media/libjpeg/jquant1.c

Thu, 22 Jan 2015 13:21:57 +0100

author
Michael Schloh von Bennewitz <michael@schloh.com>
date
Thu, 22 Jan 2015 13:21:57 +0100
branch
TOR_BUG_9701
changeset 15
b8a032363ba2
permissions
-rw-r--r--

Incorporate requested changes from Mozilla in review:
https://bugzilla.mozilla.org/show_bug.cgi?id=1123480#c6

     1 /*
     2  * jquant1.c
     3  *
     4  * This file was part of the Independent JPEG Group's software:
     5  * Copyright (C) 1991-1996, Thomas G. Lane.
     6  * libjpeg-turbo Modifications:
     7  * Copyright (C) 2009, D. R. Commander
     8  * For conditions of distribution and use, see the accompanying README file.
     9  *
    10  * This file contains 1-pass color quantization (color mapping) routines.
    11  * These routines provide mapping to a fixed color map using equally spaced
    12  * color values.  Optional Floyd-Steinberg or ordered dithering is available.
    13  */
    15 #define JPEG_INTERNALS
    16 #include "jinclude.h"
    17 #include "jpeglib.h"
    19 #ifdef QUANT_1PASS_SUPPORTED
    22 /*
    23  * The main purpose of 1-pass quantization is to provide a fast, if not very
    24  * high quality, colormapped output capability.  A 2-pass quantizer usually
    25  * gives better visual quality; however, for quantized grayscale output this
    26  * quantizer is perfectly adequate.  Dithering is highly recommended with this
    27  * quantizer, though you can turn it off if you really want to.
    28  *
    29  * In 1-pass quantization the colormap must be chosen in advance of seeing the
    30  * image.  We use a map consisting of all combinations of Ncolors[i] color
    31  * values for the i'th component.  The Ncolors[] values are chosen so that
    32  * their product, the total number of colors, is no more than that requested.
    33  * (In most cases, the product will be somewhat less.)
    34  *
    35  * Since the colormap is orthogonal, the representative value for each color
    36  * component can be determined without considering the other components;
    37  * then these indexes can be combined into a colormap index by a standard
    38  * N-dimensional-array-subscript calculation.  Most of the arithmetic involved
    39  * can be precalculated and stored in the lookup table colorindex[].
    40  * colorindex[i][j] maps pixel value j in component i to the nearest
    41  * representative value (grid plane) for that component; this index is
    42  * multiplied by the array stride for component i, so that the
    43  * index of the colormap entry closest to a given pixel value is just
    44  *    sum( colorindex[component-number][pixel-component-value] )
    45  * Aside from being fast, this scheme allows for variable spacing between
    46  * representative values with no additional lookup cost.
    47  *
    48  * If gamma correction has been applied in color conversion, it might be wise
    49  * to adjust the color grid spacing so that the representative colors are
    50  * equidistant in linear space.  At this writing, gamma correction is not
    51  * implemented by jdcolor, so nothing is done here.
    52  */
    55 /* Declarations for ordered dithering.
    56  *
    57  * We use a standard 16x16 ordered dither array.  The basic concept of ordered
    58  * dithering is described in many references, for instance Dale Schumacher's
    59  * chapter II.2 of Graphics Gems II (James Arvo, ed. Academic Press, 1991).
    60  * In place of Schumacher's comparisons against a "threshold" value, we add a
    61  * "dither" value to the input pixel and then round the result to the nearest
    62  * output value.  The dither value is equivalent to (0.5 - threshold) times
    63  * the distance between output values.  For ordered dithering, we assume that
    64  * the output colors are equally spaced; if not, results will probably be
    65  * worse, since the dither may be too much or too little at a given point.
    66  *
    67  * The normal calculation would be to form pixel value + dither, range-limit
    68  * this to 0..MAXJSAMPLE, and then index into the colorindex table as usual.
    69  * We can skip the separate range-limiting step by extending the colorindex
    70  * table in both directions.
    71  */
    73 #define ODITHER_SIZE  16	/* dimension of dither matrix */
    74 /* NB: if ODITHER_SIZE is not a power of 2, ODITHER_MASK uses will break */
    75 #define ODITHER_CELLS (ODITHER_SIZE*ODITHER_SIZE)	/* # cells in matrix */
    76 #define ODITHER_MASK  (ODITHER_SIZE-1) /* mask for wrapping around counters */
    78 typedef int ODITHER_MATRIX[ODITHER_SIZE][ODITHER_SIZE];
    79 typedef int (*ODITHER_MATRIX_PTR)[ODITHER_SIZE];
    81 static const UINT8 base_dither_matrix[ODITHER_SIZE][ODITHER_SIZE] = {
    82   /* Bayer's order-4 dither array.  Generated by the code given in
    83    * Stephen Hawley's article "Ordered Dithering" in Graphics Gems I.
    84    * The values in this array must range from 0 to ODITHER_CELLS-1.
