)
michael@0 290 TRACEMS4(cinfo, 1, JTRC_QUANT_3_NCOLORS,
michael@0 291 total_colors, cquantize->Ncolors[0],
michael@0 292 cquantize->Ncolors[1], cquantize->Ncolors[2]);
michael@0 293 else
michael@0 294 TRACEMS1(cinfo, 1, JTRC_QUANT_NCOLORS, total_colors);
michael@0 295
michael@0 296 /* Allocate and fill in the colormap. */
michael@0 297 /* The colors are ordered in the map in standard row-major order, */
michael@0 298 /* i.e. rightmost (highest-indexed) color changes most rapidly. */
michael@0 299
michael@0 300 colormap = (*cinfo->mem->alloc_sarray)
michael@0 301 ((j_common_ptr) cinfo, JPOOL_IMAGE,
michael@0 302 (JDIMENSION) total_colors, (JDIMENSION) cinfo->out_color_components);
michael@0 303
michael@0 304 /* blksize is number of adjacent repeated entries for a component */
michael@0 305 /* blkdist is distance between groups of identical entries for a component */
michael@0 306 blkdist = total_colors;
michael@0 307
michael@0 308 for (i = 0; i < cinfo->out_color_components; i++) {
michael@0 309 /* fill in colormap entries for i'th color component */
michael@0 310 nci = cquantize->Ncolors[i]; /* # of distinct values for this color */
michael@0 311 blksize = blkdist / nci;
michael@0 312 for (j = 0; j < nci; j++) {
michael@0 313 /* Compute j'th output value (out of nci) for component */
michael@0 314 val = output_value(cinfo, i, j, nci-1);
michael@0 315 /* Fill in all colormap entries that have this value of this component */
michael@0 316 for (ptr = j * blksize; ptr < total_colors; ptr += blkdist) {
michael@0 317 /* fill in blksize entries beginning at ptr */
michael@0 318 for (k = 0; k < blksize; k++)
michael@0 319 colormap[i][ptr+k] = (JSAMPLE) val;
michael@0 320 }
michael@0 321 }
michael@0 322 blkdist = blksize; /* blksize of this color is blkdist of next */
michael@0 323 }
michael@0 324
michael@0 325 /* Save the colormap in private storage,
michael@0 326 * where it will survive color quantization mode changes.
michael@0 327 */
michael@0 328 cquantize->sv_colormap = colormap;
michael@0 329 cquantize->sv_actual = total_colors;
michael@0 330 }
michael@0 331
michael@0 332
michael@0 333 /*
michael@0 334 * Create the color index table.
michael@0 335 */
michael@0 336
michael@0 337 LOCAL(void)
michael@0 338 create_colorindex (j_decompress_ptr cinfo)
michael@0 339 {
michael@0 340 my_cquantize_ptr cquantize = (my_cquantize_ptr) cinfo->cquantize;
michael@0 341 JSAMPROW indexptr;
michael@0 342 int i,j,k, nci, blksize, val, pad;
michael@0 343
michael@0 344 /* For ordered dither, we pad the color index tables by MAXJSAMPLE in
michael@0 345 * each direction (input index values can be -MAXJSAMPLE .. 2*MAXJSAMPLE).
michael@0 346 * This is not necessary in the other dithering modes. However, we
michael@0 347 * flag whether it was done in case user changes dithering mode.
