|
1 /* |
|
2 * jquant1.c |
|
3 * |
|
4 * This file was part of the Independent JPEG Group's software: |
|
5 * Copyright (C) 1991-1996, Thomas G. Lane. |
|
6 * libjpeg-turbo Modifications: |
|
7 * Copyright (C) 2009, D. R. Commander |
|
8 * For conditions of distribution and use, see the accompanying README file. |
|
9 * |
|
10 * This file contains 1-pass color quantization (color mapping) routines. |
|
11 * These routines provide mapping to a fixed color map using equally spaced |
|
12 * color values. Optional Floyd-Steinberg or ordered dithering is available. |
|
13 */ |
|
14 |
|
15 #define JPEG_INTERNALS |
|
16 #include "jinclude.h" |
|
17 #include "jpeglib.h" |
|
18 |
|
19 #ifdef QUANT_1PASS_SUPPORTED |
|
20 |
|
21 |
|
22 /* |
|
23 * The main purpose of 1-pass quantization is to provide a fast, if not very |
|
24 * high quality, colormapped output capability. A 2-pass quantizer usually |
|
25 * gives better visual quality; however, for quantized grayscale output this |
|
26 * quantizer is perfectly adequate. Dithering is highly recommended with this |
|
27 * quantizer, though you can turn it off if you really want to. |
|
28 * |
|
29 * In 1-pass quantization the colormap must be chosen in advance of seeing the |
|
30 * image. We use a map consisting of all combinations of Ncolors[i] color |
|
31 * values for the i'th component. The Ncolors[] values are chosen so that |
|
32 * their product, the total number of colors, is no more than that requested. |
|
33 * (In most cases, the product will be somewhat less.) |
|
34 * |
|
35 * Since the colormap is orthogonal, the representative value for each color |
|
36 * component can be determined without considering the other components; |
|
37 * then these indexes can be combined into a colormap index by a standard |
|
38 * N-dimensional-array-subscript calculation. Most of the arithmetic involved |
|
39 * can be precalculated and stored in the lookup table colorindex[]. |
|
40 * colorindex[i][j] maps pixel value j in component i to the nearest |
|
41 * representative value (grid plane) for that component; this index is |
|
42 * multiplied by the array stride for component i, so that the |
|
43 * index of the colormap entry closest to a given pixel value is just |
|
44 * sum( colorindex[component-number][pixel-component-value] ) |
|
45 * Aside from being fast, this scheme allows for variable spacing between |
|
46 * representative values with no additional lookup cost. |
|
47 * |
|
48 * If gamma correction has been applied in color conversion, it might be wise |
|
49 * to adjust the color grid spacing so that the representative colors are |
|
50 * equidistant in linear space. At this writing, gamma correction is not |
|
51 * implemented by jdcolor, so nothing is done here. |
|
52 */ |
|
53 |
|
54 |
|
55 /* Declarations for ordered dithering. |
|
56 * |
|
57 * We use a standard 16x16 ordered dither array. The basic concept of ordered |
|
58 * dithering is described in many references, for instance Dale Schumacher's |
|
59 * chapter II.2 of Graphics Gems II (James Arvo, ed. Academic Press, 1991). |
|
60 * In place of Schumacher's comparisons against a "threshold" value, we add a |
|
61 * "dither" value to the input pixel and then round the result to the nearest |
|
62 * output value. The dither value is equivalent to (0.5 - threshold) times |
|
63 * the distance between output values. For ordered dithering, we assume that |
|
64 * the output colors are equally spaced; if not, results will probably be |
|
65 * worse, since the dither may be too much or too little at a given point. |
|
66 * |
|
67 * The normal calculation would be to form pixel value + dither, range-limit |
|
68 * this to 0..MAXJSAMPLE, and then index into the colorindex table as usual. |
|
69 * We can skip the separate range-limiting step by extending the colorindex |
|
70 * table in both directions. |
|
71 */ |
|
72 |
|
73 #define ODITHER_SIZE 16 /* dimension of dither matrix */ |
|
74 /* NB: if ODITHER_SIZE is not a power of 2, ODITHER_MASK uses will break */ |
|
75 #define ODITHER_CELLS (ODITHER_SIZE*ODITHER_SIZE) /* # cells in matrix */ |
|
76 #define ODITHER_MASK (ODITHER_SIZE-1) /* mask for wrapping around counters */ |
|
77 |
|
78 typedef int ODITHER_MATRIX[ODITHER_SIZE][ODITHER_SIZE]; |
|
79 typedef int (*ODITHER_MATRIX_PTR)[ODITHER_SIZE]; |
|
80 |
|
81 static const UINT8 base_dither_matrix[ODITHER_SIZE][ODITHER_SIZE] = { |
|
82 /* Bayer's order-4 dither array. Generated by the code given in |
|
83 * Stephen Hawley's article "Ordered Dithering" in Graphics Gems I. |