    85    */
    86   {   0,192, 48,240, 12,204, 60,252,  3,195, 51,243, 15,207, 63,255 },
    87   { 128, 64,176,112,140, 76,188,124,131, 67,179,115,143, 79,191,127 },
    88   {  32,224, 16,208, 44,236, 28,220, 35,227, 19,211, 47,239, 31,223 },
    89   { 160, 96,144, 80,172,108,156, 92,163, 99,147, 83,175,111,159, 95 },
    90   {   8,200, 56,248,  4,196, 52,244, 11,203, 59,251,  7,199, 55,247 },
    91   { 136, 72,184,120,132, 68,180,116,139, 75,187,123,135, 71,183,119 },
    92   {  40,232, 24,216, 36,228, 20,212, 43,235, 27,219, 39,231, 23,215 },
    93   { 168,104,152, 88,164,100,148, 84,171,107,155, 91,167,103,151, 87 },
    94   {   2,194, 50,242, 14,206, 62,254,  1,193, 49,241, 13,205, 61,253 },
    95   { 130, 66,178,114,142, 78,190,126,129, 65,177,113,141, 77,189,125 },
    96   {  34,226, 18,210, 46,238, 30,222, 33,225, 17,209, 45,237, 29,221 },
    97   { 162, 98,146, 82,174,110,158, 94,161, 97,145, 81,173,109,157, 93 },
    98   {  10,202, 58,250,  6,198, 54,246,  9,201, 57,249,  5,197, 53,245 },
    99   { 138, 74,186,122,134, 70,182,118,137, 73,185,121,133, 69,181,117 },
   100   {  42,234, 26,218, 38,230, 22,214, 41,233, 25,217, 37,229, 21,213 },
   101   { 170,106,154, 90,166,102,150, 86,169,105,153, 89,165,101,149, 85 }
   102 };
   105 /* Declarations for Floyd-Steinberg dithering.
   106  *
   107  * Errors are accumulated into the array fserrors[], at a resolution of
   108  * 1/16th of a pixel count.  The error at a given pixel is propagated
   109  * to its not-yet-processed neighbors using the standard F-S fractions,
   110  *		...	(here)	7/16
   111  *		3/16	5/16	1/16
   112  * We work left-to-right on even rows, right-to-left on odd rows.
   113  *
   114  * We can get away with a single array (holding one row's worth of errors)
   115  * by using it to store the current row's errors at pixel columns not yet
   116  * processed, but the next row's errors at columns already processed.  We
   117  * need only a few extra variables to hold the errors immediately around the
   118  * current column.  (If we are lucky, those variables are in registers, but
   119  * even if not, they're probably cheaper to access than array elements are.)
   120  *
   121  * The fserrors[] array is indexed [component#][position].
   122  * We provide (#columns + 2) entries per component; the extra entry at each
   123  * end saves us from special-casing the first and last pixels.
   124  *
   125  * Note: on a wide image, we might not have enough room in a PC's near data
   126  * segment to hold the error array; so it is allocated with alloc_large.
   127  */
   129 #if BITS_IN_JSAMPLE == 8
   130 typedef INT16 FSERROR;		/* 16 bits should be enough */
   131 typedef int LOCFSERROR;		/* use 'int' for calculation temps */
   132 #else
   133 typedef INT32 FSERROR;		/* may need more than 16 bits */
   134 typedef INT32 LOCFSERROR;	/* be sure calculation temps are big enough */
   135 #endif
   137 typedef FSERROR FAR *FSERRPTR;	/* pointer to error array (in FAR storage!) */
   140 /* Private subobject */
   142 #define MAX_Q_COMPS 4		/* max components I can handle */
   144 typedef struct {
   145   struct jpeg_color_quantizer pub; /* public fields */
   147   /* Initially allocated colormap is saved here */
   148   JSAMPARRAY sv_colormap;	/* The color map as a 2-D pixel array */
   149   int sv_actual;		/* number of entries in use */
   151   JSAMPARRAY colorindex;	/* Precomputed mapping for speed */
   152   /* colorindex[i][j] = index of color closest to pixel value j in component i,
   153    * premultiplied as described above.  Since colormap indexes must fit into
   154    * JSAMPLEs, the entries of this array will too.
   155    */
   156   boolean is_padded;		/* is the colorindex padded for odither? */
   158   int Ncolors[MAX_Q_COMPS];	/* # of values alloced to each component */
   160   /* Variables for ordered dithering */
   161   int row_index;		/* cur row's vertical index in dither matrix */
   162   ODITHER_MATRIX_PTR odither[MAX_Q_COMPS]; /* one dither array per component */
   164   /* Variables for Floyd-Steinberg dithering */
   165   FSERRPTR fserrors[MAX_Q_COMPS]; /* accumulated errors */
   166   boolean on_odd_row;		/* flag to remember which row we are on */
   167 } my_cquantizer;
   169 typedef my_cquantizer * my_cquantize_ptr;
   172 /*
   173  * Policy-making subroutines for create_colormap and create_colorindex.
   174  * These routines determine the colormap to be used.  The rest of the module
   175  * only assumes that the colormap is orthogonal.
   176  *
   177  *  * select_ncolors decides how to divvy up the available colors
   178  *    among the components.
   179  *  * output_value defines the set of representative values for a component.