michael@0 348 */
michael@0 349 if (cinfo->dither_mode == JDITHER_ORDERED) {
michael@0 350 pad = MAXJSAMPLE*2;
michael@0 351 cquantize->is_padded = TRUE;
michael@0 352 } else {
michael@0 353 pad = 0;
michael@0 354 cquantize->is_padded = FALSE;
michael@0 355 }
michael@0 356
michael@0 357 cquantize->colorindex = (*cinfo->mem->alloc_sarray)
michael@0 358 ((j_common_ptr) cinfo, JPOOL_IMAGE,
michael@0 359 (JDIMENSION) (MAXJSAMPLE+1 + pad),
michael@0 360 (JDIMENSION) cinfo->out_color_components);
michael@0 361
michael@0 362 /* blksize is number of adjacent repeated entries for a component */
michael@0 363 blksize = cquantize->sv_actual;
michael@0 364
michael@0 365 for (i = 0; i < cinfo->out_color_components; i++) {
michael@0 366 /* fill in colorindex entries for i'th color component */
michael@0 367 nci = cquantize->Ncolors[i]; /* # of distinct values for this color */
michael@0 368 blksize = blksize / nci;
michael@0 369
michael@0 370 /* adjust colorindex pointers to provide padding at negative indexes. */
michael@0 371 if (pad)
michael@0 372 cquantize->colorindex[i] += MAXJSAMPLE;
michael@0 373
michael@0 374 /* in loop, val = index of current output value, */
michael@0 375 /* and k = largest j that maps to current val */
michael@0 376 indexptr = cquantize->colorindex[i];
michael@0 377 val = 0;
michael@0 378 k = largest_input_value(cinfo, i, 0, nci-1);
michael@0 379 for (j = 0; j <= MAXJSAMPLE; j++) {
michael@0 380 while (j > k) /* advance val if past boundary */
michael@0 381 k = largest_input_value(cinfo, i, ++val, nci-1);
michael@0 382 /* premultiply so that no multiplication needed in main processing */
michael@0 383 indexptr[j] = (JSAMPLE) (val * blksize);
michael@0 384 }
michael@0 385 /* Pad at both ends if necessary */
michael@0 386 if (pad)
michael@0 387 for (j = 1; j <= MAXJSAMPLE; j++) {
michael@0 388 indexptr[-j] = indexptr[0];
michael@0 389 indexptr[MAXJSAMPLE+j] = indexptr[MAXJSAMPLE];
michael@0 390 }
michael@0 391 }
michael@0 392 }
michael@0 393
michael@0 394
michael@0 395 /*
michael@0 396 * Create an ordered-dither array for a component having ncolors
michael@0 397 * distinct output values.
michael@0 398 */
michael@0 399
michael@0 400 LOCAL(ODITHER_MATRIX_PTR)
michael@0 401 make_odither_array (j_decompress_ptr cinfo, int ncolors)
michael@0 402 {
michael@0 403 ODITHER_MATRIX_PTR odither;
michael@0 404 int j,k;
michael@0 405 INT32 num,den;
michael@0 406
michael@0 407 odither = (ODITHER_MATRIX_PTR)
michael@0 408 (*cinfo->mem->alloc_small) ((j_common_ptr) cinfo, JPOOL_IMAGE,
michael@0 409 SIZEOF(ODITHER_MATRIX));
michael@0 410 /* The inter-value distance for this color is MAXJSAMPLE/(ncolors-1).
michael@0 411 * Hence the dither value for the matrix cell with fill order f
michael@0 412 * (f=0..N-1) should be (N-1-2*f)/(2*N) * MAXJSAMPLE/(ncolors-1).
michael@0 413 * On 16-bit-int machine, be careful to avoid overflow.
michael@0 414 */
michael@0 415 den = 2 * ODITHER_CELLS * ((INT32) (ncolors - 1));
michael@0 416 for (j = 0; j < ODITHER_SIZE; j++) {
michael@0 417 for (k = 0; k < ODITHER_SIZE; k++) {
michael@0 418 num = ((INT32) (ODITHER_CELLS-1 - 2*((int)base_dither_matrix[j][k])))
michael@0 419 * MAXJSAMPLE;
michael@0 420 /* Ensure round towards zero despite C's lack of consistency
michael@0 421 * about rounding negative values in integer division...
michael@0 422 */
michael@0 423 odither[j][k] = (int) (num<0 ? -((-num)/den) : num/den);
michael@0 424 }
michael@0 425 }
michael@0 426 return odither;
michael@0 427 }
michael@0 428
michael@0 429
michael@0 430 /*
michael@0 431 * Create the ordered-dither tables.