|
84 * The values in this array must range from 0 to ODITHER_CELLS-1. |
|
85 */ |
|
86 { 0,192, 48,240, 12,204, 60,252, 3,195, 51,243, 15,207, 63,255 }, |
|
87 { 128, 64,176,112,140, 76,188,124,131, 67,179,115,143, 79,191,127 }, |
|
88 { 32,224, 16,208, 44,236, 28,220, 35,227, 19,211, 47,239, 31,223 }, |
|
89 { 160, 96,144, 80,172,108,156, 92,163, 99,147, 83,175,111,159, 95 }, |
|
90 { 8,200, 56,248, 4,196, 52,244, 11,203, 59,251, 7,199, 55,247 }, |
|
91 { 136, 72,184,120,132, 68,180,116,139, 75,187,123,135, 71,183,119 }, |
|
92 { 40,232, 24,216, 36,228, 20,212, 43,235, 27,219, 39,231, 23,215 }, |
|
93 { 168,104,152, 88,164,100,148, 84,171,107,155, 91,167,103,151, 87 }, |
|
94 { 2,194, 50,242, 14,206, 62,254, 1,193, 49,241, 13,205, 61,253 }, |
|
95 { 130, 66,178,114,142, 78,190,126,129, 65,177,113,141, 77,189,125 }, |
|
96 { 34,226, 18,210, 46,238, 30,222, 33,225, 17,209, 45,237, 29,221 }, |
|
97 { 162, 98,146, 82,174,110,158, 94,161, 97,145, 81,173,109,157, 93 }, |
|
98 { 10,202, 58,250, 6,198, 54,246, 9,201, 57,249, 5,197, 53,245 }, |
|
99 { 138, 74,186,122,134, 70,182,118,137, 73,185,121,133, 69,181,117 }, |
|
100 { 42,234, 26,218, 38,230, 22,214, 41,233, 25,217, 37,229, 21,213 }, |
|
101 { 170,106,154, 90,166,102,150, 86,169,105,153, 89,165,101,149, 85 } |
|
102 }; |
|
103 |
|
104 |
|
105 /* Declarations for Floyd-Steinberg dithering. |
|
106 * |
|
107 * Errors are accumulated into the array fserrors[], at a resolution of |
|
108 * 1/16th of a pixel count. The error at a given pixel is propagated |
|
109 * to its not-yet-processed neighbors using the standard F-S fractions, |
|
110 * ... (here) 7/16 |
|
111 * 3/16 5/16 1/16 |
|
112 * We work left-to-right on even rows, right-to-left on odd rows. |
|
113 * |
|
114 * We can get away with a single array (holding one row's worth of errors) |
|
115 * by using it to store the current row's errors at pixel columns not yet |
|
116 * processed, but the next row's errors at columns already processed. We |
|
117 * need only a few extra variables to hold the errors immediately around the |
|
118 * current column. (If we are lucky, those variables are in registers, but |
|
119 * even if not, they're probably cheaper to access than array elements are.) |
|
120 * |
|
121 * The fserrors[] array is indexed [component#][position]. |
|
122 * We provide (#columns + 2) entries per component; the extra entry at each |
|
123 * end saves us from special-casing the first and last pixels. |
|
124 * |
|
125 * Note: on a wide image, we might not have enough room in a PC's near data |
|
126 * segment to hold the error array; so it is allocated with alloc_large. |
|
127 */ |
|
128 |
|
129 #if BITS_IN_JSAMPLE == 8 |
|
130 typedef INT16 FSERROR; /* 16 bits should be enough */ |
|
131 typedef int LOCFSERROR; /* use 'int' for calculation temps */ |
|
132 #else |
|
133 typedef INT32 FSERROR; /* may need more than 16 bits */ |
|
134 typedef INT32 LOCFSERROR; /* be sure calculation temps are big enough */ |
|
135 #endif |
|
136 |
|
137 typedef FSERROR FAR *FSERRPTR; /* pointer to error array (in FAR storage!) */ |
|
138 |
|
139 |
|
140 /* Private subobject */ |
|
141 |
|
142 #define MAX_Q_COMPS 4 /* max components I can handle */ |
|
143 |
|
144 typedef struct { |
|
145 struct jpeg_color_quantizer pub; /* public fields */ |
|
146 |
|
147 /* Initially allocated colormap is saved here */ |
|
148 JSAMPARRAY sv_colormap; /* The color map as a 2-D pixel array */ |
|
149 int sv_actual; /* number of entries in use */ |
|
150 |
|
151 JSAMPARRAY colorindex; /* Precomputed mapping for speed */ |
|
152 /* colorindex[i][j] = index of color closest to pixel value j in component i, |
|
153 * premultiplied as described above. Since colormap indexes must fit into |
|
154 * JSAMPLEs, the entries of this array will too. |
|
155 */ |
|
156 boolean is_padded; /* is the colorindex padded for odither? */ |
|
157 |
|
158 int Ncolors[MAX_Q_COMPS]; /* # of values alloced to each component */ |
|
159 |
|
160 /* Variables for ordered dithering */ |
|
161 int row_index; /* cur row's vertical index in dither matrix */ |
|
162 ODITHER_MATRIX_PTR odither[MAX_Q_COMPS]; /* one dither array per component */ |
|
163 |
|
164 /* Variables for Floyd-Steinberg dithering */ |
|
165 FSERRPTR fserrors[MAX_Q_COMPS]; /* accumulated errors */ |
|
166 boolean on_odd_row; /* flag to remember which row we are on */ |
|
167 } my_cquantizer; |
|
168 |
|
169 typedef my_cquantizer * my_cquantize_ptr; |
|
170 |
|
171 |
|
172 /* |
|
173 * Policy-making subroutines for create_colormap and create_colorindex. |
