Wed, 31 Dec 2014 07:22:50 +0100
Correct previous dual key logic pending first delivery installment.
michael@0 | 1 | /************************************************************************ |
michael@0 | 2 | * Copyright (C) 1996-2012, International Business Machines Corporation |
michael@0 | 3 | * and others. All Rights Reserved. |
michael@0 | 4 | ************************************************************************ |
michael@0 | 5 | * 2003-nov-07 srl Port from Java |
michael@0 | 6 | */ |
michael@0 | 7 | |
michael@0 | 8 | #include "astro.h" |
michael@0 | 9 | |
michael@0 | 10 | #if !UCONFIG_NO_FORMATTING |
michael@0 | 11 | |
michael@0 | 12 | #include "unicode/calendar.h" |
michael@0 | 13 | #include <math.h> |
michael@0 | 14 | #include <float.h> |
michael@0 | 15 | #include "unicode/putil.h" |
michael@0 | 16 | #include "uhash.h" |
michael@0 | 17 | #include "umutex.h" |
michael@0 | 18 | #include "ucln_in.h" |
michael@0 | 19 | #include "putilimp.h" |
michael@0 | 20 | #include <stdio.h> // for toString() |
michael@0 | 21 | |
michael@0 | 22 | #if defined (PI) |
michael@0 | 23 | #undef PI |
michael@0 | 24 | #endif |
michael@0 | 25 | |
michael@0 | 26 | #ifdef U_DEBUG_ASTRO |
michael@0 | 27 | # include "uresimp.h" // for debugging |
michael@0 | 28 | |
michael@0 | 29 | static void debug_astro_loc(const char *f, int32_t l) |
michael@0 | 30 | { |
michael@0 | 31 | fprintf(stderr, "%s:%d: ", f, l); |
michael@0 | 32 | } |
michael@0 | 33 | |
michael@0 | 34 | static void debug_astro_msg(const char *pat, ...) |
michael@0 | 35 | { |
michael@0 | 36 | va_list ap; |
michael@0 | 37 | va_start(ap, pat); |
michael@0 | 38 | vfprintf(stderr, pat, ap); |
michael@0 | 39 | fflush(stderr); |
michael@0 | 40 | } |
michael@0 | 41 | #include "unicode/datefmt.h" |
michael@0 | 42 | #include "unicode/ustring.h" |
michael@0 | 43 | static const char * debug_astro_date(UDate d) { |
michael@0 | 44 | static char gStrBuf[1024]; |
michael@0 | 45 | static DateFormat *df = NULL; |
michael@0 | 46 | if(df == NULL) { |
michael@0 | 47 | df = DateFormat::createDateTimeInstance(DateFormat::MEDIUM, DateFormat::MEDIUM, Locale::getUS()); |
michael@0 | 48 | df->adoptTimeZone(TimeZone::getGMT()->clone()); |
michael@0 | 49 | } |
michael@0 | 50 | UnicodeString str; |
michael@0 | 51 | df->format(d,str); |
michael@0 | 52 | u_austrncpy(gStrBuf,str.getTerminatedBuffer(),sizeof(gStrBuf)-1); |
michael@0 | 53 | return gStrBuf; |
michael@0 | 54 | } |
michael@0 | 55 | |
michael@0 | 56 | // must use double parens, i.e.: U_DEBUG_ASTRO_MSG(("four is: %d",4)); |
michael@0 | 57 | #define U_DEBUG_ASTRO_MSG(x) {debug_astro_loc(__FILE__,__LINE__);debug_astro_msg x;} |
michael@0 | 58 | #else |
michael@0 | 59 | #define U_DEBUG_ASTRO_MSG(x) |
michael@0 | 60 | #endif |
michael@0 | 61 | |
michael@0 | 62 | static inline UBool isINVALID(double d) { |
michael@0 | 63 | return(uprv_isNaN(d)); |
michael@0 | 64 | } |
michael@0 | 65 | |
michael@0 | 66 | static UMutex ccLock = U_MUTEX_INITIALIZER; |
michael@0 | 67 | |
michael@0 | 68 | U_CDECL_BEGIN |
michael@0 | 69 | static UBool calendar_astro_cleanup(void) { |
michael@0 | 70 | return TRUE; |
michael@0 | 71 | } |
michael@0 | 72 | U_CDECL_END |
michael@0 | 73 | |
michael@0 | 74 | U_NAMESPACE_BEGIN |
michael@0 | 75 | |
michael@0 | 76 | /** |
michael@0 | 77 | * The number of standard hours in one sidereal day. |
michael@0 | 78 | * Approximately 24.93. |
michael@0 | 79 | * @internal |
michael@0 | 80 | * @deprecated ICU 2.4. This class may be removed or modified. |
michael@0 | 81 | */ |
michael@0 | 82 | #define SIDEREAL_DAY (23.93446960027) |
michael@0 | 83 | |
michael@0 | 84 | /** |
michael@0 | 85 | * The number of sidereal hours in one mean solar day. |
michael@0 | 86 | * Approximately 24.07. |
michael@0 | 87 | * @internal |
michael@0 | 88 | * @deprecated ICU 2.4. This class may be removed or modified. |
michael@0 | 89 | */ |
michael@0 | 90 | #define SOLAR_DAY (24.065709816) |
michael@0 | 91 | |
michael@0 | 92 | /** |
michael@0 | 93 | * The average number of solar days from one new moon to the next. This is the time |
michael@0 | 94 | * it takes for the moon to return the same ecliptic longitude as the sun. |
michael@0 | 95 | * It is longer than the sidereal month because the sun's longitude increases |
michael@0 | 96 | * during the year due to the revolution of the earth around the sun. |
michael@0 | 97 | * Approximately 29.53. |
michael@0 | 98 | * |
michael@0 | 99 | * @see #SIDEREAL_MONTH |
michael@0 | 100 | * @internal |
michael@0 | 101 | * @deprecated ICU 2.4. This class may be removed or modified. |
michael@0 | 102 | */ |
michael@0 | 103 | const double CalendarAstronomer::SYNODIC_MONTH = 29.530588853; |
michael@0 | 104 | |
michael@0 | 105 | /** |
michael@0 | 106 | * The average number of days it takes |
michael@0 | 107 | * for the moon to return to the same ecliptic longitude relative to the |
michael@0 | 108 | * stellar background. This is referred to as the sidereal month. |
michael@0 | 109 | * It is shorter than the synodic month due to |
michael@0 | 110 | * the revolution of the earth around the sun. |
michael@0 | 111 | * Approximately 27.32. |
michael@0 | 112 | * |
michael@0 | 113 | * @see #SYNODIC_MONTH |
michael@0 | 114 | * @internal |
michael@0 | 115 | * @deprecated ICU 2.4. This class may be removed or modified. |
michael@0 | 116 | */ |
michael@0 | 117 | #define SIDEREAL_MONTH 27.32166 |
michael@0 | 118 | |
michael@0 | 119 | /** |
michael@0 | 120 | * The average number number of days between successive vernal equinoxes. |
michael@0 | 121 | * Due to the precession of the earth's |
michael@0 | 122 | * axis, this is not precisely the same as the sidereal year. |
michael@0 | 123 | * Approximately 365.24 |
michael@0 | 124 | * |
michael@0 | 125 | * @see #SIDEREAL_YEAR |
michael@0 | 126 | * @internal |
michael@0 | 127 | * @deprecated ICU 2.4. This class may be removed or modified. |
michael@0 | 128 | */ |
michael@0 | 129 | #define TROPICAL_YEAR 365.242191 |
michael@0 | 130 | |
michael@0 | 131 | /** |
michael@0 | 132 | * The average number of days it takes |
michael@0 | 133 | * for the sun to return to the same position against the fixed stellar |
michael@0 | 134 | * background. This is the duration of one orbit of the earth about the sun |
michael@0 | 135 | * as it would appear to an outside observer. |
michael@0 | 136 | * Due to the precession of the earth's |
michael@0 | 137 | * axis, this is not precisely the same as the tropical year. |
michael@0 | 138 | * Approximately 365.25. |
michael@0 | 139 | * |
michael@0 | 140 | * @see #TROPICAL_YEAR |
michael@0 | 141 | * @internal |