michael@0 432 * Components having the same number of representative colors may
michael@0 433 * share a dither table.
michael@0 434 */
michael@0 435
michael@0 436 LOCAL(void)
michael@0 437 create_odither_tables (j_decompress_ptr cinfo)
michael@0 438 {
michael@0 439 my_cquantize_ptr cquantize = (my_cquantize_ptr) cinfo->cquantize;
michael@0 440 ODITHER_MATRIX_PTR odither;
michael@0 441 int i, j, nci;
michael@0 442
michael@0 443 for (i = 0; i < cinfo->out_color_components; i++) {
michael@0 444 nci = cquantize->Ncolors[i]; /* # of distinct values for this color */
michael@0 445 odither = NULL; /* search for matching prior component */
michael@0 446 for (j = 0; j < i; j++) {
michael@0 447 if (nci == cquantize->Ncolors[j]) {
michael@0 448 odither = cquantize->odither[j];
michael@0 449 break;
michael@0 450 }
michael@0 451 }
michael@0 452 if (odither == NULL) /* need a new table? */
michael@0 453 odither = make_odither_array(cinfo, nci);
michael@0 454 cquantize->odither[i] = odither;
michael@0 455 }
michael@0 456 }
michael@0 457
michael@0 458
michael@0 459 /*
michael@0 460 * Map some rows of pixels to the output colormapped representation.
michael@0 461 */
michael@0 462
michael@0 463 METHODDEF(void)
michael@0 464 color_quantize (j_decompress_ptr cinfo, JSAMPARRAY input_buf,
michael@0 465 JSAMPARRAY output_buf, int num_rows)
michael@0 466 /* General case, no dithering */
michael@0 467 {
michael@0 468 my_cquantize_ptr cquantize = (my_cquantize_ptr) cinfo->cquantize;
michael@0 469 JSAMPARRAY colorindex = cquantize->colorindex;
michael@0 470 register int pixcode, ci;
michael@0 471 register JSAMPROW ptrin, ptrout;
michael@0 472 int row;
michael@0 473 JDIMENSION col;
michael@0 474 JDIMENSION width = cinfo->output_width;
michael@0 475 register int nc = cinfo->out_color_components;
michael@0 476
michael@0 477 for (row = 0; row < num_rows; row++) {
michael@0 478 ptrin = input_buf[row];
michael@0 479 ptrout = output_buf[row];
michael@0 480 for (col = width; col > 0; col--) {
michael@0 481 pixcode = 0;
michael@0 482 for (ci = 0; ci < nc; ci++) {
michael@0 483 pixcode += GETJSAMPLE(colorindex[ci][GETJSAMPLE(*ptrin++)]);
michael@0 484 }
michael@0 485 *ptrout++ = (JSAMPLE) pixcode;
michael@0 486 }
michael@0 487 }
michael@0 488 }
michael@0 489
michael@0 490
michael@0 491 METHODDEF(void)
michael@0 492 color_quantize3 (j_decompress_ptr cinfo, JSAMPARRAY input_buf,
michael@0 493 JSAMPARRAY output_buf, int num_rows)
michael@0 494 /* Fast path for out_color_components==3, no dithering */
michael@0 495 {
michael@0 496 my_cquantize_ptr cquantize = (my_cquantize_ptr) cinfo->cquantize;
michael@0 497 register int pixcode;
michael@0 498 register JSAMPROW ptrin, ptrout;
michael@0 499 JSAMPROW colorindex0 = cquantize->colorindex[0];
michael@0 500 JSAMPROW colorindex1 = cquantize->colorindex[1];
michael@0 501 JSAMPROW colorindex2 = cquantize->colorindex[2];
michael@0 502 int row;
michael@0 503 JDIMENSION col;
michael@0 504 JDIMENSION width = cinfo->output_width;
michael@0 505
michael@0 506 for (row = 0; row < num_rows; row++) {
michael@0 507 ptrin = input_buf[row];
michael@0 508 ptrout = output_buf[row];
michael@0 509 for (col = width; col > 0; col--) {
michael@0 510 pixcode = GETJSAMPLE(colorindex0[GETJSAMPLE(*ptrin++)]);
michael@0 511 pixcode += GETJSAMPLE(colorindex1[GETJSAMPLE(*ptrin++)]);