|
174 * These routines determine the colormap to be used. The rest of the module |
|
175 * only assumes that the colormap is orthogonal. |
|
176 * |
|
177 * * select_ncolors decides how to divvy up the available colors |
|
178 * among the components. |
|
179 * * output_value defines the set of representative values for a component. |
|
180 * * largest_input_value defines the mapping from input values to |
|
181 * representative values for a component. |
|
182 * Note that the latter two routines may impose different policies for |
|
183 * different components, though this is not currently done. |
|
184 */ |
|
185 |
|
186 |
|
187 LOCAL(int) |
|
188 select_ncolors (j_decompress_ptr cinfo, int Ncolors[]) |
|
189 /* Determine allocation of desired colors to components, */ |
|
190 /* and fill in Ncolors[] array to indicate choice. */ |
|
191 /* Return value is total number of colors (product of Ncolors[] values). */ |
|
192 { |
|
193 int nc = cinfo->out_color_components; /* number of color components */ |
|
194 int max_colors = cinfo->desired_number_of_colors; |
|
195 int total_colors, iroot, i, j; |
|
196 boolean changed; |
|
197 long temp; |
|
198 int RGB_order[3] = { RGB_GREEN, RGB_RED, RGB_BLUE }; |
|
199 RGB_order[0] = rgb_green[cinfo->out_color_space]; |
|
200 RGB_order[1] = rgb_red[cinfo->out_color_space]; |
|
201 RGB_order[2] = rgb_blue[cinfo->out_color_space]; |
|
202 |
|
203 /* We can allocate at least the nc'th root of max_colors per component. */ |
|
204 /* Compute floor(nc'th root of max_colors). */ |
|
205 iroot = 1; |
|
206 do { |
|
207 iroot++; |
|
208 temp = iroot; /* set temp = iroot ** nc */ |
|
209 for (i = 1; i < nc; i++) |
|
210 temp *= iroot; |
|
211 } while (temp <= (long) max_colors); /* repeat till iroot exceeds root */ |
|
212 iroot--; /* now iroot = floor(root) */ |
|
213 |
|
214 /* Must have at least 2 color values per component */ |
|
215 if (iroot < 2) |
|
216 ERREXIT1(cinfo, JERR_QUANT_FEW_COLORS, (int) temp); |
|
217 |
|
218 /* Initialize to iroot color values for each component */ |
|
219 total_colors = 1; |
|
220 for (i = 0; i < nc; i++) { |
|
221 Ncolors[i] = iroot; |
|
222 total_colors *= iroot; |
|
223 } |
|
224 /* We may be able to increment the count for one or more components without |
|
225 * exceeding max_colors, though we know not all can be incremented. |
|
226 * Sometimes, the first component can be incremented more than once! |
|
227 * (Example: for 16 colors, we start at 2*2*2, go to 3*2*2, then 4*2*2.) |
|
228 * In RGB colorspace, try to increment G first, then R, then B. |
|
229 */ |
|
230 do { |
|
231 changed = FALSE; |
|
232 for (i = 0; i < nc; i++) { |
|
233 j = (cinfo->out_color_space == JCS_RGB ? RGB_order[i] : i); |
|
234 /* calculate new total_colors if Ncolors[j] is incremented */ |
|
235 temp = total_colors / Ncolors[j]; |
|
236 temp *= Ncolors[j]+1; /* done in long arith to avoid oflo */ |
|
237 if (temp > (long) max_colors) |
|
238 break; /* won't fit, done with this pass */ |
|
239 Ncolors[j]++; /* OK, apply the increment */ |
|
240 total_colors = (int) temp; |
|
241 changed = TRUE; |
|
242 } |
|
243 } while (changed); |
|
244 |
|
245 return total_colors; |
|
246 } |
|
247 |
|
248 |
|
249 LOCAL(int) |
|
250 output_value (j_decompress_ptr cinfo, int ci, int j, int maxj) |
|
251 /* Return j'th output value, where j will range from 0 to maxj */ |
|
252 /* The output values must fall in 0..MAXJSAMPLE in increasing order */ |
|
253 { |
|
254 /* We always provide values 0 and MAXJSAMPLE for each component; |
|
255 * any additional values are equally spaced between these limits. |
|
256 * (Forcing the upper and lower values to the limits ensures that |
|
257 * dithering can't produce a color outside the selected gamut.) |
|
258 */ |
|
259 return (int) (((INT32) j * MAXJSAMPLE + maxj/2) / maxj); |
|
260 } |
|
261 |
|
262 |
|
263 LOCAL(int) |
|
264 largest_input_value (j_decompress_ptr cinfo, int ci, int j, int maxj) |
|
265 /* Return largest input value that should map to j'th output value */ |
|
266 /* Must have largest(j=0) >= 0, and largest(j=maxj) >= MAXJSAMPLE */ |
|
267 { |
|
268 /* Breakpoints are halfway between values returned by output_value */ |
|
269 return (int) (((INT32) (2*j + 1) * MAXJSAMPLE + maxj) / (2*maxj)); |
|
270 } |
|
271 |
|
272 |
|
273 /* |
|
274 * Create the colormap. |
|
275 */ |
|
276 |
|
277 LOCAL(void) |
|
278 create_colormap (j_decompress_ptr cinfo) |
|
279 { |
|
280 my_cquantize_ptr cquantize = (my_cquantize_ptr) cinfo->cquantize; |
|