   180  *  * largest_input_value defines the mapping from input values to
   181  *    representative values for a component.
   182  * Note that the latter two routines may impose different policies for
   183  * different components, though this is not currently done.
   184  */
   187 LOCAL(int)
   188 select_ncolors (j_decompress_ptr cinfo, int Ncolors[])
   189 /* Determine allocation of desired colors to components, */
   190 /* and fill in Ncolors[] array to indicate choice. */
   191 /* Return value is total number of colors (product of Ncolors[] values). */
   192 {
   193   int nc = cinfo->out_color_components; /* number of color components */
   194   int max_colors = cinfo->desired_number_of_colors;
   195   int total_colors, iroot, i, j;
   196   boolean changed;
   197   long temp;
   198   int RGB_order[3] = { RGB_GREEN, RGB_RED, RGB_BLUE };
   199   RGB_order[0] = rgb_green[cinfo->out_color_space];
   200   RGB_order[1] = rgb_red[cinfo->out_color_space];
   201   RGB_order[2] = rgb_blue[cinfo->out_color_space];
   203   /* We can allocate at least the nc'th root of max_colors per component. */
   204   /* Compute floor(nc'th root of max_colors). */
   205   iroot = 1;
   206   do {
   207     iroot++;
   208     temp = iroot;		/* set temp = iroot ** nc */
   209     for (i = 1; i < nc; i++)
   210       temp *= iroot;
   211   } while (temp <= (long) max_colors); /* repeat till iroot exceeds root */
   212   iroot--;			/* now iroot = floor(root) */
   214   /* Must have at least 2 color values per component */
   215   if (iroot < 2)
   216     ERREXIT1(cinfo, JERR_QUANT_FEW_COLORS, (int) temp);
   218   /* Initialize to iroot color values for each component */
   219   total_colors = 1;
   220   for (i = 0; i < nc; i++) {
   221     Ncolors[i] = iroot;
   222     total_colors *= iroot;
   223   }
   224   /* We may be able to increment the count for one or more components without
   225    * exceeding max_colors, though we know not all can be incremented.
   226    * Sometimes, the first component can be incremented more than once!
   227    * (Example: for 16 colors, we start at 2*2*2, go to 3*2*2, then 4*2*2.)
   228    * In RGB colorspace, try to increment G first, then R, then B.
   229    */
   230   do {
   231     changed = FALSE;
   232     for (i = 0; i < nc; i++) {
   233       j = (cinfo->out_color_space == JCS_RGB ? RGB_order[i] : i);
   234       /* calculate new total_colors if Ncolors[j] is incremented */
   235       temp = total_colors / Ncolors[j];
   236       temp *= Ncolors[j]+1;	/* done in long arith to avoid oflo */
   237       if (temp > (long) max_colors)
   238 	break;			/* won't fit, done with this pass */
   239       Ncolors[j]++;		/* OK, apply the increment */
   240       total_colors = (int) temp;
   241       changed = TRUE;
   242     }
   243   } while (changed);
   245   return total_colors;
   246 }
   249 LOCAL(int)
   250 output_value (j_decompress_ptr cinfo, int ci, int j, int maxj)
   251 /* Return j'th output value, where j will range from 0 to maxj */
   252 /* The output values must fall in 0..MAXJSAMPLE in increasing order */
   253 {
   254   /* We always provide values 0 and MAXJSAMPLE for each component;
   255    * any additional values are equally spaced between these limits.
   256    * (Forcing the upper and lower values to the limits ensures that
   257    * dithering can't produce a color outside the selected gamut.)
   258    */
   259   return (int) (((INT32) j * MAXJSAMPLE + maxj/2) / maxj);
   260 }
   263 LOCAL(int)
   264 largest_input_value (j_decompress_ptr cinfo, int ci, int j, int maxj)
   265 /* Return largest input value that should map to j'th output value */
   266 /* Must have largest(j=0) >= 0, and largest(j=maxj) >= MAXJSAMPLE */
   267 {
   268   /* Breakpoints are halfway between values returned by output_value */
   269   return (int) (((INT32) (2*j + 1) * MAXJSAMPLE + maxj) / (2*maxj));
   270 }
   273 /*
   274  * Create the colormap.