michael@0 | 142 | * @deprecated ICU 2.4. This class may be removed or modified. |
michael@0 | 143 | */ |
michael@0 | 144 | #define SIDEREAL_YEAR 365.25636 |
michael@0 | 145 | |
michael@0 | 146 | //------------------------------------------------------------------------- |
michael@0 | 147 | // Time-related constants |
michael@0 | 148 | //------------------------------------------------------------------------- |
michael@0 | 149 | |
michael@0 | 150 | /** |
michael@0 | 151 | * The number of milliseconds in one second. |
michael@0 | 152 | * @internal |
michael@0 | 153 | * @deprecated ICU 2.4. This class may be removed or modified. |
michael@0 | 154 | */ |
michael@0 | 155 | #define SECOND_MS U_MILLIS_PER_SECOND |
michael@0 | 156 | |
michael@0 | 157 | /** |
michael@0 | 158 | * The number of milliseconds in one minute. |
michael@0 | 159 | * @internal |
michael@0 | 160 | * @deprecated ICU 2.4. This class may be removed or modified. |
michael@0 | 161 | */ |
michael@0 | 162 | #define MINUTE_MS U_MILLIS_PER_MINUTE |
michael@0 | 163 | |
michael@0 | 164 | /** |
michael@0 | 165 | * The number of milliseconds in one hour. |
michael@0 | 166 | * @internal |
michael@0 | 167 | * @deprecated ICU 2.4. This class may be removed or modified. |
michael@0 | 168 | */ |
michael@0 | 169 | #define HOUR_MS U_MILLIS_PER_HOUR |
michael@0 | 170 | |
michael@0 | 171 | /** |
michael@0 | 172 | * The number of milliseconds in one day. |
michael@0 | 173 | * @internal |
michael@0 | 174 | * @deprecated ICU 2.4. This class may be removed or modified. |
michael@0 | 175 | */ |
michael@0 | 176 | #define DAY_MS U_MILLIS_PER_DAY |
michael@0 | 177 | |
michael@0 | 178 | /** |
michael@0 | 179 | * The start of the julian day numbering scheme used by astronomers, which |
michael@0 | 180 | * is 1/1/4713 BC (Julian), 12:00 GMT. This is given as the number of milliseconds |
michael@0 | 181 | * since 1/1/1970 AD (Gregorian), a negative number. |
michael@0 | 182 | * Note that julian day numbers and |
michael@0 | 183 | * the Julian calendar are <em>not</em> the same thing. Also note that |
michael@0 | 184 | * julian days start at <em>noon</em>, not midnight. |
michael@0 | 185 | * @internal |
michael@0 | 186 | * @deprecated ICU 2.4. This class may be removed or modified. |
michael@0 | 187 | */ |
michael@0 | 188 | #define JULIAN_EPOCH_MS -210866760000000.0 |
michael@0 | 189 | |
michael@0 | 190 | |
michael@0 | 191 | /** |
michael@0 | 192 | * Milliseconds value for 0.0 January 2000 AD. |
michael@0 | 193 | */ |
michael@0 | 194 | #define EPOCH_2000_MS 946598400000.0 |
michael@0 | 195 | |
michael@0 | 196 | //------------------------------------------------------------------------- |
michael@0 | 197 | // Assorted private data used for conversions |
michael@0 | 198 | //------------------------------------------------------------------------- |
michael@0 | 199 | |
michael@0 | 200 | // My own copies of these so compilers are more likely to optimize them away |
michael@0 | 201 | const double CalendarAstronomer::PI = 3.14159265358979323846; |
michael@0 | 202 | |
michael@0 | 203 | #define CalendarAstronomer_PI2 (CalendarAstronomer::PI*2.0) |
michael@0 | 204 | #define RAD_HOUR ( 12 / CalendarAstronomer::PI ) // radians -> hours |
michael@0 | 205 | #define DEG_RAD ( CalendarAstronomer::PI / 180 ) // degrees -> radians |
michael@0 | 206 | #define RAD_DEG ( 180 / CalendarAstronomer::PI ) // radians -> degrees |
michael@0 | 207 | |
michael@0 | 208 | /*** |
michael@0 | 209 | * Given 'value', add or subtract 'range' until 0 <= 'value' < range. |
michael@0 | 210 | * The modulus operator. |
michael@0 | 211 | */ |
michael@0 | 212 | inline static double normalize(double value, double range) { |
michael@0 | 213 | return value - range * ClockMath::floorDivide(value, range); |
michael@0 | 214 | } |
michael@0 | 215 | |
michael@0 | 216 | /** |
michael@0 | 217 | * Normalize an angle so that it's in the range 0 - 2pi. |
michael@0 | 218 | * For positive angles this is just (angle % 2pi), but the Java |
michael@0 | 219 | * mod operator doesn't work that way for negative numbers.... |
michael@0 | 220 | */ |
michael@0 | 221 | inline static double norm2PI(double angle) { |
michael@0 | 222 | return normalize(angle, CalendarAstronomer::PI * 2.0); |
michael@0 | 223 | } |
michael@0 | 224 | |
michael@0 | 225 | /** |
michael@0 | 226 | * Normalize an angle into the range -PI - PI |
michael@0 | 227 | */ |
michael@0 | 228 | inline static double normPI(double angle) { |
michael@0 | 229 | return normalize(angle + CalendarAstronomer::PI, CalendarAstronomer::PI * 2.0) - CalendarAstronomer::PI; |
michael@0 | 230 | } |
michael@0 | 231 | |
michael@0 | 232 | //------------------------------------------------------------------------- |
michael@0 | 233 | // Constructors |
michael@0 | 234 | //------------------------------------------------------------------------- |
michael@0 | 235 | |
michael@0 | 236 | /** |
michael@0 | 237 | * Construct a new <code>CalendarAstronomer</code> object that is initialized to |
michael@0 | 238 | * the current date and time. |
michael@0 | 239 | * @internal |
michael@0 | 240 | * @deprecated ICU 2.4. This class may be removed or modified. |
michael@0 | 241 | */ |
michael@0 | 242 | CalendarAstronomer::CalendarAstronomer(): |
michael@0 | 243 | fTime(Calendar::getNow()), fLongitude(0.0), fLatitude(0.0), fGmtOffset(0.0), moonPosition(0,0), moonPositionSet(FALSE) { |
michael@0 | 244 | clearCache(); |
michael@0 | 245 | } |
michael@0 | 246 | |
michael@0 | 247 | /** |
michael@0 | 248 | * Construct a new <code>CalendarAstronomer</code> object that is initialized to |
michael@0 | 249 | * the specified date and time. |
michael@0 | 250 | * @internal |
michael@0 | 251 | * @deprecated ICU 2.4. This class may be removed or modified. |
michael@0 | 252 | */ |
michael@0 | 253 | CalendarAstronomer::CalendarAstronomer(UDate d): fTime(d), fLongitude(0.0), fLatitude(0.0), fGmtOffset(0.0), moonPosition(0,0), moonPositionSet(FALSE) { |
michael@0 | 254 | clearCache(); |
michael@0 | 255 | } |
michael@0 | 256 | |
michael@0 | 257 | /** |
michael@0 | 258 | * Construct a new <code>CalendarAstronomer</code> object with the given |
michael@0 | 259 | * latitude and longitude. The object's time is set to the current |
michael@0 | 260 | * date and time. |
michael@0 | 261 | * <p> |
michael@0 | 262 | * @param longitude The desired longitude, in <em>degrees</em> east of |
michael@0 | 263 | * the Greenwich meridian. |
michael@0 | 264 | * |
michael@0 | 265 | * @param latitude The desired latitude, in <em>degrees</em>. Positive |
michael@0 | 266 | * values signify North, negative South. |
michael@0 | 267 | * |