281 JSAMPARRAY colormap; /* Created colormap */ |
|
282 int total_colors; /* Number of distinct output colors */ |
|
283 int i,j,k, nci, blksize, blkdist, ptr, val; |
|
284 |
|
285 /* Select number of colors for each component */ |
|
286 total_colors = select_ncolors(cinfo, cquantize->Ncolors); |
|
287 |
|
288 /* Report selected color counts */ |
|
289 if (cinfo->out_color_components == 3) |
|
290 TRACEMS4(cinfo, 1, JTRC_QUANT_3_NCOLORS, |
|
291 total_colors, cquantize->Ncolors[0], |
|
292 cquantize->Ncolors[1], cquantize->Ncolors[2]); |
|
293 else |
|
294 TRACEMS1(cinfo, 1, JTRC_QUANT_NCOLORS, total_colors); |
|
295 |
|
296 /* Allocate and fill in the colormap. */ |
|
297 /* The colors are ordered in the map in standard row-major order, */ |
|
298 /* i.e. rightmost (highest-indexed) color changes most rapidly. */ |
|
299 |
|
300 colormap = (*cinfo->mem->alloc_sarray) |
|
301 ((j_common_ptr) cinfo, JPOOL_IMAGE, |
|
302 (JDIMENSION) total_colors, (JDIMENSION) cinfo->out_color_components); |
|
303 |
|
304 /* blksize is number of adjacent repeated entries for a component */ |
|
305 /* blkdist is distance between groups of identical entries for a component */ |
|
306 blkdist = total_colors; |
|
307 |
|
308 for (i = 0; i < cinfo->out_color_components; i++) { |
|
309 /* fill in colormap entries for i'th color component */ |
|
310 nci = cquantize->Ncolors[i]; /* # of distinct values for this color */ |
|
311 blksize = blkdist / nci; |
|
312 for (j = 0; j < nci; j++) { |
|
313 /* Compute j'th output value (out of nci) for component */ |
|
314 val = output_value(cinfo, i, j, nci-1); |
|
315 /* Fill in all colormap entries that have this value of this component */ |
|
316 for (ptr = j * blksize; ptr < total_colors; ptr += blkdist) { |
|
317 /* fill in blksize entries beginning at ptr */ |
|
318 for (k = 0; k < blksize; k++) |
|
319 colormap[i][ptr+k] = (JSAMPLE) val; |
|
320 } |
|
321 } |
|
322 blkdist = blksize; /* blksize of this color is blkdist of next */ |
|
323 } |
|
324 |
|
325 /* Save the colormap in private storage, |
|
326 * where it will survive color quantization mode changes. |
|
327 */ |
|
328 cquantize->sv_colormap = colormap; |
|
329 cquantize->sv_actual = total_colors; |
|
330 } |
|
331 |
|
332 |
|
333 /* |
|
334 * Create the color index table. |
|
335 */ |
|
336 |
|
337 LOCAL(void) |
|
338 create_colorindex (j_decompress_ptr cinfo) |
|
339 { |
|
340 my_cquantize_ptr cquantize = (my_cquantize_ptr) cinfo->cquantize; |
|
341 JSAMPROW indexptr; |
|
342 int i,j,k, nci, blksize, val, pad; |
|
343 |
|
344 /* For ordered dither, we pad the color index tables by MAXJSAMPLE in |
|
345 * each direction (input index values can be -MAXJSAMPLE .. 2*MAXJSAMPLE). |
|
346 * This is not necessary in the other dithering modes. However, we |
|
347 * flag whether it was done in case user changes dithering mode. |
|
348 */ |
|
349 if (cinfo->dither_mode == JDITHER_ORDERED) { |
|
350 pad = MAXJSAMPLE*2; |
|
351 cquantize->is_padded = TRUE; |
|
352 } else { |
|
353 pad = 0; |
|
354 cquantize->is_padded = FALSE; |
|
355 } |
|
356 |
|
357 cquantize->colorindex = (*cinfo->mem->alloc_sarray) |
|
358 ((j_common_ptr) cinfo, JPOOL_IMAGE, |
|
359 (JDIMENSION) (MAXJSAMPLE+1 + pad), |
|
360 (JDIMENSION) cinfo->out_color_components); |
|
361 |
|
362 /* blksize is number of adjacent repeated entries for a component */ |
|
363 blksize = cquantize->sv_actual; |
|
364 |
|
365 for (i = 0; i < cinfo->out_color_components; i++) { |
|
366 /* fill in colorindex entries for i'th color component */ |
|
367 nci = cquantize->Ncolors[i]; /* # of distinct values for this color */ |
|
368 blksize = blksize / nci; |
|
369 |
|
370 /* adjust colorindex pointers to provide padding at negative indexes. */ |
|
371 if (pad) |
|
372 cquantize->colorindex[i] += MAXJSAMPLE; |
|
373 |
|
374 /* in loop, val = index of current output value, */ |
|
375 /* and k = largest j that maps to current val */ |
|
376 indexptr = cquantize->colorindex[i]; |
|
377 val = 0; |
|
378 k = largest_input_value(cinfo, i, 0, nci-1); |
|
379 for (j = 0; j <= MAXJSAMPLE; j++) { |
|
380 while (j > k) /* advance val if past boundary */ |
|
381 k = largest_input_value(cinfo, i, ++val, nci-1); |
|
382 /* premultiply so that no multiplication needed in main processing */ |
|
383 indexptr[j] = (JSAMPLE) (val * blksize); |
|
384 } |
|
385 /* Pad at both ends if necessary */ |
|
386 if (pad) |
|
387 for (j = 1; j <= MAXJSAMPLE; j++) { |
|
388 indexptr[-j] = indexptr[0]; |
|
389 indexptr[MAXJSAMPLE+j] = indexptr[MAXJSAMPLE]; |
|
390 } |
|
391 } |
|
392 } |
|
393 |