   275  */
   277 LOCAL(void)
   278 create_colormap (j_decompress_ptr cinfo)
   279 {
   280   my_cquantize_ptr cquantize = (my_cquantize_ptr) cinfo->cquantize;
   281   JSAMPARRAY colormap;		/* Created colormap */
   282   int total_colors;		/* Number of distinct output colors */
   283   int i,j,k, nci, blksize, blkdist, ptr, val;
   285   /* Select number of colors for each component */
   286   total_colors = select_ncolors(cinfo, cquantize->Ncolors);
   288   /* Report selected color counts */
   289   if (cinfo->out_color_components == 3)
   290     TRACEMS4(cinfo, 1, JTRC_QUANT_3_NCOLORS,
   291 	     total_colors, cquantize->Ncolors[0],
   292 	     cquantize->Ncolors[1], cquantize->Ncolors[2]);
   293   else
   294     TRACEMS1(cinfo, 1, JTRC_QUANT_NCOLORS, total_colors);
   296   /* Allocate and fill in the colormap. */
   297   /* The colors are ordered in the map in standard row-major order, */
   298   /* i.e. rightmost (highest-indexed) color changes most rapidly. */
   300   colormap = (*cinfo->mem->alloc_sarray)
   301     ((j_common_ptr) cinfo, JPOOL_IMAGE,
   302      (JDIMENSION) total_colors, (JDIMENSION) cinfo->out_color_components);
   304   /* blksize is number of adjacent repeated entries for a component */
   305   /* blkdist is distance between groups of identical entries for a component */
   306   blkdist = total_colors;
   308   for (i = 0; i < cinfo->out_color_components; i++) {
   309     /* fill in colormap entries for i'th color component */
   310     nci = cquantize->Ncolors[i]; /* # of distinct values for this color */
   311     blksize = blkdist / nci;
   312     for (j = 0; j < nci; j++) {
   313       /* Compute j'th output value (out of nci) for component */
   314       val = output_value(cinfo, i, j, nci-1);
   315       /* Fill in all colormap entries that have this value of this component */
   316       for (ptr = j * blksize; ptr < total_colors; ptr += blkdist) {
   317 	/* fill in blksize entries beginning at ptr */
   318 	for (k = 0; k < blksize; k++)
   319 	  colormap[i][ptr+k] = (JSAMPLE) val;
   320       }
   321     }
   322     blkdist = blksize;		/* blksize of this color is blkdist of next */
   323   }
   325   /* Save the colormap in private storage,
   326    * where it will survive color quantization mode changes.
   327    */
   328   cquantize->sv_colormap = colormap;
   329   cquantize->sv_actual = total_colors;
   330 }
   333 /*
   334  * Create the color index table.
   335  */
   337 LOCAL(void)
   338 create_colorindex (j_decompress_ptr cinfo)
   339 {
   340   my_cquantize_ptr cquantize = (my_cquantize_ptr) cinfo->cquantize;
   341   JSAMPROW indexptr;
   342   int i,j,k, nci, blksize, val, pad;
   344   /* For ordered dither, we pad the color index tables by MAXJSAMPLE in
   345    * each direction (input index values can be -MAXJSAMPLE .. 2*MAXJSAMPLE).
   346    * This is not necessary in the other dithering modes.  However, we
   347    * flag whether it was done in case user changes dithering mode.
   348    */
   349   if (cinfo->dither_mode == JDITHER_ORDERED) {
   350     pad = MAXJSAMPLE*2;
   351     cquantize->is_padded = TRUE;
   352   } else {
   353     pad = 0;
   354     cquantize->is_padded = FALSE;
   355   }
   357   cquantize->colorindex = (*cinfo->mem->alloc_sarray)
   358     ((j_common_ptr) cinfo, JPOOL_IMAGE,
   359      (JDIMENSION) (MAXJSAMPLE+1 + pad),
   360      (JDIMENSION) cinfo->out_color_components);
   362   /* blksize is number of adjacent repeated entries for a component */
   363   blksize = cquantize->sv_actual;
   365   for (i = 0; i < cinfo->out_color_components; i++) {
   366     /* fill in colorindex entries for i'th color component */
   367     nci = cquantize->Ncolors[i]; /* # of distinct values for this color */
   368     blksize = blksize / nci;
   370     /* adjust colorindex pointers to provide padding at negative indexes. */
   371     if (pad)
   372       cquantize->colorindex[i] += MAXJSAMPLE;
   374     /* in loop, val = index of current output value, */
   375     /* and k = largest j that maps to current val */
   376     indexptr = cquantize->colorindex[i];
   377     val = 0;
   378     k = largest_input_value(cinfo, i, 0, nci-1);
   379     for (j = 0; j <= MAXJSAMPLE; j++) {
   380       while (j > k)		/* advance val if past boundary */
   381 	k = largest_input_value(cinfo, i, ++val, nci-1);
   382       /* premultiply so that no multiplication needed in main processing */
   383       indexptr[j] = (JSAMPLE) (val * blksize);
   384     }
   385     /* Pad at both ends if necessary */
   386     if (pad)
   387       for (j = 1; j <= MAXJSAMPLE; j++) {
   388 	indexptr[-j] = indexptr[0];
   389 	indexptr[MAXJSAMPLE+j] = indexptr[MAXJSAMPLE];
   390       }
   391   }
   392 }
   395 /*
   396  * Create an ordered-dither array for a component having ncolors
   397  * distinct output values.
   398  */
   400 LOCAL(ODITHER_MATRIX_PTR)
   401 make_odither_array (j_decompress_ptr cinfo, int ncolors)
   402 {
   403   ODITHER_MATRIX_PTR odither;
   404   int j,k;
   405   INT32 num,den;
   407   odither = (ODITHER_MATRIX_PTR)
   408     (*cinfo->mem->alloc_small) ((j_common_ptr) cinfo, JPOOL_IMAGE,
   409 				SIZEOF(ODITHER_MATRIX));
   410   /* The inter-value distance for this color is MAXJSAMPLE/(ncolors-1).