michael@0 | 268 | * @see java.util.Date#getTime() |
michael@0 | 269 | * @internal |
michael@0 | 270 | * @deprecated ICU 2.4. This class may be removed or modified. |
michael@0 | 271 | */ |
michael@0 | 272 | CalendarAstronomer::CalendarAstronomer(double longitude, double latitude) : |
michael@0 | 273 | fTime(Calendar::getNow()), moonPosition(0,0), moonPositionSet(FALSE) { |
michael@0 | 274 | fLongitude = normPI(longitude * (double)DEG_RAD); |
michael@0 | 275 | fLatitude = normPI(latitude * (double)DEG_RAD); |
michael@0 | 276 | fGmtOffset = (double)(fLongitude * 24. * (double)HOUR_MS / (double)CalendarAstronomer_PI2); |
michael@0 | 277 | clearCache(); |
michael@0 | 278 | } |
michael@0 | 279 | |
michael@0 | 280 | CalendarAstronomer::~CalendarAstronomer() |
michael@0 | 281 | { |
michael@0 | 282 | } |
michael@0 | 283 | |
michael@0 | 284 | //------------------------------------------------------------------------- |
michael@0 | 285 | // Time and date getters and setters |
michael@0 | 286 | //------------------------------------------------------------------------- |
michael@0 | 287 | |
michael@0 | 288 | /** |
michael@0 | 289 | * Set the current date and time of this <code>CalendarAstronomer</code> object. All |
michael@0 | 290 | * astronomical calculations are performed based on this time setting. |
michael@0 | 291 | * |
michael@0 | 292 | * @param aTime the date and time, expressed as the number of milliseconds since |
michael@0 | 293 | * 1/1/1970 0:00 GMT (Gregorian). |
michael@0 | 294 | * |
michael@0 | 295 | * @see #setDate |
michael@0 | 296 | * @see #getTime |
michael@0 | 297 | * @internal |
michael@0 | 298 | * @deprecated ICU 2.4. This class may be removed or modified. |
michael@0 | 299 | */ |
michael@0 | 300 | void CalendarAstronomer::setTime(UDate aTime) { |
michael@0 | 301 | fTime = aTime; |
michael@0 | 302 | U_DEBUG_ASTRO_MSG(("setTime(%.1lf, %sL)\n", aTime, debug_astro_date(aTime+fGmtOffset))); |
michael@0 | 303 | clearCache(); |
michael@0 | 304 | } |
michael@0 | 305 | |
michael@0 | 306 | /** |
michael@0 | 307 | * Set the current date and time of this <code>CalendarAstronomer</code> object. All |
michael@0 | 308 | * astronomical calculations are performed based on this time setting. |
michael@0 | 309 | * |
michael@0 | 310 | * @param jdn the desired time, expressed as a "julian day number", |
michael@0 | 311 | * which is the number of elapsed days since |
michael@0 | 312 | * 1/1/4713 BC (Julian), 12:00 GMT. Note that julian day |
michael@0 | 313 | * numbers start at <em>noon</em>. To get the jdn for |
michael@0 | 314 | * the corresponding midnight, subtract 0.5. |
michael@0 | 315 | * |
michael@0 | 316 | * @see #getJulianDay |
michael@0 | 317 | * @see #JULIAN_EPOCH_MS |
michael@0 | 318 | * @internal |
michael@0 | 319 | * @deprecated ICU 2.4. This class may be removed or modified. |
michael@0 | 320 | */ |
michael@0 | 321 | void CalendarAstronomer::setJulianDay(double jdn) { |
michael@0 | 322 | fTime = (double)(jdn * DAY_MS) + JULIAN_EPOCH_MS; |
michael@0 | 323 | clearCache(); |
michael@0 | 324 | julianDay = jdn; |
michael@0 | 325 | } |
michael@0 | 326 | |
michael@0 | 327 | /** |
michael@0 | 328 | * Get the current time of this <code>CalendarAstronomer</code> object, |
michael@0 | 329 | * represented as the number of milliseconds since |
michael@0 | 330 | * 1/1/1970 AD 0:00 GMT (Gregorian). |
michael@0 | 331 | * |
michael@0 | 332 | * @see #setTime |
michael@0 | 333 | * @see #getDate |
michael@0 | 334 | * @internal |
michael@0 | 335 | * @deprecated ICU 2.4. This class may be removed or modified. |
michael@0 | 336 | */ |
michael@0 | 337 | UDate CalendarAstronomer::getTime() { |
michael@0 | 338 | return fTime; |
michael@0 | 339 | } |
michael@0 | 340 | |
michael@0 | 341 | /** |
michael@0 | 342 | * Get the current time of this <code>CalendarAstronomer</code> object, |
michael@0 | 343 | * expressed as a "julian day number", which is the number of elapsed |
michael@0 | 344 | * days since 1/1/4713 BC (Julian), 12:00 GMT. |
michael@0 | 345 | * |
michael@0 | 346 | * @see #setJulianDay |
michael@0 | 347 | * @see #JULIAN_EPOCH_MS |
michael@0 | 348 | * @internal |
michael@0 | 349 | * @deprecated ICU 2.4. This class may be removed or modified. |
michael@0 | 350 | */ |
michael@0 | 351 | double CalendarAstronomer::getJulianDay() { |
michael@0 | 352 | if (isINVALID(julianDay)) { |
michael@0 | 353 | julianDay = (fTime - (double)JULIAN_EPOCH_MS) / (double)DAY_MS; |
michael@0 | 354 | } |
michael@0 | 355 | return julianDay; |
michael@0 | 356 | } |
michael@0 | 357 | |
michael@0 | 358 | /** |
michael@0 | 359 | * Return this object's time expressed in julian centuries: |
michael@0 | 360 | * the number of centuries after 1/1/1900 AD, 12:00 GMT |
michael@0 | 361 | * |
michael@0 | 362 | * @see #getJulianDay |
michael@0 | 363 | * @internal |
michael@0 | 364 | * @deprecated ICU 2.4. This class may be removed or modified. |
michael@0 | 365 | */ |
michael@0 | 366 | double CalendarAstronomer::getJulianCentury() { |
michael@0 | 367 | if (isINVALID(julianCentury)) { |
michael@0 | 368 | julianCentury = (getJulianDay() - 2415020.0) / 36525.0; |
michael@0 | 369 | } |
michael@0 | 370 | return julianCentury; |
michael@0 | 371 | } |
michael@0 | 372 | |
michael@0 | 373 | /** |
michael@0 | 374 | * Returns the current Greenwich sidereal time, measured in hours |
michael@0 | 375 | * @internal |
michael@0 | 376 | * @deprecated ICU 2.4. This class may be removed or modified. |
michael@0 | 377 | */ |
michael@0 | 378 | double CalendarAstronomer::getGreenwichSidereal() { |
michael@0 | 379 | if (isINVALID(siderealTime)) { |
michael@0 | 380 | // See page 86 of "Practial Astronomy with your Calculator", |
michael@0 | 381 | // by Peter Duffet-Smith, for details on the algorithm. |
michael@0 | 382 | |
michael@0 | 383 | double UT = normalize(fTime/(double)HOUR_MS, 24.); |
michael@0 | 384 | |
michael@0 | 385 | siderealTime = normalize(getSiderealOffset() + UT*1.002737909, 24.); |
michael@0 | 386 | } |
michael@0 | 387 | return siderealTime; |
michael@0 | 388 | } |
michael@0 | 389 | |
michael@0 | 390 | double CalendarAstronomer::getSiderealOffset() { |
michael@0 | 391 | if (isINVALID(siderealT0)) { |
michael@0 | 392 | double JD = uprv_floor(getJulianDay() - 0.5) + 0.5; |
michael@0 | 393 | double S = JD - 2451545.0; |
michael@0 | 394 | double T = S / 36525.0; |
michael@0 | 395 | siderealT0 = normalize(6.697374558 + 2400.051336*T + 0.000025862*T*T, 24); |
michael@0 | 396 | } |
michael@0 | 397 | return siderealT0; |
michael@0 | 398 | } |
michael@0 | 399 | |
michael@0 | 400 | /** |
michael@0 | 401 | * Returns the current local sidereal time, measured in hours |