|
394 |
|
395 /* |
|
396 * Create an ordered-dither array for a component having ncolors |
|
397 * distinct output values. |
|
398 */ |
|
399 |
|
400 LOCAL(ODITHER_MATRIX_PTR) |
|
401 make_odither_array (j_decompress_ptr cinfo, int ncolors) |
|
402 { |
|
403 ODITHER_MATRIX_PTR odither; |
|
404 int j,k; |
|
405 INT32 num,den; |
|
406 |
|
407 odither = (ODITHER_MATRIX_PTR) |
|
408 (*cinfo->mem->alloc_small) ((j_common_ptr) cinfo, JPOOL_IMAGE, |
|
409 SIZEOF(ODITHER_MATRIX)); |
|
410 /* The inter-value distance for this color is MAXJSAMPLE/(ncolors-1). |
|
411 * Hence the dither value for the matrix cell with fill order f |
|
412 * (f=0..N-1) should be (N-1-2*f)/(2*N) * MAXJSAMPLE/(ncolors-1). |
|
413 * On 16-bit-int machine, be careful to avoid overflow. |
|
414 */ |
|
415 den = 2 * ODITHER_CELLS * ((INT32) (ncolors - 1)); |
|
416 for (j = 0; j < ODITHER_SIZE; j++) { |
|
417 for (k = 0; k < ODITHER_SIZE; k++) { |
|
418 num = ((INT32) (ODITHER_CELLS-1 - 2*((int)base_dither_matrix[j][k]))) |
|
419 * MAXJSAMPLE; |
|
420 /* Ensure round towards zero despite C's lack of consistency |
|
421 * about rounding negative values in integer division... |
|
422 */ |
|
423 odither[j][k] = (int) (num<0 ? -((-num)/den) : num/den); |
|
424 } |
|
425 } |
|
426 return odither; |
|
427 } |
|
428 |
|
429 |
|
430 /* |
|
431 * Create the ordered-dither tables. |
|
432 * Components having the same number of representative colors may |
|
433 * share a dither table. |
|
434 */ |
|
435 |
|
436 LOCAL(void) |
|
437 create_odither_tables (j_decompress_ptr cinfo) |
|
438 { |
|
439 my_cquantize_ptr cquantize = (my_cquantize_ptr) cinfo->cquantize; |
|
440 ODITHER_MATRIX_PTR odither; |
|
441 int i, j, nci; |
|
442 |
|
443 for (i = 0; i < cinfo->out_color_components; i++) { |
|
444 nci = cquantize->Ncolors[i]; /* # of distinct values for this color */ |
|
445 odither = NULL; /* search for matching prior component */ |
|
446 for (j = 0; j < i; j++) { |
|
447 if (nci == cquantize->Ncolors[j]) { |
|
448 odither = cquantize->odither[j]; |
|
449 break; |
|
450 } |
|
451 } |
|
452 if (odither == NULL) /* need a new table? */ |
|
453 odither = make_odither_array(cinfo, nci); |
|
454 cquantize->odither[i] = odither; |
|
455 } |
|
456 } |
|
457 |
|
458 |
|
459 /* |
|
460 * Map some rows of pixels to the output colormapped representation. |
|
461 */ |
|
462 |
|
463 METHODDEF(void) |
|
464 color_quantize (j_decompress_ptr cinfo, JSAMPARRAY input_buf, |
|
465 JSAMPARRAY output_buf, int num_rows) |
|
466 /* General case, no dithering */ |
|
467 { |
|
468 my_cquantize_ptr cquantize = (my_cquantize_ptr) cinfo->cquantize; |
|
469 JSAMPARRAY colorindex = cquantize->colorindex; |
|
470 register int pixcode, ci; |
|
471 register JSAMPROW ptrin, ptrout; |
|
472 int row; |
|
473 JDIMENSION col; |
|
474 JDIMENSION width = cinfo->output_width; |
|
475 register int nc = cinfo->out_color_components; |
|
476 |
|
477 for (row = 0; row < num_rows; row++) { |
|
478 ptrin = input_buf[row]; |
|
479 ptrout = output_buf[row]; |
|
480 for (col = width; col > 0; col--) { |
|
481 pixcode = 0; |
|
482 for (ci = 0; ci < nc; ci++) { |
|
483 pixcode += GETJSAMPLE(colorindex[ci][GETJSAMPLE(*ptrin++)]); |
|
484 } |
|
485 *ptrout++ = (JSAMPLE) pixcode; |
|
486 } |
|
487 } |
|
488 } |
|
489 |
|
490 |
|
491 METHODDEF(void) |
|
492 color_quantize3 (j_decompress_ptr cinfo, JSAMPARRAY input_buf, |
|
493 JSAMPARRAY output_buf, int num_rows) |
|
494 /* Fast path for out_color_components==3, no dithering */ |
|
495 { |
|
496 my_cquantize_ptr cquantize = (my_cquantize_ptr) cinfo->cquantize; |
|
497 register int pixcode; |
|
498 register JSAMPROW ptrin, ptrout; |
|
499 JSAMPROW colorindex0 = cquantize->colorindex[0]; |
|
500 JSAMPROW colorindex1 = cquantize->colorindex[1]; |
|
501 JSAMPROW colorindex2 = cquantize->colorindex[2]; |
|
502 int row; |
|
503 JDIMENSION col; |
|
504 JDIMENSION width = cinfo->output_width; |
|
505 |
|
506 for (row = 0; row < num_rows; row++) { |
|
507 ptrin = input_buf[row]; |
|
508 ptrout = output_buf[row]; |
|
509 for (col = width; col > 0; col--) { |
|
510 pixcode = GETJSAMPLE(colorindex0[GETJSAMPLE(*ptrin++)]); |
|
511 pixcode += GETJSAMPLE(colorindex1[GETJSAMPLE(*ptrin++)]); |
|
512 pixcode += GETJSAMPLE(colorindex2[GETJSAMPLE(*ptrin++)]); |
|
513 *ptrout++ = (JSAMPLE) pixcode; |
|
514 } |
|
515 } |
|
516 } |
|
517 |
|
518 |
|
519 METHODDEF(void) |
|
520 quantize_ord_dither (j_decompress_ptr cinfo, JSAMPARRAY input_buf, |
|
521 JSAMPARRAY output_buf, int num_rows) |
|
522 /* General case, with ordered dithering */ |
|