   411    * Hence the dither value for the matrix cell with fill order f
   412    * (f=0..N-1) should be (N-1-2*f)/(2*N) * MAXJSAMPLE/(ncolors-1).
   413    * On 16-bit-int machine, be careful to avoid overflow.
   414    */
   415   den = 2 * ODITHER_CELLS * ((INT32) (ncolors - 1));
   416   for (j = 0; j < ODITHER_SIZE; j++) {
   417     for (k = 0; k < ODITHER_SIZE; k++) {
   418       num = ((INT32) (ODITHER_CELLS-1 - 2*((int)base_dither_matrix[j][k])))
   419 	    * MAXJSAMPLE;
   420       /* Ensure round towards zero despite C's lack of consistency
   421        * about rounding negative values in integer division...
   422        */
   423       odither[j][k] = (int) (num<0 ? -((-num)/den) : num/den);
   424     }
   425   }
   426   return odither;
   427 }
   430 /*
   431  * Create the ordered-dither tables.
   432  * Components having the same number of representative colors may 
   433  * share a dither table.
   434  */
   436 LOCAL(void)
   437 create_odither_tables (j_decompress_ptr cinfo)
   438 {
   439   my_cquantize_ptr cquantize = (my_cquantize_ptr) cinfo->cquantize;
   440   ODITHER_MATRIX_PTR odither;
   441   int i, j, nci;
   443   for (i = 0; i < cinfo->out_color_components; i++) {
   444     nci = cquantize->Ncolors[i]; /* # of distinct values for this color */
   445     odither = NULL;		/* search for matching prior component */
   446     for (j = 0; j < i; j++) {
   447       if (nci == cquantize->Ncolors[j]) {
   448 	odither = cquantize->odither[j];
   449 	break;
   450       }
   451     }
   452     if (odither == NULL)	/* need a new table? */
   453       odither = make_odither_array(cinfo, nci);
   454     cquantize->odither[i] = odither;
   455   }
   456 }
   459 /*
   460  * Map some rows of pixels to the output colormapped representation.
   461  */
   463 METHODDEF(void)
   464 color_quantize (j_decompress_ptr cinfo, JSAMPARRAY input_buf,
   465 		JSAMPARRAY output_buf, int num_rows)
   466 /* General case, no dithering */
   467 {
   468   my_cquantize_ptr cquantize = (my_cquantize_ptr) cinfo->cquantize;
   469   JSAMPARRAY colorindex = cquantize->colorindex;
   470   register int pixcode, ci;
   471   register JSAMPROW ptrin, ptrout;
   472   int row;
   473   JDIMENSION col;
   474   JDIMENSION width = cinfo->output_width;
   475   register int nc = cinfo->out_color_components;
   477   for (row = 0; row < num_rows; row++) {
   478     ptrin = input_buf[row];
   479     ptrout = output_buf[row];
   480     for (col = width; col > 0; col--) {
   481       pixcode = 0;
   482       for (ci = 0; ci < nc; ci++) {
   483 	pixcode += GETJSAMPLE(colorindex[ci][GETJSAMPLE(*ptrin++)]);
   484       }
   485       *ptrout++ = (JSAMPLE) pixcode;
   486     }
   487   }
   488 }
   491 METHODDEF(void)
   492 color_quantize3 (j_decompress_ptr cinfo, JSAMPARRAY input_buf,
   493 		 JSAMPARRAY output_buf, int num_rows)
   494 /* Fast path for out_color_components==3, no dithering */
   495 {
   496   my_cquantize_ptr cquantize = (my_cquantize_ptr) cinfo->cquantize;
   497   register int pixcode;
   498   register JSAMPROW ptrin, ptrout;
   499   JSAMPROW colorindex0 = cquantize->colorindex[0];
   500   JSAMPROW colorindex1 = cquantize->colorindex[1];
   501   JSAMPROW colorindex2 = cquantize->colorindex[2];
   502   int row;
   503   JDIMENSION col;
   504   JDIMENSION width = cinfo->output_width;
   506   for (row = 0; row < num_rows; row++) {
   507     ptrin = input_buf[row];
   508     ptrout = output_buf[row];
   509     for (col = width; col > 0; col--) {
   510       pixcode  = GETJSAMPLE(colorindex0[GETJSAMPLE(*ptrin++)]);
   511       pixcode += GETJSAMPLE(colorindex1[GETJSAMPLE(*ptrin++)]);
   512       pixcode += GETJSAMPLE(colorindex2[GETJSAMPLE(*ptrin++)]);
   513       *ptrout++ = (JSAMPLE) pixcode;
   514     }
   515   }
   516 }
   519 METHODDEF(void)
   520 quantize_ord_dither (j_decompress_ptr cinfo, JSAMPARRAY input_buf,
   521 		     JSAMPARRAY output_buf, int num_rows)
   522 /* General case, with ordered dithering */
   523 {
   524   my_cquantize_ptr cquantize = (my_cquantize_ptr) cinfo->cquantize;
   525   register JSAMPROW input_ptr;
   526   register JSAMPROW output_ptr;
   527   JSAMPROW colorindex_ci;
   528   int * dither;			/* points to active row of dither matrix */
   529   int row_index, col_index;	/* current indexes into dither matrix */
   530   int nc = cinfo->out_color_components;
   531   int ci;
   532   int row;
   533   JDIMENSION col;
   534   JDIMENSION width = cinfo->output_width;
   536   for (row = 0; row < num_rows; row++) {
   537     /* Initialize output values to 0 so can process components separately */
   538     jzero_far((void FAR *) output_buf[row],
   539 	      (size_t) (width * SIZEOF(JSAMPLE)));
   540     row_index = cquantize->row_index;
   541     for (ci = 0; ci < nc; ci++) {
   542       input_ptr = input_buf[row] + ci;
   543       output_ptr = output_buf[row];
   544       colorindex_ci = cquantize->colorindex[ci];
   545       dither = cquantize->odither[ci][row_index];
   546       col_index = 0;
   548       for (col = width; col > 0; col--) {
   549 	/* Form pixel value + dither, range-limit to 0..MAXJSAMPLE,
   550 	 * select output value, accumulate into output code for this pixel.