michael@0 512 pixcode += GETJSAMPLE(colorindex2[GETJSAMPLE(*ptrin++)]);
michael@0 513 *ptrout++ = (JSAMPLE) pixcode;
michael@0 514 }
michael@0 515 }
michael@0 516 }
michael@0 517
michael@0 518
michael@0 519 METHODDEF(void)
michael@0 520 quantize_ord_dither (j_decompress_ptr cinfo, JSAMPARRAY input_buf,
michael@0 521 JSAMPARRAY output_buf, int num_rows)
michael@0 522 /* General case, with ordered dithering */
michael@0 523 {
michael@0 524 my_cquantize_ptr cquantize = (my_cquantize_ptr) cinfo->cquantize;
michael@0 525 register JSAMPROW input_ptr;
michael@0 526 register JSAMPROW output_ptr;
michael@0 527 JSAMPROW colorindex_ci;
michael@0 528 int * dither; /* points to active row of dither matrix */
michael@0 529 int row_index, col_index; /* current indexes into dither matrix */
michael@0 530 int nc = cinfo->out_color_components;
michael@0 531 int ci;
michael@0 532 int row;
michael@0 533 JDIMENSION col;
michael@0 534 JDIMENSION width = cinfo->output_width;
michael@0 535
michael@0 536 for (row = 0; row < num_rows; row++) {
michael@0 537 /* Initialize output values to 0 so can process components separately */
michael@0 538 jzero_far((void FAR *) output_buf[row],
michael@0 539 (size_t) (width * SIZEOF(JSAMPLE)));
michael@0 540 row_index = cquantize->row_index;
michael@0 541 for (ci = 0; ci < nc; ci++) {
michael@0 542 input_ptr = input_buf[row] + ci;
michael@0 543 output_ptr = output_buf[row];
michael@0 544 colorindex_ci = cquantize->colorindex[ci];
michael@0 545 dither = cquantize->odither[ci][row_index];
michael@0 546 col_index = 0;
michael@0 547
michael@0 548 for (col = width; col > 0; col--) {
michael@0 549 /* Form pixel value + dither, range-limit to 0..MAXJSAMPLE,
michael@0 550 * select output value, accumulate into output code for this pixel.
michael@0 551 * Range-limiting need not be done explicitly, as we have extended
michael@0 552 * the colorindex table to produce the right answers for out-of-range
michael@0 553 * inputs. The maximum dither is +- MAXJSAMPLE; this sets the
michael@0 554 * required amount of padding.
michael@0 555 */
michael@0 556 *output_ptr += colorindex_ci[GETJSAMPLE(*input_ptr)+dither[col_index]];
michael@0 557 input_ptr += nc;
michael@0 558 output_ptr++;
michael@0 559 col_index = (col_index + 1) & ODITHER_MASK;
michael@0 560 }
michael@0 561 }
michael@0 562 /* Advance row index for next row */
michael@0 563 row_index = (row_index + 1) & ODITHER_MASK;
michael@0 564 cquantize->row_index = row_index;
michael@0 565 }
michael@0 566 }
michael@0 567
michael@0 568
michael@0 569 METHODDEF(void)
michael@0 570 quantize3_ord_dither (j_decompress_ptr cinfo, JSAMPARRAY input_buf,
michael@0 571 JSAMPARRAY output_buf, int num_rows)
michael@0 572 /* Fast path for out_color_components==3, with ordered dithering */
michael@0 573 {
michael@0 574 my_cquantize_ptr cquantize = (my_cquantize_ptr) cinfo->cquantize;
michael@0 575 register int pixcode;
michael@0 576 register JSAMPROW input_ptr;
michael@0 577 register JSAMPROW output_ptr;
michael@0 578 JSAMPROW colorindex0 = cquantize->colorindex[0];
michael@0 579 JSAMPROW colorindex1 = cquantize->colorindex[1];
michael@0 580 JSAMPROW colorindex2 = cquantize->colorindex[2];
michael@0 581 int * dither0; /* points to active row of dither matrix */
michael@0 582 int * dither1;