michael@0 | 402 | * @internal |
michael@0 | 403 | * @deprecated ICU 2.4. This class may be removed or modified. |
michael@0 | 404 | */ |
michael@0 | 405 | double CalendarAstronomer::getLocalSidereal() { |
michael@0 | 406 | return normalize(getGreenwichSidereal() + (fGmtOffset/(double)HOUR_MS), 24.); |
michael@0 | 407 | } |
michael@0 | 408 | |
michael@0 | 409 | /** |
michael@0 | 410 | * Converts local sidereal time to Universal Time. |
michael@0 | 411 | * |
michael@0 | 412 | * @param lst The Local Sidereal Time, in hours since sidereal midnight |
michael@0 | 413 | * on this object's current date. |
michael@0 | 414 | * |
michael@0 | 415 | * @return The corresponding Universal Time, in milliseconds since |
michael@0 | 416 | * 1 Jan 1970, GMT. |
michael@0 | 417 | */ |
michael@0 | 418 | double CalendarAstronomer::lstToUT(double lst) { |
michael@0 | 419 | // Convert to local mean time |
michael@0 | 420 | double lt = normalize((lst - getSiderealOffset()) * 0.9972695663, 24); |
michael@0 | 421 | |
michael@0 | 422 | // Then find local midnight on this day |
michael@0 | 423 | double base = (DAY_MS * ClockMath::floorDivide(fTime + fGmtOffset,(double)DAY_MS)) - fGmtOffset; |
michael@0 | 424 | |
michael@0 | 425 | //out(" lt =" + lt + " hours"); |
michael@0 | 426 | //out(" base=" + new Date(base)); |
michael@0 | 427 | |
michael@0 | 428 | return base + (long)(lt * HOUR_MS); |
michael@0 | 429 | } |
michael@0 | 430 | |
michael@0 | 431 | |
michael@0 | 432 | //------------------------------------------------------------------------- |
michael@0 | 433 | // Coordinate transformations, all based on the current time of this object |
michael@0 | 434 | //------------------------------------------------------------------------- |
michael@0 | 435 | |
michael@0 | 436 | /** |
michael@0 | 437 | * Convert from ecliptic to equatorial coordinates. |
michael@0 | 438 | * |
michael@0 | 439 | * @param ecliptic A point in the sky in ecliptic coordinates. |
michael@0 | 440 | * @return The corresponding point in equatorial coordinates. |
michael@0 | 441 | * @internal |
michael@0 | 442 | * @deprecated ICU 2.4. This class may be removed or modified. |
michael@0 | 443 | */ |
michael@0 | 444 | CalendarAstronomer::Equatorial& CalendarAstronomer::eclipticToEquatorial(CalendarAstronomer::Equatorial& result, const CalendarAstronomer::Ecliptic& ecliptic) |
michael@0 | 445 | { |
michael@0 | 446 | return eclipticToEquatorial(result, ecliptic.longitude, ecliptic.latitude); |
michael@0 | 447 | } |
michael@0 | 448 | |
michael@0 | 449 | /** |
michael@0 | 450 | * Convert from ecliptic to equatorial coordinates. |
michael@0 | 451 | * |
michael@0 | 452 | * @param eclipLong The ecliptic longitude |
michael@0 | 453 | * @param eclipLat The ecliptic latitude |
michael@0 | 454 | * |
michael@0 | 455 | * @return The corresponding point in equatorial coordinates. |
michael@0 | 456 | * @internal |
michael@0 | 457 | * @deprecated ICU 2.4. This class may be removed or modified. |
michael@0 | 458 | */ |
michael@0 | 459 | CalendarAstronomer::Equatorial& CalendarAstronomer::eclipticToEquatorial(CalendarAstronomer::Equatorial& result, double eclipLong, double eclipLat) |
michael@0 | 460 | { |
michael@0 | 461 | // See page 42 of "Practial Astronomy with your Calculator", |
michael@0 | 462 | // by Peter Duffet-Smith, for details on the algorithm. |
michael@0 | 463 | |
michael@0 | 464 | double obliq = eclipticObliquity(); |
michael@0 | 465 | double sinE = ::sin(obliq); |
michael@0 | 466 | double cosE = cos(obliq); |
michael@0 | 467 | |
michael@0 | 468 | double sinL = ::sin(eclipLong); |
michael@0 | 469 | double cosL = cos(eclipLong); |
michael@0 | 470 | |
michael@0 | 471 | double sinB = ::sin(eclipLat); |
michael@0 | 472 | double cosB = cos(eclipLat); |
michael@0 | 473 | double tanB = tan(eclipLat); |
michael@0 | 474 | |
michael@0 | 475 | result.set(atan2(sinL*cosE - tanB*sinE, cosL), |
michael@0 | 476 | asin(sinB*cosE + cosB*sinE*sinL) ); |
michael@0 | 477 | return result; |
michael@0 | 478 | } |
michael@0 | 479 | |
michael@0 | 480 | /** |
michael@0 | 481 | * Convert from ecliptic longitude to equatorial coordinates. |
michael@0 | 482 | * |
michael@0 | 483 | * @param eclipLong The ecliptic longitude |
michael@0 | 484 | * |
michael@0 | 485 | * @return The corresponding point in equatorial coordinates. |
michael@0 | 486 | * @internal |
michael@0 | 487 | * @deprecated ICU 2.4. This class may be removed or modified. |
michael@0 | 488 | */ |
michael@0 | 489 | CalendarAstronomer::Equatorial& CalendarAstronomer::eclipticToEquatorial(CalendarAstronomer::Equatorial& result, double eclipLong) |
michael@0 | 490 | { |
michael@0 | 491 | return eclipticToEquatorial(result, eclipLong, 0); // TODO: optimize |
michael@0 | 492 | } |
michael@0 | 493 | |
michael@0 | 494 | /** |
michael@0 | 495 | * @internal |
michael@0 | 496 | * @deprecated ICU 2.4. This class may be removed or modified. |
michael@0 | 497 | */ |
michael@0 | 498 | CalendarAstronomer::Horizon& CalendarAstronomer::eclipticToHorizon(CalendarAstronomer::Horizon& result, double eclipLong) |
michael@0 | 499 | { |
michael@0 | 500 | Equatorial equatorial; |
michael@0 | 501 | eclipticToEquatorial(equatorial, eclipLong); |
michael@0 | 502 | |
michael@0 | 503 | double H = getLocalSidereal()*CalendarAstronomer::PI/12 - equatorial.ascension; // Hour-angle |
michael@0 | 504 | |
michael@0 | 505 | double sinH = ::sin(H); |
michael@0 | 506 | double cosH = cos(H); |
michael@0 | 507 | double sinD = ::sin(equatorial.declination); |
michael@0 | 508 | double cosD = cos(equatorial.declination); |
michael@0 | 509 | double sinL = ::sin(fLatitude); |
michael@0 | 510 | double cosL = cos(fLatitude); |
michael@0 | 511 | |
michael@0 | 512 | double altitude = asin(sinD*sinL + cosD*cosL*cosH); |
michael@0 | 513 | double azimuth = atan2(-cosD*cosL*sinH, sinD - sinL * ::sin(altitude)); |
michael@0 | 514 | |
michael@0 | 515 | result.set(azimuth, altitude); |
michael@0 | 516 | return result; |
michael@0 | 517 | } |
michael@0 | 518 | |
michael@0 | 519 | |
michael@0 | 520 | //------------------------------------------------------------------------- |
michael@0 | 521 | // The Sun |
michael@0 | 522 | //------------------------------------------------------------------------- |
michael@0 | 523 | |
michael@0 | 524 | // |
michael@0 | 525 | // Parameters of the Sun's orbit as of the epoch Jan 0.0 1990 |
michael@0 | 526 | // Angles are in radians (after multiplying by CalendarAstronomer::PI/180) |
michael@0 | 527 | // |
michael@0 | 528 | #define JD_EPOCH 2447891.5 // Julian day of epoch |
michael@0 | 529 | |