   551 	 * Range-limiting need not be done explicitly, as we have extended
   552 	 * the colorindex table to produce the right answers for out-of-range
   553 	 * inputs.  The maximum dither is +- MAXJSAMPLE; this sets the
   554 	 * required amount of padding.
   555 	 */
   556 	*output_ptr += colorindex_ci[GETJSAMPLE(*input_ptr)+dither[col_index]];
   557 	input_ptr += nc;
   558 	output_ptr++;
   559 	col_index = (col_index + 1) & ODITHER_MASK;
   560       }
   561     }
   562     /* Advance row index for next row */
   563     row_index = (row_index + 1) & ODITHER_MASK;
   564     cquantize->row_index = row_index;
   565   }
   566 }
   569 METHODDEF(void)
   570 quantize3_ord_dither (j_decompress_ptr cinfo, JSAMPARRAY input_buf,
   571 		      JSAMPARRAY output_buf, int num_rows)
   572 /* Fast path for out_color_components==3, with ordered dithering */
   573 {
   574   my_cquantize_ptr cquantize = (my_cquantize_ptr) cinfo->cquantize;
   575   register int pixcode;
   576   register JSAMPROW input_ptr;
   577   register JSAMPROW output_ptr;
   578   JSAMPROW colorindex0 = cquantize->colorindex[0];
   579   JSAMPROW colorindex1 = cquantize->colorindex[1];
   580   JSAMPROW colorindex2 = cquantize->colorindex[2];
   581   int * dither0;		/* points to active row of dither matrix */
   582   int * dither1;
   583   int * dither2;
   584   int row_index, col_index;	/* current indexes into dither matrix */
   585   int row;
   586   JDIMENSION col;
   587   JDIMENSION width = cinfo->output_width;
   589   for (row = 0; row < num_rows; row++) {
   590     row_index = cquantize->row_index;
   591     input_ptr = input_buf[row];
   592     output_ptr = output_buf[row];
   593     dither0 = cquantize->odither[0][row_index];
   594     dither1 = cquantize->odither[1][row_index];
   595     dither2 = cquantize->odither[2][row_index];
   596     col_index = 0;
   598     for (col = width; col > 0; col--) {
   599       pixcode  = GETJSAMPLE(colorindex0[GETJSAMPLE(*input_ptr++) +
   600 					dither0[col_index]]);
   601       pixcode += GETJSAMPLE(colorindex1[GETJSAMPLE(*input_ptr++) +
   602 					dither1[col_index]]);
   603       pixcode += GETJSAMPLE(colorindex2[GETJSAMPLE(*input_ptr++) +
   604 					dither2[col_index]]);
   605       *output_ptr++ = (JSAMPLE) pixcode;
   606       col_index = (col_index + 1) & ODITHER_MASK;
   607     }
   608     row_index = (row_index + 1) & ODITHER_MASK;
   609     cquantize->row_index = row_index;
   610   }
   611 }
   614 METHODDEF(void)
   615 quantize_fs_dither (j_decompress_ptr cinfo, JSAMPARRAY input_buf,
   616 		    JSAMPARRAY output_buf, int num_rows)
   617 /* General case, with Floyd-Steinberg dithering */
   618 {
   619   my_cquantize_ptr cquantize = (my_cquantize_ptr) cinfo->cquantize;
   620   register LOCFSERROR cur;	/* current error or pixel value */
   621   LOCFSERROR belowerr;		/* error for pixel below cur */
   622   LOCFSERROR bpreverr;		/* error for below/prev col */
   623   LOCFSERROR bnexterr;		/* error for below/next col */
   624   LOCFSERROR delta;
   625   register FSERRPTR errorptr;	/* => fserrors[] at column before current */
   626   register JSAMPROW input_ptr;
   627   register JSAMPROW output_ptr;
   628   JSAMPROW colorindex_ci;
   629   JSAMPROW colormap_ci;
   630   int pixcode;
   631   int nc = cinfo->out_color_components;
   632   int dir;			/* 1 for left-to-right, -1 for right-to-left */
   633   int dirnc;			/* dir * nc */
   634   int ci;
   635   int row;
   636   JDIMENSION col;
   637   JDIMENSION width = cinfo->output_width;
   638   JSAMPLE *range_limit = cinfo->sample_range_limit;
   639   SHIFT_TEMPS
   641   for (row = 0; row < num_rows; row++) {
   642     /* Initialize output values to 0 so can process components separately */
   643     jzero_far((void FAR *) output_buf[row],
   644 	      (size_t) (width * SIZEOF(JSAMPLE)));
   645     for (ci = 0; ci < nc; ci++) {
   646       input_ptr = input_buf[row] + ci;
   647       output_ptr = output_buf[row];
   648       if (cquantize->on_odd_row) {
   649 	/* work right to left in this row */