michael@0 583 int * dither2;
michael@0 584 int row_index, col_index; /* current indexes into dither matrix */
michael@0 585 int row;
michael@0 586 JDIMENSION col;
michael@0 587 JDIMENSION width = cinfo->output_width;
michael@0 588
michael@0 589 for (row = 0; row < num_rows; row++) {
michael@0 590 row_index = cquantize->row_index;
michael@0 591 input_ptr = input_buf[row];
michael@0 592 output_ptr = output_buf[row];
michael@0 593 dither0 = cquantize->odither[0][row_index];
michael@0 594 dither1 = cquantize->odither[1][row_index];
michael@0 595 dither2 = cquantize->odither[2][row_index];
michael@0 596 col_index = 0;
michael@0 597
michael@0 598 for (col = width; col > 0; col--) {
michael@0 599 pixcode = GETJSAMPLE(colorindex0[GETJSAMPLE(*input_ptr++) +
michael@0 600 dither0[col_index]]);
michael@0 601 pixcode += GETJSAMPLE(colorindex1[GETJSAMPLE(*input_ptr++) +
michael@0 602 dither1[col_index]]);
michael@0 603 pixcode += GETJSAMPLE(colorindex2[GETJSAMPLE(*input_ptr++) +
michael@0 604 dither2[col_index]]);
michael@0 605 *output_ptr++ = (JSAMPLE) pixcode;
michael@0 606 col_index = (col_index + 1) & ODITHER_MASK;
michael@0 607 }
michael@0 608 row_index = (row_index + 1) & ODITHER_MASK;
michael@0 609 cquantize->row_index = row_index;
michael@0 610 }
michael@0 611 }
michael@0 612
michael@0 613
michael@0 614 METHODDEF(void)
michael@0 615 quantize_fs_dither (j_decompress_ptr cinfo, JSAMPARRAY input_buf,
michael@0 616 JSAMPARRAY output_buf, int num_rows)
michael@0 617 /* General case, with Floyd-Steinberg dithering */
michael@0 618 {
michael@0 619 my_cquantize_ptr cquantize = (my_cquantize_ptr) cinfo->cquantize;
michael@0 620 register LOCFSERROR cur; /* current error or pixel value */
michael@0 621 LOCFSERROR belowerr; /* error for pixel below cur */
michael@0 622 LOCFSERROR bpreverr; /* error for below/prev col */
michael@0 623 LOCFSERROR bnexterr; /* error for below/next col */
michael@0 624 LOCFSERROR delta;
michael@0 625 register FSERRPTR errorptr; /* => fserrors[] at column before current */
michael@0 626 register JSAMPROW input_ptr;
michael@0 627 register JSAMPROW output_ptr;
michael@0 628 JSAMPROW colorindex_ci;
michael@0 629 JSAMPROW colormap_ci;
michael@0 630 int pixcode;
michael@0 631 int nc = cinfo->out_color_components;
michael@0 632 int dir; /* 1 for left-to-right, -1 for right-to-left */
michael@0 633 int dirnc; /* dir * nc */
michael@0 634 int ci;
michael@0 635 int row;
michael@0 636 JDIMENSION col;
michael@0 637 JDIMENSION width = cinfo->output_width;
michael@0 638 JSAMPLE *range_limit = cinfo->sample_range_limit;
michael@0 639 SHIFT_TEMPS
michael@0 640
michael@0 641 for (row = 0; row < num_rows; row++) {
michael@0 642 /* Initialize output values to 0 so can process components separately */
michael@0 643 jzero_far((void FAR *) output_buf[row],
michael@0 644 (size_t) (width * SIZEOF(JSAMPLE)));
michael@0 645 for (ci = 0; ci < nc; ci++) {
michael@0 646 input_ptr = input_buf[row] + ci;
michael@0 647 output_ptr = output_buf[row];
michael@0 648 if (cquantize->on_odd_row) {
michael@0 649 /* work right to left in this row */
michael@0 650 input_ptr += (width-1) * nc; /* so point to rightmost pixel */
michael@0 651 output_ptr += width-1;
michael@0 652 dir = -1;
michael@0 653 dirnc = -nc;
michael@0 654 errorptr = cquantize->fserrors[ci] + (width+1); /* => entry after last column */