michael@0 | 530 | #define SUN_ETA_G (279.403303 * CalendarAstronomer::PI/180) // Ecliptic longitude at epoch |
michael@0 | 531 | #define SUN_OMEGA_G (282.768422 * CalendarAstronomer::PI/180) // Ecliptic longitude of perigee |
michael@0 | 532 | #define SUN_E 0.016713 // Eccentricity of orbit |
michael@0 | 533 | //double sunR0 1.495585e8 // Semi-major axis in KM |
michael@0 | 534 | //double sunTheta0 (0.533128 * CalendarAstronomer::PI/180) // Angular diameter at R0 |
michael@0 | 535 | |
michael@0 | 536 | // The following three methods, which compute the sun parameters |
michael@0 | 537 | // given above for an arbitrary epoch (whatever time the object is |
michael@0 | 538 | // set to), make only a small difference as compared to using the |
michael@0 | 539 | // above constants. E.g., Sunset times might differ by ~12 |
michael@0 | 540 | // seconds. Furthermore, the eta-g computation is befuddled by |
michael@0 | 541 | // Duffet-Smith's incorrect coefficients (p.86). I've corrected |
michael@0 | 542 | // the first-order coefficient but the others may be off too - no |
michael@0 | 543 | // way of knowing without consulting another source. |
michael@0 | 544 | |
michael@0 | 545 | // /** |
michael@0 | 546 | // * Return the sun's ecliptic longitude at perigee for the current time. |
michael@0 | 547 | // * See Duffett-Smith, p. 86. |
michael@0 | 548 | // * @return radians |
michael@0 | 549 | // */ |
michael@0 | 550 | // private double getSunOmegaG() { |
michael@0 | 551 | // double T = getJulianCentury(); |
michael@0 | 552 | // return (281.2208444 + (1.719175 + 0.000452778*T)*T) * DEG_RAD; |
michael@0 | 553 | // } |
michael@0 | 554 | |
michael@0 | 555 | // /** |
michael@0 | 556 | // * Return the sun's ecliptic longitude for the current time. |
michael@0 | 557 | // * See Duffett-Smith, p. 86. |
michael@0 | 558 | // * @return radians |
michael@0 | 559 | // */ |
michael@0 | 560 | // private double getSunEtaG() { |
michael@0 | 561 | // double T = getJulianCentury(); |
michael@0 | 562 | // //return (279.6966778 + (36000.76892 + 0.0003025*T)*T) * DEG_RAD; |
michael@0 | 563 | // // |
michael@0 | 564 | // // The above line is from Duffett-Smith, and yields manifestly wrong |
michael@0 | 565 | // // results. The below constant is derived empirically to match the |
michael@0 | 566 | // // constant he gives for the 1990 EPOCH. |
michael@0 | 567 | // // |
michael@0 | 568 | // return (279.6966778 + (-0.3262541582718024 + 0.0003025*T)*T) * DEG_RAD; |
michael@0 | 569 | // } |
michael@0 | 570 | |
michael@0 | 571 | // /** |
michael@0 | 572 | // * Return the sun's eccentricity of orbit for the current time. |
michael@0 | 573 | // * See Duffett-Smith, p. 86. |
michael@0 | 574 | // * @return double |
michael@0 | 575 | // */ |
michael@0 | 576 | // private double getSunE() { |
michael@0 | 577 | // double T = getJulianCentury(); |
michael@0 | 578 | // return 0.01675104 - (0.0000418 + 0.000000126*T)*T; |
michael@0 | 579 | // } |
michael@0 | 580 | |
michael@0 | 581 | /** |
michael@0 | 582 | * Find the "true anomaly" (longitude) of an object from |
michael@0 | 583 | * its mean anomaly and the eccentricity of its orbit. This uses |
michael@0 | 584 | * an iterative solution to Kepler's equation. |
michael@0 | 585 | * |
michael@0 | 586 | * @param meanAnomaly The object's longitude calculated as if it were in |
michael@0 | 587 | * a regular, circular orbit, measured in radians |
michael@0 | 588 | * from the point of perigee. |
michael@0 | 589 | * |
michael@0 | 590 | * @param eccentricity The eccentricity of the orbit |
michael@0 | 591 | * |
michael@0 | 592 | * @return The true anomaly (longitude) measured in radians |
michael@0 | 593 | */ |
michael@0 | 594 | static double trueAnomaly(double meanAnomaly, double eccentricity) |
michael@0 | 595 | { |
michael@0 | 596 | // First, solve Kepler's equation iteratively |
michael@0 | 597 | // Duffett-Smith, p.90 |
michael@0 | 598 | double delta; |
michael@0 | 599 | double E = meanAnomaly; |
michael@0 | 600 | do { |
michael@0 | 601 | delta = E - eccentricity * ::sin(E) - meanAnomaly; |
michael@0 | 602 | E = E - delta / (1 - eccentricity * ::cos(E)); |
michael@0 | 603 | } |
michael@0 | 604 | while (uprv_fabs(delta) > 1e-5); // epsilon = 1e-5 rad |
michael@0 | 605 | |
michael@0 | 606 | return 2.0 * ::atan( ::tan(E/2) * ::sqrt( (1+eccentricity) |
michael@0 | 607 | /(1-eccentricity) ) ); |
michael@0 | 608 | } |
michael@0 | 609 | |
michael@0 | 610 | /** |
michael@0 | 611 | * The longitude of the sun at the time specified by this object. |
michael@0 | 612 | * The longitude is measured in radians along the ecliptic |
michael@0 | 613 | * from the "first point of Aries," the point at which the ecliptic |
michael@0 | 614 | * crosses the earth's equatorial plane at the vernal equinox. |
michael@0 | 615 | * <p> |
michael@0 | 616 | * Currently, this method uses an approximation of the two-body Kepler's |
michael@0 | 617 | * equation for the earth and the sun. It does not take into account the |
michael@0 | 618 | * perturbations caused by the other planets, the moon, etc. |
michael@0 | 619 | * @internal |
michael@0 | 620 | * @deprecated ICU 2.4. This class may be removed or modified. |
michael@0 | 621 | */ |
michael@0 | 622 | double CalendarAstronomer::getSunLongitude() |
michael@0 | 623 | { |
michael@0 | 624 | // See page 86 of "Practial Astronomy with your Calculator", |
michael@0 | 625 | // by Peter Duffet-Smith, for details on the algorithm. |
michael@0 | 626 | |
michael@0 | 627 | if (isINVALID(sunLongitude)) { |
michael@0 | 628 | getSunLongitude(getJulianDay(), sunLongitude, meanAnomalySun); |
michael@0 | 629 | } |
michael@0 | 630 | return sunLongitude; |
michael@0 | 631 | } |
michael@0 | 632 | |
michael@0 | 633 | /** |
michael@0 | 634 | * TODO Make this public when the entire class is package-private. |
michael@0 | 635 | */ |
michael@0 | 636 | /*public*/ void CalendarAstronomer::getSunLongitude(double jDay, double &longitude, double &meanAnomaly) |
michael@0 | 637 | { |
michael@0 | 638 | // See page 86 of "Practial Astronomy with your Calculator", |
michael@0 | 639 | // by Peter Duffet-Smith, for details on the algorithm. |
michael@0 | 640 | |
michael@0 | 641 | double day = jDay - JD_EPOCH; // Days since epoch |
michael@0 | 642 | |
michael@0 | 643 | // Find the angular distance the sun in a fictitious |
michael@0 | 644 | // circular orbit has travelled since the epoch. |
michael@0 | 645 | double epochAngle = norm2PI(CalendarAstronomer_PI2/TROPICAL_YEAR*day); |
michael@0 | 646 | |
michael@0 | 647 | // The epoch wasn't at the sun's perigee; find the angular distance |
michael@0 | 648 | // since perigee, which is called the "mean anomaly" |