523 { |
|
524 my_cquantize_ptr cquantize = (my_cquantize_ptr) cinfo->cquantize; |
|
525 register JSAMPROW input_ptr; |
|
526 register JSAMPROW output_ptr; |
|
527 JSAMPROW colorindex_ci; |
|
528 int * dither; /* points to active row of dither matrix */ |
|
529 int row_index, col_index; /* current indexes into dither matrix */ |
|
530 int nc = cinfo->out_color_components; |
|
531 int ci; |
|
532 int row; |
|
533 JDIMENSION col; |
|
534 JDIMENSION width = cinfo->output_width; |
|
535 |
|
536 for (row = 0; row < num_rows; row++) { |
|
537 /* Initialize output values to 0 so can process components separately */ |
|
538 jzero_far((void FAR *) output_buf[row], |
|
539 (size_t) (width * SIZEOF(JSAMPLE))); |
|
540 row_index = cquantize->row_index; |
|
541 for (ci = 0; ci < nc; ci++) { |
|
542 input_ptr = input_buf[row] + ci; |
|
543 output_ptr = output_buf[row]; |
|
544 colorindex_ci = cquantize->colorindex[ci]; |
|
545 dither = cquantize->odither[ci][row_index]; |
|
546 col_index = 0; |
|
547 |
|
548 for (col = width; col > 0; col--) { |
|
549 /* Form pixel value + dither, range-limit to 0..MAXJSAMPLE, |
|
550 * select output value, accumulate into output code for this pixel. |
|
551 * Range-limiting need not be done explicitly, as we have extended |
|
552 * the colorindex table to produce the right answers for out-of-range |
|
553 * inputs. The maximum dither is +- MAXJSAMPLE; this sets the |
|
554 * required amount of padding. |
|
555 */ |
|
556 *output_ptr += colorindex_ci[GETJSAMPLE(*input_ptr)+dither[col_index]]; |
|
557 input_ptr += nc; |
|
558 output_ptr++; |
|
559 col_index = (col_index + 1) & ODITHER_MASK; |
|
560 } |
|
561 } |
|
562 /* Advance row index for next row */ |
|
563 row_index = (row_index + 1) & ODITHER_MASK; |
|
564 cquantize->row_index = row_index; |
|
565 } |
|
566 } |
|
567 |
|
568 |
|
569 METHODDEF(void) |
|
570 quantize3_ord_dither (j_decompress_ptr cinfo, JSAMPARRAY input_buf, |
|
571 JSAMPARRAY output_buf, int num_rows) |
|
572 /* Fast path for out_color_components==3, with ordered dithering */ |
|
573 { |
|
574 my_cquantize_ptr cquantize = (my_cquantize_ptr) cinfo->cquantize; |
|
575 register int pixcode; |
|
576 register JSAMPROW input_ptr; |
|
577 register JSAMPROW output_ptr; |
|
578 JSAMPROW colorindex0 = cquantize->colorindex[0]; |
|
579 JSAMPROW colorindex1 = cquantize->colorindex[1]; |
|
580 JSAMPROW colorindex2 = cquantize->colorindex[2]; |
|
581 int * dither0; /* points to active row of dither matrix */ |
|
582 int * dither1; |
|
583 int * dither2; |
|
584 int row_index, col_index; /* current indexes into dither matrix */ |
|
585 int row; |
|
586 JDIMENSION col; |
|
587 JDIMENSION width = cinfo->output_width; |
|
588 |
|
589 for (row = 0; row < num_rows; row++) { |
|
590 row_index = cquantize->row_index; |
|
591 input_ptr = input_buf[row]; |
|
592 output_ptr = output_buf[row]; |
|
593 dither0 = cquantize->odither[0][row_index]; |
|
594 dither1 = cquantize->odither[1][row_index]; |
|
595 dither2 = cquantize->odither[2][row_index]; |
|
596 col_index = 0; |
|
597 |
|
598 for (col = width; col > 0; col--) { |
|
599 pixcode = GETJSAMPLE(colorindex0[GETJSAMPLE(*input_ptr++) + |
|
600 dither0[col_index]]); |
|
601 pixcode += GETJSAMPLE(colorindex1[GETJSAMPLE(*input_ptr++) + |
|
602 dither1[col_index]]); |
|
603 pixcode += GETJSAMPLE(colorindex2[GETJSAMPLE(*input_ptr++) + |
|
604 dither2[col_index]]); |
|
605 *output_ptr++ = (JSAMPLE) pixcode; |
|
606 col_index = (col_index + 1) & ODITHER_MASK; |
|
607 } |
|
608 row_index = (row_index + 1) & ODITHER_MASK; |
|
609 cquantize->row_index = row_index; |
|
610 } |
|
611 } |
|
612 |
|
613 |
|
614 METHODDEF(void) |
|
615 quantize_fs_dither (j_decompress_ptr cinfo, JSAMPARRAY input_buf, |
|
616 JSAMPARRAY output_buf, int num_rows) |
|
617 /* General case, with Floyd-Steinberg dithering */ |
|
618 { |
|
619 my_cquantize_ptr cquantize = (my_cquantize_ptr) cinfo->cquantize; |
|
620 register LOCFSERROR cur; /* current error or pixel value */ |
|
621 LOCFSERROR belowerr; /* error for pixel below cur */ |
|
622 LOCFSERROR bpreverr; /* error for below/prev col */ |
|
623 LOCFSERROR bnexterr; /* error for below/next col */ |
|
624 LOCFSERROR delta; |
|
625 register FSERRPTR errorptr; /* => fserrors[] at column before current */ |
|
626 register JSAMPROW input_ptr; |
|
627 register JSAMPROW output_ptr; |
|
628 JSAMPROW colorindex_ci; |
|
629 JSAMPROW colormap_ci; |
|
630 int pixcode; |
|
631 int nc = cinfo->out_color_components; |
|
632 int dir; /* 1 for left-to-right, -1 for right-to-left */ |
|