michael@0 655 } else {
michael@0 656 /* work left to right in this row */
michael@0 657 dir = 1;
michael@0 658 dirnc = nc;
michael@0 659 errorptr = cquantize->fserrors[ci]; /* => entry before first column */
michael@0 660 }
michael@0 661 colorindex_ci = cquantize->colorindex[ci];
michael@0 662 colormap_ci = cquantize->sv_colormap[ci];
michael@0 663 /* Preset error values: no error propagated to first pixel from left */
michael@0 664 cur = 0;
michael@0 665 /* and no error propagated to row below yet */
michael@0 666 belowerr = bpreverr = 0;
michael@0 667
michael@0 668 for (col = width; col > 0; col--) {
michael@0 669 /* cur holds the error propagated from the previous pixel on the
michael@0 670 * current line. Add the error propagated from the previous line
michael@0 671 * to form the complete error correction term for this pixel, and
michael@0 672 * round the error term (which is expressed * 16) to an integer.
michael@0 673 * RIGHT_SHIFT rounds towards minus infinity, so adding 8 is correct
michael@0 674 * for either sign of the error value.
michael@0 675 * Note: errorptr points to *previous* column's array entry.
michael@0 676 */
michael@0 677 cur = RIGHT_SHIFT(cur + errorptr[dir] + 8, 4);
michael@0 678 /* Form pixel value + error, and range-limit to 0..MAXJSAMPLE.
michael@0 679 * The maximum error is +- MAXJSAMPLE; this sets the required size
michael@0 680 * of the range_limit array.
michael@0 681 */
michael@0 682 cur += GETJSAMPLE(*input_ptr);
michael@0 683 cur = GETJSAMPLE(range_limit[cur]);
michael@0 684 /* Select output value, accumulate into output code for this pixel */
michael@0 685 pixcode = GETJSAMPLE(colorindex_ci[cur]);
michael@0 686 *output_ptr += (JSAMPLE) pixcode;
michael@0 687 /* Compute actual representation error at this pixel */
michael@0 688 /* Note: we can do this even though we don't have the final */
michael@0 689 /* pixel code, because the colormap is orthogonal. */
michael@0 690 cur -= GETJSAMPLE(colormap_ci[pixcode]);
michael@0 691 /* Compute error fractions to be propagated to adjacent pixels.
michael@0 692 * Add these into the running sums, and simultaneously shift the
michael@0 693 * next-line error sums left by 1 column.
michael@0 694 */
michael@0 695 bnexterr = cur;
michael@0 696 delta = cur * 2;
michael@0 697 cur += delta; /* form error * 3 */
michael@0 698 errorptr[0] = (FSERROR) (bpreverr + cur);
michael@0 699 cur += delta; /* form error * 5 */
michael@0 700 bpreverr = belowerr + cur;
michael@0 701 belowerr = bnexterr;
michael@0 702 cur += delta; /* form error * 7 */
michael@0 703 /* At this point cur contains the 7/16 error value to be propagated
michael@0 704 * to the next pixel on the current line, and all the errors for the
michael@0 705 * next line have been shifted over. We are therefore ready to move on.
michael@0 706 */
michael@0 707 input_ptr += dirnc; /* advance input ptr to next column */
michael@0 708 output_ptr += dir; /* advance output ptr to next column */
michael@0 709 errorptr += dir; /* advance errorptr to current column */
michael@0 710 }
michael@0 711 /* Post-loop cleanup: we must unload the final error value into the
michael@0 712 * final fserrors[] entry. Note we need not unload belowerr because
michael@0 713 * it is for the dummy column before or after the actual array.