michael@0 | 649 | meanAnomaly = norm2PI(epochAngle + SUN_ETA_G - SUN_OMEGA_G); |
michael@0 | 650 | |
michael@0 | 651 | // Now find the "true anomaly", e.g. the real solar longitude |
michael@0 | 652 | // by solving Kepler's equation for an elliptical orbit |
michael@0 | 653 | // NOTE: The 3rd ed. of the book lists omega_g and eta_g in different |
michael@0 | 654 | // equations; omega_g is to be correct. |
michael@0 | 655 | longitude = norm2PI(trueAnomaly(meanAnomaly, SUN_E) + SUN_OMEGA_G); |
michael@0 | 656 | } |
michael@0 | 657 | |
michael@0 | 658 | /** |
michael@0 | 659 | * The position of the sun at this object's current date and time, |
michael@0 | 660 | * in equatorial coordinates. |
michael@0 | 661 | * @internal |
michael@0 | 662 | * @deprecated ICU 2.4. This class may be removed or modified. |
michael@0 | 663 | */ |
michael@0 | 664 | CalendarAstronomer::Equatorial& CalendarAstronomer::getSunPosition(CalendarAstronomer::Equatorial& result) { |
michael@0 | 665 | return eclipticToEquatorial(result, getSunLongitude(), 0); |
michael@0 | 666 | } |
michael@0 | 667 | |
michael@0 | 668 | |
michael@0 | 669 | /** |
michael@0 | 670 | * Constant representing the vernal equinox. |
michael@0 | 671 | * For use with {@link #getSunTime getSunTime}. |
michael@0 | 672 | * Note: In this case, "vernal" refers to the northern hemisphere's seasons. |
michael@0 | 673 | * @internal |
michael@0 | 674 | * @deprecated ICU 2.4. This class may be removed or modified. |
michael@0 | 675 | */ |
michael@0 | 676 | /*double CalendarAstronomer::VERNAL_EQUINOX() { |
michael@0 | 677 | return 0; |
michael@0 | 678 | }*/ |
michael@0 | 679 | |
michael@0 | 680 | /** |
michael@0 | 681 | * Constant representing the summer solstice. |
michael@0 | 682 | * For use with {@link #getSunTime getSunTime}. |
michael@0 | 683 | * Note: In this case, "summer" refers to the northern hemisphere's seasons. |
michael@0 | 684 | * @internal |
michael@0 | 685 | * @deprecated ICU 2.4. This class may be removed or modified. |
michael@0 | 686 | */ |
michael@0 | 687 | double CalendarAstronomer::SUMMER_SOLSTICE() { |
michael@0 | 688 | return (CalendarAstronomer::PI/2); |
michael@0 | 689 | } |
michael@0 | 690 | |
michael@0 | 691 | /** |
michael@0 | 692 | * Constant representing the autumnal equinox. |
michael@0 | 693 | * For use with {@link #getSunTime getSunTime}. |
michael@0 | 694 | * Note: In this case, "autumn" refers to the northern hemisphere's seasons. |
michael@0 | 695 | * @internal |
michael@0 | 696 | * @deprecated ICU 2.4. This class may be removed or modified. |
michael@0 | 697 | */ |
michael@0 | 698 | /*double CalendarAstronomer::AUTUMN_EQUINOX() { |
michael@0 | 699 | return (CalendarAstronomer::PI); |
michael@0 | 700 | }*/ |
michael@0 | 701 | |
michael@0 | 702 | /** |
michael@0 | 703 | * Constant representing the winter solstice. |
michael@0 | 704 | * For use with {@link #getSunTime getSunTime}. |
michael@0 | 705 | * Note: In this case, "winter" refers to the northern hemisphere's seasons. |
michael@0 | 706 | * @internal |
michael@0 | 707 | * @deprecated ICU 2.4. This class may be removed or modified. |
michael@0 | 708 | */ |
michael@0 | 709 | double CalendarAstronomer::WINTER_SOLSTICE() { |
michael@0 | 710 | return ((CalendarAstronomer::PI*3)/2); |
michael@0 | 711 | } |
michael@0 | 712 | |
michael@0 | 713 | CalendarAstronomer::AngleFunc::~AngleFunc() {} |
michael@0 | 714 | |
michael@0 | 715 | /** |
michael@0 | 716 | * Find the next time at which the sun's ecliptic longitude will have |
michael@0 | 717 | * the desired value. |
michael@0 | 718 | * @internal |
michael@0 | 719 | * @deprecated ICU 2.4. This class may be removed or modified. |
michael@0 | 720 | */ |
michael@0 | 721 | class SunTimeAngleFunc : public CalendarAstronomer::AngleFunc { |
michael@0 | 722 | public: |
michael@0 | 723 | virtual ~SunTimeAngleFunc(); |
michael@0 | 724 | virtual double eval(CalendarAstronomer& a) { return a.getSunLongitude(); } |
michael@0 | 725 | }; |
michael@0 | 726 | |
michael@0 | 727 | SunTimeAngleFunc::~SunTimeAngleFunc() {} |
michael@0 | 728 | |
michael@0 | 729 | UDate CalendarAstronomer::getSunTime(double desired, UBool next) |
michael@0 | 730 | { |
michael@0 | 731 | SunTimeAngleFunc func; |
michael@0 | 732 | return timeOfAngle( func, |
michael@0 | 733 | desired, |
michael@0 | 734 | TROPICAL_YEAR, |
michael@0 | 735 | MINUTE_MS, |
michael@0 | 736 | next); |
michael@0 | 737 | } |
michael@0 | 738 | |
michael@0 | 739 | CalendarAstronomer::CoordFunc::~CoordFunc() {} |
michael@0 | 740 | |
michael@0 | 741 | class RiseSetCoordFunc : public CalendarAstronomer::CoordFunc { |
michael@0 | 742 | public: |
michael@0 | 743 | virtual ~RiseSetCoordFunc(); |
michael@0 | 744 | virtual void eval(CalendarAstronomer::Equatorial& result, CalendarAstronomer&a) { a.getSunPosition(result); } |
michael@0 | 745 | }; |
michael@0 | 746 | |
michael@0 | 747 | RiseSetCoordFunc::~RiseSetCoordFunc() {} |
michael@0 | 748 | |
michael@0 | 749 | UDate CalendarAstronomer::getSunRiseSet(UBool rise) |
michael@0 | 750 | { |
michael@0 | 751 | UDate t0 = fTime; |
michael@0 | 752 | |
michael@0 | 753 | // Make a rough guess: 6am or 6pm local time on the current day |
michael@0 | 754 | double noon = ClockMath::floorDivide(fTime + fGmtOffset, (double)DAY_MS)*DAY_MS - fGmtOffset + (12*HOUR_MS); |
michael@0 | 755 | |
michael@0 | 756 | U_DEBUG_ASTRO_MSG(("Noon=%.2lf, %sL, gmtoff %.2lf\n", noon, debug_astro_date(noon+fGmtOffset), fGmtOffset)); |
michael@0 | 757 | setTime(noon + ((rise ? -6 : 6) * HOUR_MS)); |
michael@0 | 758 | U_DEBUG_ASTRO_MSG(("added %.2lf ms as a guess,\n", ((rise ? -6. : 6.) * HOUR_MS))); |
michael@0 | 759 | |
michael@0 | 760 | RiseSetCoordFunc func; |
michael@0 | 761 | double t = riseOrSet(func, |
michael@0 | 762 | rise, |
michael@0 | 763 | .533 * DEG_RAD, // Angular Diameter |
michael@0 | 764 | 34. /60.0 * DEG_RAD, // Refraction correction |
michael@0 | 765 | MINUTE_MS / 12.); // Desired accuracy |
michael@0 | 766 | |
michael@0 | 767 | setTime(t0); |
michael@0 | 768 | return t; |
michael@0 | 769 | } |
michael@0 | 770 | |
michael@0 | 771 | // Commented out - currently unused. ICU 2.6, Alan |
michael@0 | 772 | // //------------------------------------------------------------------------- |
michael@0 | 773 | // // Alternate Sun Rise/Set |
michael@0 | 774 | // // See Duffett-Smith p.93 |
michael@0 | 775 | // //------------------------------------------------------------------------- |
michael@0 | 776 | // |
michael@0 | 777 | // // This yields worse results (as compared to USNO data) than getSunRiseSet(). |
michael@0 | 778 | // /** |