633 int dirnc; /* dir * nc */ |
|
634 int ci; |
|
635 int row; |
|
636 JDIMENSION col; |
|
637 JDIMENSION width = cinfo->output_width; |
|
638 JSAMPLE *range_limit = cinfo->sample_range_limit; |
|
639 SHIFT_TEMPS |
|
640 |
|
641 for (row = 0; row < num_rows; row++) { |
|
642 /* Initialize output values to 0 so can process components separately */ |
|
643 jzero_far((void FAR *) output_buf[row], |
|
644 (size_t) (width * SIZEOF(JSAMPLE))); |
|
645 for (ci = 0; ci < nc; ci++) { |
|
646 input_ptr = input_buf[row] + ci; |
|
647 output_ptr = output_buf[row]; |
|
648 if (cquantize->on_odd_row) { |
|
649 /* work right to left in this row */ |
|
650 input_ptr += (width-1) * nc; /* so point to rightmost pixel */ |
|
651 output_ptr += width-1; |
|
652 dir = -1; |
|
653 dirnc = -nc; |
|
654 errorptr = cquantize->fserrors[ci] + (width+1); /* => entry after last column */ |
|
655 } else { |
|
656 /* work left to right in this row */ |
|
657 dir = 1; |
|
658 dirnc = nc; |
|
659 errorptr = cquantize->fserrors[ci]; /* => entry before first column */ |
|
660 } |
|
661 colorindex_ci = cquantize->colorindex[ci]; |
|
662 colormap_ci = cquantize->sv_colormap[ci]; |
|
663 /* Preset error values: no error propagated to first pixel from left */ |
|
664 cur = 0; |
|
665 /* and no error propagated to row below yet */ |
|
666 belowerr = bpreverr = 0; |
|
667 |
|
668 for (col = width; col > 0; col--) { |
|
669 /* cur holds the error propagated from the previous pixel on the |
|
670 * current line. Add the error propagated from the previous line |
|
671 * to form the complete error correction term for this pixel, and |
|
672 * round the error term (which is expressed * 16) to an integer. |
|
673 * RIGHT_SHIFT rounds towards minus infinity, so adding 8 is correct |
|
674 * for either sign of the error value. |
|
675 * Note: errorptr points to *previous* column's array entry. |
|
676 */ |
|
677 cur = RIGHT_SHIFT(cur + errorptr[dir] + 8, 4); |
|
678 /* Form pixel value + error, and range-limit to 0..MAXJSAMPLE. |
|
679 * The maximum error is +- MAXJSAMPLE; this sets the required size |
|
680 * of the range_limit array. |
|
681 */ |
|
682 cur += GETJSAMPLE(*input_ptr); |
|
683 cur = GETJSAMPLE(range_limit[cur]); |
|
684 /* Select output value, accumulate into output code for this pixel */ |
|
685 pixcode = GETJSAMPLE(colorindex_ci[cur]); |
|
686 *output_ptr += (JSAMPLE) pixcode; |
|
687 /* Compute actual representation error at this pixel */ |
|
688 /* Note: we can do this even though we don't have the final */ |
|
689 /* pixel code, because the colormap is orthogonal. */ |
|
690 cur -= GETJSAMPLE(colormap_ci[pixcode]); |
|
691 /* Compute error fractions to be propagated to adjacent pixels. |
|
692 * Add these into the running sums, and simultaneously shift the |
|
693 * next-line error sums left by 1 column. |
|
694 */ |
|
695 bnexterr = cur; |
|
696 delta = cur * 2; |
|
697 cur += delta; /* form error * 3 */ |
|
698 errorptr[0] = (FSERROR) (bpreverr + cur); |
|
699 cur += delta; /* form error * 5 */ |
|
700 bpreverr = belowerr + cur; |
|
701 belowerr = bnexterr; |
|
702 cur += delta; /* form error * 7 */ |
|
703 /* At this point cur contains the 7/16 error value to be propagated |
|
704 * to the next pixel on the current line, and all the errors for the |
|
705 * next line have been shifted over. We are therefore ready to move on. |
|
706 */ |
|
707 input_ptr += dirnc; /* advance input ptr to next column */ |
|
708 output_ptr += dir; /* advance output ptr to next column */ |
|
709 errorptr += dir; /* advance errorptr to current column */ |
|
710 } |
|
711 /* Post-loop cleanup: we must unload the final error value into the |
|
712 * final fserrors[] entry. Note we need not unload belowerr because |
|
713 * it is for the dummy column before or after the actual array. |
|
714 */ |
|
715 errorptr[0] = (FSERROR) bpreverr; /* unload prev err into array */ |
|
716 } |
|
717 cquantize->on_odd_row = (cquantize->on_odd_row ? FALSE : TRUE); |
|
718 } |
|
719 } |
|
720 |
|
721 |
|
722 /* |
|
723 * Allocate workspace for Floyd-Steinberg errors. |
|
724 */ |
|
725 |
|
726 LOCAL(void) |
|
727 alloc_fs_workspace (j_decompress_ptr cinfo) |
|
728 { |
|
729 my_cquantize_ptr cquantize = (my_cquantize_ptr) cinfo->cquantize; |
|
730 size_t arraysize; |
|
731 int i; |
|
732 |
|
733 arraysize = (size_t) ((cinfo->output_width + 2) * SIZEOF(FSERROR)); |
|
734 for (i = 0; i < cinfo->out_color_components; i++) { |
|
735 cquantize->fserrors[i] = (FSERRPTR) |
|
736 (*cinfo->mem->alloc_large)((j_common_ptr) cinfo, JPOOL_IMAGE, arraysize); |