michael@0 714 */
michael@0 715 errorptr[0] = (FSERROR) bpreverr; /* unload prev err into array */
michael@0 716 }
michael@0 717 cquantize->on_odd_row = (cquantize->on_odd_row ? FALSE : TRUE);
michael@0 718 }
michael@0 719 }
michael@0 720
michael@0 721
michael@0 722 /*
michael@0 723 * Allocate workspace for Floyd-Steinberg errors.
michael@0 724 */
michael@0 725
michael@0 726 LOCAL(void)
michael@0 727 alloc_fs_workspace (j_decompress_ptr cinfo)
michael@0 728 {
michael@0 729 my_cquantize_ptr cquantize = (my_cquantize_ptr) cinfo->cquantize;
michael@0 730 size_t arraysize;
michael@0 731 int i;
michael@0 732
michael@0 733 arraysize = (size_t) ((cinfo->output_width + 2) * SIZEOF(FSERROR));
michael@0 734 for (i = 0; i < cinfo->out_color_components; i++) {
michael@0 735 cquantize->fserrors[i] = (FSERRPTR)
michael@0 736 (*cinfo->mem->alloc_large)((j_common_ptr) cinfo, JPOOL_IMAGE, arraysize);
michael@0 737 }
michael@0 738 }
michael@0 739
michael@0 740
michael@0 741 /*
michael@0 742 * Initialize for one-pass color quantization.
michael@0 743 */
michael@0 744
michael@0 745 METHODDEF(void)
michael@0 746 start_pass_1_quant (j_decompress_ptr cinfo, boolean is_pre_scan)
michael@0 747 {
michael@0 748 my_cquantize_ptr cquantize = (my_cquantize_ptr) cinfo->cquantize;
michael@0 749 size_t arraysize;
michael@0 750 int i;
michael@0 751
michael@0 752 /* Install my colormap. */
michael@0 753 cinfo->colormap = cquantize->sv_colormap;
michael@0 754 cinfo->actual_number_of_colors = cquantize->sv_actual;
michael@0 755
michael@0 756 /* Initialize for desired dithering mode. */
michael@0 757 switch (cinfo->dither_mode) {
michael@0 758 case JDITHER_NONE:
michael@0 759 if (cinfo->out_color_components == 3)
michael@0 760 cquantize->pub.color_quantize = color_quantize3;
michael@0 761 else
michael@0 762 cquantize->pub.color_quantize = color_quantize;
michael@0 763 break;
michael@0 764 case JDITHER_ORDERED:
michael@0 765 if (cinfo->out_color_components == 3)
michael@0 766 cquantize->pub.color_quantize = quantize3_ord_dither;
michael@0 767 else
michael@0 768 cquantize->pub.color_quantize = quantize_ord_dither;
michael@0 769 cquantize->row_index = 0; /* initialize state for ordered dither */
michael@0 770 /* If user changed to ordered dither from another mode,
michael@0 771 * we must recreate the color index table with padding.
michael@0 772 * This will cost extra space, but probably isn't very likely.
michael@0 773 */
michael@0 774 if (! cquantize->is_padded)
michael@0 775 create_colorindex(cinfo);
michael@0 776 /* Create ordered-dither tables if we didn't already. */
michael@0 777 if (cquantize->odither[0] == NULL)
michael@0 778 create_odither_tables(cinfo);
michael@0 779 break;
michael@0 780 case JDITHER_FS:
michael@0 781 cquantize->pub.color_quantize = quantize_fs_dither;
michael@0 782 cquantize->on_odd_row = FALSE; /* initialize state for F-S dither */
michael@0 783 /* Allocate Floyd-Steinberg workspace if didn't already. */
michael@0 784 if (cquantize->fserrors[0] == NULL)
michael@0 785 alloc_fs_workspace(cinfo);
michael@0 786 /* Initialize the propagated errors to zero. */
michael@0 787 arraysize = (size_t) ((cinfo->output_width + 2) * SIZEOF(FSERROR));
michael@0 788 for (i = 0; i < cinfo->out_color_components; i++)
michael@0 789 jzero_far((void FAR *) cquantize->fserrors[i], arraysize);
michael@0 790 break;
michael@0 791 default:
michael@0 792 ERREXIT(cinfo, JERR_NOT_COMPILED);
michael@0 793 break;
michael@0 794 }
michael@0 795 }
michael@0 796
michael@0 797
michael@0 798 /*
michael@0 799 * Finish up at the end of the pass.