michael@0 | 779 | // * TODO Make this when the entire class is package-private. |
michael@0 | 780 | // */ |
michael@0 | 781 | // /*public*/ long getSunRiseSet2(boolean rise) { |
michael@0 | 782 | // // 1. Calculate coordinates of the sun's center for midnight |
michael@0 | 783 | // double jd = uprv_floor(getJulianDay() - 0.5) + 0.5; |
michael@0 | 784 | // double[] sl = getSunLongitude(jd);// double lambda1 = sl[0]; |
michael@0 | 785 | // Equatorial pos1 = eclipticToEquatorial(lambda1, 0); |
michael@0 | 786 | // |
michael@0 | 787 | // // 2. Add ... to lambda to get position 24 hours later |
michael@0 | 788 | // double lambda2 = lambda1 + 0.985647*DEG_RAD; |
michael@0 | 789 | // Equatorial pos2 = eclipticToEquatorial(lambda2, 0); |
michael@0 | 790 | // |
michael@0 | 791 | // // 3. Calculate LSTs of rising and setting for these two positions |
michael@0 | 792 | // double tanL = ::tan(fLatitude); |
michael@0 | 793 | // double H = ::acos(-tanL * ::tan(pos1.declination)); |
michael@0 | 794 | // double lst1r = (CalendarAstronomer_PI2 + pos1.ascension - H) * 24 / CalendarAstronomer_PI2; |
michael@0 | 795 | // double lst1s = (pos1.ascension + H) * 24 / CalendarAstronomer_PI2; |
michael@0 | 796 | // H = ::acos(-tanL * ::tan(pos2.declination)); |
michael@0 | 797 | // double lst2r = (CalendarAstronomer_PI2-H + pos2.ascension ) * 24 / CalendarAstronomer_PI2; |
michael@0 | 798 | // double lst2s = (H + pos2.ascension ) * 24 / CalendarAstronomer_PI2; |
michael@0 | 799 | // if (lst1r > 24) lst1r -= 24; |
michael@0 | 800 | // if (lst1s > 24) lst1s -= 24; |
michael@0 | 801 | // if (lst2r > 24) lst2r -= 24; |
michael@0 | 802 | // if (lst2s > 24) lst2s -= 24; |
michael@0 | 803 | // |
michael@0 | 804 | // // 4. Convert LSTs to GSTs. If GST1 > GST2, add 24 to GST2. |
michael@0 | 805 | // double gst1r = lstToGst(lst1r); |
michael@0 | 806 | // double gst1s = lstToGst(lst1s); |
michael@0 | 807 | // double gst2r = lstToGst(lst2r); |
michael@0 | 808 | // double gst2s = lstToGst(lst2s); |
michael@0 | 809 | // if (gst1r > gst2r) gst2r += 24; |
michael@0 | 810 | // if (gst1s > gst2s) gst2s += 24; |
michael@0 | 811 | // |
michael@0 | 812 | // // 5. Calculate GST at 0h UT of this date |
michael@0 | 813 | // double t00 = utToGst(0); |
michael@0 | 814 | // |
michael@0 | 815 | // // 6. Calculate GST at 0h on the observer's longitude |
michael@0 | 816 | // double offset = ::round(fLongitude*12/PI); // p.95 step 6; he _rounds_ to nearest 15 deg. |
michael@0 | 817 | // double t00p = t00 - offset*1.002737909; |
michael@0 | 818 | // if (t00p < 0) t00p += 24; // do NOT normalize |
michael@0 | 819 | // |
michael@0 | 820 | // // 7. Adjust |
michael@0 | 821 | // if (gst1r < t00p) { |
michael@0 | 822 | // gst1r += 24; |
michael@0 | 823 | // gst2r += 24; |
michael@0 | 824 | // } |
michael@0 | 825 | // if (gst1s < t00p) { |
michael@0 | 826 | // gst1s += 24; |
michael@0 | 827 | // gst2s += 24; |
michael@0 | 828 | // } |
michael@0 | 829 | // |
michael@0 | 830 | // // 8. |
michael@0 | 831 | // double gstr = (24.07*gst1r-t00*(gst2r-gst1r))/(24.07+gst1r-gst2r); |
michael@0 | 832 | // double gsts = (24.07*gst1s-t00*(gst2s-gst1s))/(24.07+gst1s-gst2s); |
michael@0 | 833 | // |
michael@0 | 834 | // // 9. Correct for parallax, refraction, and sun's diameter |
michael@0 | 835 | // double dec = (pos1.declination + pos2.declination) / 2; |
michael@0 | 836 | // double psi = ::acos(sin(fLatitude) / cos(dec)); |
michael@0 | 837 | // double x = 0.830725 * DEG_RAD; // parallax+refraction+diameter |
michael@0 | 838 | // double y = ::asin(sin(x) / ::sin(psi)) * RAD_DEG; |
michael@0 | 839 | // double delta_t = 240 * y / cos(dec) / 3600; // hours |
michael@0 | 840 | // |
michael@0 | 841 | // // 10. Add correction to GSTs, subtract from GSTr |
michael@0 | 842 | // gstr -= delta_t; |
michael@0 | 843 | // gsts += delta_t; |
michael@0 | 844 | // |
michael@0 | 845 | // // 11. Convert GST to UT and then to local civil time |
michael@0 | 846 | // double ut = gstToUt(rise ? gstr : gsts); |
michael@0 | 847 | // //System.out.println((rise?"rise=":"set=") + ut + ", delta_t=" + delta_t); |
michael@0 | 848 | // long midnight = DAY_MS * (time / DAY_MS); // Find UT midnight on this day |
michael@0 | 849 | // return midnight + (long) (ut * 3600000); |
michael@0 | 850 | // } |
michael@0 | 851 | |
michael@0 | 852 | // Commented out - currently unused. ICU 2.6, Alan |
michael@0 | 853 | // /** |
michael@0 | 854 | // * Convert local sidereal time to Greenwich sidereal time. |
michael@0 | 855 | // * Section 15. Duffett-Smith p.21 |
michael@0 | 856 | // * @param lst in hours (0..24) |
michael@0 | 857 | // * @return GST in hours (0..24) |
michael@0 | 858 | // */ |
michael@0 | 859 | // double lstToGst(double lst) { |
michael@0 | 860 | // double delta = fLongitude * 24 / CalendarAstronomer_PI2; |
michael@0 | 861 | // return normalize(lst - delta, 24); |
michael@0 | 862 | // } |
michael@0 | 863 | |
michael@0 | 864 | // Commented out - currently unused. ICU 2.6, Alan |
michael@0 | 865 | // /** |
michael@0 | 866 | // * Convert UT to GST on this date. |
michael@0 | 867 | // * Section 12. Duffett-Smith p.17 |
michael@0 | 868 | // * @param ut in hours |
michael@0 | 869 | // * @return GST in hours |
michael@0 | 870 | // */ |
michael@0 | 871 | // double utToGst(double ut) { |
michael@0 | 872 | // return normalize(getT0() + ut*1.002737909, 24); |
michael@0 | 873 | // } |
michael@0 | 874 | |
michael@0 | 875 | // Commented out - currently unused. ICU 2.6, Alan |
michael@0 | 876 | // /** |
michael@0 | 877 | // * Convert GST to UT on this date. |
michael@0 | 878 | // * Section 13. Duffett-Smith p.18 |
michael@0 | 879 | // * @param gst in hours |
michael@0 | 880 | // * @return UT in hours |
michael@0 | 881 | // */ |
michael@0 | 882 | // double gstToUt(double gst) { |
michael@0 | 883 | // return normalize(gst - getT0(), 24) * 0.9972695663; |
michael@0 | 884 | // } |
michael@0 | 885 | |
michael@0 | 886 | // Commented out - currently unused. ICU 2.6, Alan |
michael@0 | 887 | // double getT0() { |
michael@0 | 888 | // // Common computation for UT <=> GST |
michael@0 | 889 | // |
michael@0 | 890 | // // Find JD for 0h UT |
michael@0 | 891 | // double jd = uprv_floor(getJulianDay() - 0.5) + 0.5; |
michael@0 | 892 | // |
michael@0 | 893 | // double s = jd - 2451545.0; |
michael@0 | 894 | // double t = s / 36525.0; |
michael@0 | 895 | // double t0 = 6.697374558 + (2400.051336 + 0.000025862*t)*t; |
michael@0 | 896 | // return t0; |
michael@0 | 897 | // } |
michael@0 | 898 | |
michael@0 | 899 | // Commented out - currently unused. ICU 2.6, Alan |
michael@0 | 900 | // //------------------------------------------------------------------------- |