|
737 } |
|
738 } |
|
739 |
|
740 |
|
741 /* |
|
742 * Initialize for one-pass color quantization. |
|
743 */ |
|
744 |
|
745 METHODDEF(void) |
|
746 start_pass_1_quant (j_decompress_ptr cinfo, boolean is_pre_scan) |
|
747 { |
|
748 my_cquantize_ptr cquantize = (my_cquantize_ptr) cinfo->cquantize; |
|
749 size_t arraysize; |
|
750 int i; |
|
751 |
|
752 /* Install my colormap. */ |
|
753 cinfo->colormap = cquantize->sv_colormap; |
|
754 cinfo->actual_number_of_colors = cquantize->sv_actual; |
|
755 |
|
756 /* Initialize for desired dithering mode. */ |
|
757 switch (cinfo->dither_mode) { |
|
758 case JDITHER_NONE: |
|
759 if (cinfo->out_color_components == 3) |
|
760 cquantize->pub.color_quantize = color_quantize3; |
|
761 else |
|
762 cquantize->pub.color_quantize = color_quantize; |
|
763 break; |
|
764 case JDITHER_ORDERED: |
|
765 if (cinfo->out_color_components == 3) |
|
766 cquantize->pub.color_quantize = quantize3_ord_dither; |
|
767 else |
|
768 cquantize->pub.color_quantize = quantize_ord_dither; |
|
769 cquantize->row_index = 0; /* initialize state for ordered dither */ |
|
770 /* If user changed to ordered dither from another mode, |
|
771 * we must recreate the color index table with padding. |
|
772 * This will cost extra space, but probably isn't very likely. |
|
773 */ |
|
774 if (! cquantize->is_padded) |
|
775 create_colorindex(cinfo); |
|
776 /* Create ordered-dither tables if we didn't already. */ |
|
777 if (cquantize->odither[0] == NULL) |
|
778 create_odither_tables(cinfo); |
|
779 break; |
|
780 case JDITHER_FS: |
|
781 cquantize->pub.color_quantize = quantize_fs_dither; |
|
782 cquantize->on_odd_row = FALSE; /* initialize state for F-S dither */ |
|
783 /* Allocate Floyd-Steinberg workspace if didn't already. */ |
|
784 if (cquantize->fserrors[0] == NULL) |
|
785 alloc_fs_workspace(cinfo); |
|
786 /* Initialize the propagated errors to zero. */ |
|
787 arraysize = (size_t) ((cinfo->output_width + 2) * SIZEOF(FSERROR)); |
|
788 for (i = 0; i < cinfo->out_color_components; i++) |
|
789 jzero_far((void FAR *) cquantize->fserrors[i], arraysize); |
|
790 break; |
|
791 default: |
|
792 ERREXIT(cinfo, JERR_NOT_COMPILED); |
|
793 break; |
|
794 } |
|
795 } |
|
796 |
|
797 |
|
798 /* |
|
799 * Finish up at the end of the pass. |
|
800 */ |
|
801 |
|
802 METHODDEF(void) |
|
803 finish_pass_1_quant (j_decompress_ptr cinfo) |
|
804 { |
|
805 /* no work in 1-pass case */ |
|
806 } |
|
807 |
|
808 |
|
809 /* |
|
810 * Switch to a new external colormap between output passes. |
|
811 * Shouldn't get to this module! |
|
812 */ |
|
813 |
|
814 METHODDEF(void) |
|
815 new_color_map_1_quant (j_decompress_ptr cinfo) |
|
816 { |
|
817 ERREXIT(cinfo, JERR_MODE_CHANGE); |
|
818 } |
|
819 |
|
820 |
|
821 /* |
|
822 * Module initialization routine for 1-pass color quantization. |
|
823 */ |
|
824 |
|
825 GLOBAL(void) |
|
826 jinit_1pass_quantizer (j_decompress_ptr cinfo) |
|
827 { |
|
828 my_cquantize_ptr cquantize; |
|
829 |
|
830 cquantize = (my_cquantize_ptr) |
|
831 (*cinfo->mem->alloc_small) ((j_common_ptr) cinfo, JPOOL_IMAGE, |
|
832 SIZEOF(my_cquantizer)); |
|
833 cinfo->cquantize = (struct jpeg_color_quantizer *) cquantize; |
|
834 cquantize->pub.start_pass = start_pass_1_quant; |
|
835 cquantize->pub.finish_pass = finish_pass_1_quant; |
|
836 cquantize->pub.new_color_map = new_color_map_1_quant; |
|
837 cquantize->fserrors[0] = NULL; /* Flag FS workspace not allocated */ |
|
838 cquantize->odither[0] = NULL; /* Also flag odither arrays not allocated */ |
|
839 |
|
840 /* Make sure my internal arrays won't overflow */ |
|
841 if (cinfo->out_color_components > MAX_Q_COMPS) |
|
842 ERREXIT1(cinfo, JERR_QUANT_COMPONENTS, MAX_Q_COMPS); |
|
843 /* Make sure colormap indexes can be represented by JSAMPLEs */ |
|
844 if (cinfo->desired_number_of_colors > (MAXJSAMPLE+1)) |
|
845 ERREXIT1(cinfo, JERR_QUANT_MANY_COLORS, MAXJSAMPLE+1); |
|
846 |
|
847 /* Create the colormap and color index table. */ |
|
848 create_colormap(cinfo); |
|
849 create_colorindex(cinfo); |
|
850 |
|
851 /* Allocate Floyd-Steinberg workspace now if requested. |
|
852 * We do this now since it is FAR storage and may affect the memory |
|
853 * manager's space calculations. If the user changes to FS dither |
|
854 * mode in a later pass, we will allocate the space then, and will |
|
855 * possibly overrun the max_memory_to_use setting. |
|
856 */ |
|
857 if (cinfo->dither_mode == JDITHER_FS) |
|
858 alloc_fs_workspace(cinfo); |
|
859 } |
|
860 |
|
861 #endif /* QUANT_1PASS_SUPPORTED */ |