   650 	input_ptr += (width-1) * nc; /* so point to rightmost pixel */
   651 	output_ptr += width-1;
   652 	dir = -1;
   653 	dirnc = -nc;
   654 	errorptr = cquantize->fserrors[ci] + (width+1); /* => entry after last column */
   655       } else {
   656 	/* work left to right in this row */
   657 	dir = 1;
   658 	dirnc = nc;
   659 	errorptr = cquantize->fserrors[ci]; /* => entry before first column */
   660       }
   661       colorindex_ci = cquantize->colorindex[ci];
   662       colormap_ci = cquantize->sv_colormap[ci];
   663       /* Preset error values: no error propagated to first pixel from left */
   664       cur = 0;
   665       /* and no error propagated to row below yet */
   666       belowerr = bpreverr = 0;
   668       for (col = width; col > 0; col--) {
   669 	/* cur holds the error propagated from the previous pixel on the
   670 	 * current line.  Add the error propagated from the previous line
   671 	 * to form the complete error correction term for this pixel, and
   672 	 * round the error term (which is expressed * 16) to an integer.
   673 	 * RIGHT_SHIFT rounds towards minus infinity, so adding 8 is correct
   674 	 * for either sign of the error value.
   675 	 * Note: errorptr points to *previous* column's array entry.
   676 	 */
   677 	cur = RIGHT_SHIFT(cur + errorptr[dir] + 8, 4);
   678 	/* Form pixel value + error, and range-limit to 0..MAXJSAMPLE.
   679 	 * The maximum error is +- MAXJSAMPLE; this sets the required size
   680 	 * of the range_limit array.
   681 	 */
   682 	cur += GETJSAMPLE(*input_ptr);
   683 	cur = GETJSAMPLE(range_limit[cur]);
   684 	/* Select output value, accumulate into output code for this pixel */
   685 	pixcode = GETJSAMPLE(colorindex_ci[cur]);
   686 	*output_ptr += (JSAMPLE) pixcode;
   687 	/* Compute actual representation error at this pixel */
   688 	/* Note: we can do this even though we don't have the final */
   689 	/* pixel code, because the colormap is orthogonal. */
   690 	cur -= GETJSAMPLE(colormap_ci[pixcode]);
   691 	/* Compute error fractions to be propagated to adjacent pixels.
   692 	 * Add these into the running sums, and simultaneously shift the
   693 	 * next-line error sums left by 1 column.
   694 	 */
   695 	bnexterr = cur;
   696 	delta = cur * 2;
   697 	cur += delta;		/* form error * 3 */
   698 	errorptr[0] = (FSERROR) (bpreverr + cur);
   699 	cur += delta;		/* form error * 5 */
   700 	bpreverr = belowerr + cur;
   701 	belowerr = bnexterr;
   702 	cur += delta;		/* form error * 7 */
   703 	/* At this point cur contains the 7/16 error value to be propagated
   704 	 * to the next pixel on the current line, and all the errors for the
   705 	 * next line have been shifted over. We are therefore ready to move on.
   706 	 */
   707 	input_ptr += dirnc;	/* advance input ptr to next column */
   708 	output_ptr += dir;	/* advance output ptr to next column */
   709 	errorptr += dir;	/* advance errorptr to current column */
   710       }
   711       /* Post-loop cleanup: we must unload the final error value into the
   712        * final fserrors[] entry.  Note we need not unload belowerr because
   713        * it is for the dummy column before or after the actual array.
   714        */
   715       errorptr[0] = (FSERROR) bpreverr; /* unload prev err into array */
   716     }
   717     cquantize->on_odd_row = (cquantize->on_odd_row ? FALSE : TRUE);
   718   }
   719 }
   722 /*
   723  * Allocate workspace for Floyd-Steinberg errors.
   724  */
   726 LOCAL(void)
   727 alloc_fs_workspace (j_decompress_ptr cinfo)
   728 {
   729   my_cquantize_ptr cquantize = (my_cquantize_ptr) cinfo->cquantize;
   730   size_t arraysize;
   731   int i;
   733   arraysize = (size_t) ((cinfo->output_width + 2) * SIZEOF(FSERROR));
   734   for (i = 0; i < cinfo->out_color_components; i++) {
   735     cquantize->fserrors[i] = (FSERRPTR)
   736       (*cinfo->mem->alloc_large)((j_common_ptr) cinfo, JPOOL_IMAGE, arraysize);
   737   }
   738 }
   741 /*
   742  * Initialize for one-pass color quantization.