michael@0 800 */
michael@0 801
michael@0 802 METHODDEF(void)
michael@0 803 finish_pass_1_quant (j_decompress_ptr cinfo)
michael@0 804 {
michael@0 805 /* no work in 1-pass case */
michael@0 806 }
michael@0 807
michael@0 808
michael@0 809 /*
michael@0 810 * Switch to a new external colormap between output passes.
michael@0 811 * Shouldn't get to this module!
michael@0 812 */
michael@0 813
michael@0 814 METHODDEF(void)
michael@0 815 new_color_map_1_quant (j_decompress_ptr cinfo)
michael@0 816 {
michael@0 817 ERREXIT(cinfo, JERR_MODE_CHANGE);
michael@0 818 }
michael@0 819
michael@0 820
michael@0 821 /*
michael@0 822 * Module initialization routine for 1-pass color quantization.
michael@0 823 */
michael@0 824
michael@0 825 GLOBAL(void)
michael@0 826 jinit_1pass_quantizer (j_decompress_ptr cinfo)
michael@0 827 {
michael@0 828 my_cquantize_ptr cquantize;
michael@0 829
michael@0 830 cquantize = (my_cquantize_ptr)
michael@0 831 (*cinfo->mem->alloc_small) ((j_common_ptr) cinfo, JPOOL_IMAGE,
michael@0 832 SIZEOF(my_cquantizer));
michael@0 833 cinfo->cquantize = (struct jpeg_color_quantizer *) cquantize;
michael@0 834 cquantize->pub.start_pass = start_pass_1_quant;
michael@0 835 cquantize->pub.finish_pass = finish_pass_1_quant;
michael@0 836 cquantize->pub.new_color_map = new_color_map_1_quant;
michael@0 837 cquantize->fserrors[0] = NULL; /* Flag FS workspace not allocated */
michael@0 838 cquantize->odither[0] = NULL; /* Also flag odither arrays not allocated */
michael@0 839
michael@0 840 /* Make sure my internal arrays won't overflow */
michael@0 841 if (cinfo->out_color_components > MAX_Q_COMPS)
michael@0 842 ERREXIT1(cinfo, JERR_QUANT_COMPONENTS, MAX_Q_COMPS);
michael@0 843 /* Make sure colormap indexes can be represented by JSAMPLEs */
michael@0 844 if (cinfo->desired_number_of_colors > (MAXJSAMPLE+1))
michael@0 845 ERREXIT1(cinfo, JERR_QUANT_MANY_COLORS, MAXJSAMPLE+1);
michael@0 846
michael@0 847 /* Create the colormap and color index table. */
michael@0 848 create_colormap(cinfo);
michael@0 849 create_colorindex(cinfo);
michael@0 850
michael@0 851 /* Allocate Floyd-Steinberg workspace now if requested.
michael@0 852 * We do this now since it is FAR storage and may affect the memory
michael@0 853 * manager's space calculations. If the user changes to FS dither
michael@0 854 * mode in a later pass, we will allocate the space then, and will
michael@0 855 * possibly overrun the max_memory_to_use setting.
michael@0 856 */
michael@0 857 if (cinfo->dither_mode == JDITHER_FS)
michael@0 858 alloc_fs_workspace(cinfo);
michael@0 859 }
michael@0 860
michael@0 861 #endif /* QUANT_1PASS_SUPPORTED */

mercurial