   743  */
   745 METHODDEF(void)
   746 start_pass_1_quant (j_decompress_ptr cinfo, boolean is_pre_scan)
   747 {
   748   my_cquantize_ptr cquantize = (my_cquantize_ptr) cinfo->cquantize;
   749   size_t arraysize;
   750   int i;
   752   /* Install my colormap. */
   753   cinfo->colormap = cquantize->sv_colormap;
   754   cinfo->actual_number_of_colors = cquantize->sv_actual;
   756   /* Initialize for desired dithering mode. */
   757   switch (cinfo->dither_mode) {
   758   case JDITHER_NONE:
   759     if (cinfo->out_color_components == 3)
   760       cquantize->pub.color_quantize = color_quantize3;
   761     else
   762       cquantize->pub.color_quantize = color_quantize;
   763     break;
   764   case JDITHER_ORDERED:
   765     if (cinfo->out_color_components == 3)
   766       cquantize->pub.color_quantize = quantize3_ord_dither;
   767     else
   768       cquantize->pub.color_quantize = quantize_ord_dither;
   769     cquantize->row_index = 0;	/* initialize state for ordered dither */
   770     /* If user changed to ordered dither from another mode,
   771      * we must recreate the color index table with padding.
   772      * This will cost extra space, but probably isn't very likely.
   773      */
   774     if (! cquantize->is_padded)
   775       create_colorindex(cinfo);
   776     /* Create ordered-dither tables if we didn't already. */
   777     if (cquantize->odither[0] == NULL)
   778       create_odither_tables(cinfo);
   779     break;
   780   case JDITHER_FS:
   781     cquantize->pub.color_quantize = quantize_fs_dither;
   782     cquantize->on_odd_row = FALSE; /* initialize state for F-S dither */
   783     /* Allocate Floyd-Steinberg workspace if didn't already. */
   784     if (cquantize->fserrors[0] == NULL)
   785       alloc_fs_workspace(cinfo);
   786     /* Initialize the propagated errors to zero. */
   787     arraysize = (size_t) ((cinfo->output_width + 2) * SIZEOF(FSERROR));
   788     for (i = 0; i < cinfo->out_color_components; i++)
   789       jzero_far((void FAR *) cquantize->fserrors[i], arraysize);
   790     break;
   791   default:
   792     ERREXIT(cinfo, JERR_NOT_COMPILED);
   793     break;
   794   }
   795 }
   798 /*
   799  * Finish up at the end of the pass.
   800  */
   802 METHODDEF(void)
   803 finish_pass_1_quant (j_decompress_ptr cinfo)
   804 {
   805   /* no work in 1-pass case */
   806 }
   809 /*
   810  * Switch to a new external colormap between output passes.
   811  * Shouldn't get to this module!
   812  */
   814 METHODDEF(void)
   815 new_color_map_1_quant (j_decompress_ptr cinfo)
   816 {
   817   ERREXIT(cinfo, JERR_MODE_CHANGE);
   818 }
   821 /*
   822  * Module initialization routine for 1-pass color quantization.
   823  */
   825 GLOBAL(void)
   826 jinit_1pass_quantizer (j_decompress_ptr cinfo)
   827 {
   828   my_cquantize_ptr cquantize;
   830   cquantize = (my_cquantize_ptr)
   831     (*cinfo->mem->alloc_small) ((j_common_ptr) cinfo, JPOOL_IMAGE,
   832 				SIZEOF(my_cquantizer));
   833   cinfo->cquantize = (struct jpeg_color_quantizer *) cquantize;
   834   cquantize->pub.start_pass = start_pass_1_quant;
   835   cquantize->pub.finish_pass = finish_pass_1_quant;
   836   cquantize->pub.new_color_map = new_color_map_1_quant;
   837   cquantize->fserrors[0] = NULL; /* Flag FS workspace not allocated */
   838   cquantize->odither[0] = NULL;	/* Also flag odither arrays not allocated */
   840   /* Make sure my internal arrays won't overflow */
   841   if (cinfo->out_color_components > MAX_Q_COMPS)
   842     ERREXIT1(cinfo, JERR_QUANT_COMPONENTS, MAX_Q_COMPS);
   843   /* Make sure colormap indexes can be represented by JSAMPLEs */
   844   if (cinfo->desired_number_of_colors > (MAXJSAMPLE+1))
   845     ERREXIT1(cinfo, JERR_QUANT_MANY_COLORS, MAXJSAMPLE+1);
   847   /* Create the colormap and color index table. */
   848   create_colormap(cinfo);
   849   create_colorindex(cinfo);
   851   /* Allocate Floyd-Steinberg workspace now if requested.
   852    * We do this now since it is FAR storage and may affect the memory
   853    * manager's space calculations.  If the user changes to FS dither
   854    * mode in a later pass, we will allocate the space then, and will
   855    * possibly overrun the max_memory_to_use setting.
   856    */
   857   if (cinfo->dither_mode == JDITHER_FS)
   858     alloc_fs_workspace(cinfo);
   859 }
   861 #endif /* QUANT_1PASS_SUPPORTED */

mercurial