michael@0 | 901 | // // Alternate Sun Rise/Set |
michael@0 | 902 | // // See sci.astro FAQ |
michael@0 | 903 | // // http://www.faqs.org/faqs/astronomy/faq/part3/section-5.html |
michael@0 | 904 | // //------------------------------------------------------------------------- |
michael@0 | 905 | // |
michael@0 | 906 | // // Note: This method appears to produce inferior accuracy as |
michael@0 | 907 | // // compared to getSunRiseSet(). |
michael@0 | 908 | // |
michael@0 | 909 | // /** |
michael@0 | 910 | // * TODO Make this when the entire class is package-private. |
michael@0 | 911 | // */ |
michael@0 | 912 | // /*public*/ long getSunRiseSet3(boolean rise) { |
michael@0 | 913 | // |
michael@0 | 914 | // // Compute day number for 0.0 Jan 2000 epoch |
michael@0 | 915 | // double d = (double)(time - EPOCH_2000_MS) / DAY_MS; |
michael@0 | 916 | // |
michael@0 | 917 | // // Now compute the Local Sidereal Time, LST: |
michael@0 | 918 | // // |
michael@0 | 919 | // double LST = 98.9818 + 0.985647352 * d + /*UT*15 + long*/ |
michael@0 | 920 | // fLongitude*RAD_DEG; |
michael@0 | 921 | // // |
michael@0 | 922 | // // (east long. positive). Note that LST is here expressed in degrees, |
michael@0 | 923 | // // where 15 degrees corresponds to one hour. Since LST really is an angle, |
michael@0 | 924 | // // it's convenient to use one unit---degrees---throughout. |
michael@0 | 925 | // |
michael@0 | 926 | // // COMPUTING THE SUN'S POSITION |
michael@0 | 927 | // // ---------------------------- |
michael@0 | 928 | // // |
michael@0 | 929 | // // To be able to compute the Sun's rise/set times, you need to be able to |
michael@0 | 930 | // // compute the Sun's position at any time. First compute the "day |
michael@0 | 931 | // // number" d as outlined above, for the desired moment. Next compute: |
michael@0 | 932 | // // |
michael@0 | 933 | // double oblecl = 23.4393 - 3.563E-7 * d; |
michael@0 | 934 | // // |
michael@0 | 935 | // double w = 282.9404 + 4.70935E-5 * d; |
michael@0 | 936 | // double M = 356.0470 + 0.9856002585 * d; |
michael@0 | 937 | // double e = 0.016709 - 1.151E-9 * d; |
michael@0 | 938 | // // |
michael@0 | 939 | // // This is the obliquity of the ecliptic, plus some of the elements of |
michael@0 | 940 | // // the Sun's apparent orbit (i.e., really the Earth's orbit): w = |
michael@0 | 941 | // // argument of perihelion, M = mean anomaly, e = eccentricity. |
michael@0 | 942 | // // Semi-major axis is here assumed to be exactly 1.0 (while not strictly |
michael@0 | 943 | // // true, this is still an accurate approximation). Next compute E, the |
michael@0 | 944 | // // eccentric anomaly: |
michael@0 | 945 | // // |
michael@0 | 946 | // double E = M + e*(180/PI) * ::sin(M*DEG_RAD) * ( 1.0 + e*cos(M*DEG_RAD) ); |
michael@0 | 947 | // // |
michael@0 | 948 | // // where E and M are in degrees. This is it---no further iterations are |
michael@0 | 949 | // // needed because we know e has a sufficiently small value. Next compute |
michael@0 | 950 | // // the true anomaly, v, and the distance, r: |
michael@0 | 951 | // // |
michael@0 | 952 | // /* r * cos(v) = */ double A = cos(E*DEG_RAD) - e; |
michael@0 | 953 | // /* r * ::sin(v) = */ double B = ::sqrt(1 - e*e) * ::sin(E*DEG_RAD); |
michael@0 | 954 | // // |
michael@0 | 955 | // // and |
michael@0 | 956 | // // |
michael@0 | 957 | // // r = sqrt( A*A + B*B ) |
michael@0 | 958 | // double v = ::atan2( B, A )*RAD_DEG; |
michael@0 | 959 | // // |
michael@0 | 960 | // // The Sun's true longitude, slon, can now be computed: |
michael@0 | 961 | // // |
michael@0 | 962 | // double slon = v + w; |
michael@0 | 963 | // // |
michael@0 | 964 | // // Since the Sun is always at the ecliptic (or at least very very close to |
michael@0 | 965 | // // it), we can use simplified formulae to convert slon (the Sun's ecliptic |
michael@0 | 966 | // // longitude) to sRA and sDec (the Sun's RA and Dec): |
michael@0 | 967 | // // |
michael@0 | 968 | // // ::sin(slon) * cos(oblecl) |
michael@0 | 969 | // // tan(sRA) = ------------------------- |
michael@0 | 970 | // // cos(slon) |
michael@0 | 971 | // // |
michael@0 | 972 | // // ::sin(sDec) = ::sin(oblecl) * ::sin(slon) |
michael@0 | 973 | // // |
michael@0 | 974 | // // As was the case when computing az, the Azimuth, if possible use an |
michael@0 | 975 | // // atan2() function to compute sRA. |
michael@0 | 976 | // |
michael@0 | 977 | // double sRA = ::atan2(sin(slon*DEG_RAD) * cos(oblecl*DEG_RAD), cos(slon*DEG_RAD))*RAD_DEG; |
michael@0 | 978 | // |
michael@0 | 979 | // double sin_sDec = ::sin(oblecl*DEG_RAD) * ::sin(slon*DEG_RAD); |
michael@0 | 980 | // double sDec = ::asin(sin_sDec)*RAD_DEG; |
michael@0 | 981 | // |
michael@0 | 982 | // // COMPUTING RISE AND SET TIMES |
michael@0 | 983 | // // ---------------------------- |
michael@0 | 984 | // // |
michael@0 | 985 | // // To compute when an object rises or sets, you must compute when it |
michael@0 | 986 | // // passes the meridian and the HA of rise/set. Then the rise time is |
michael@0 | 987 | // // the meridian time minus HA for rise/set, and the set time is the |
michael@0 | 988 | // // meridian time plus the HA for rise/set. |
michael@0 | 989 | // // |
michael@0 | 990 | // // To find the meridian time, compute the Local Sidereal Time at 0h local |
michael@0 | 991 | // // time (or 0h UT if you prefer to work in UT) as outlined above---name |
michael@0 | 992 | // // that quantity LST0. The Meridian Time, MT, will now be: |
michael@0 | 993 | // // |
michael@0 | 994 | // // MT = RA - LST0 |
michael@0 | 995 | // double MT = normalize(sRA - LST, 360); |
michael@0 | 996 | // // |
michael@0 | 997 | // // where "RA" is the object's Right Ascension (in degrees!). If negative, |
michael@0 | 998 | // // add 360 deg to MT. If the object is the Sun, leave the time as it is, |
michael@0 | 999 | // // but if it's stellar, multiply MT by 365.2422/366.2422, to convert from |
michael@0 | 1000 | // // sidereal to solar time. Now, compute HA for rise/set, name that |
michael@0 | 1001 | // // quantity HA0: |
michael@0 | 1002 | // // |
michael@0 | 1003 | // // ::sin(h0) - ::sin(lat) * ::sin(Dec) |
michael@0 | 1004 | // // cos(HA0) = --------------------------------- |
michael@0 | 1005 | // // cos(lat) * cos(Dec) |
michael@0 | 1006 | // // |
michael@0 | 1007 | // // where h0 is the altitude selected to represent rise/set. For a purely |
michael@0 | 1008 | // // mathematical horizon, set h0 = 0 and simplify to: |
michael@0 | 1009 | // // |
michael@0 | 1010 | // // cos(HA0) = - tan(lat) * tan(Dec) |
michael@0 | 1011 | // // |
michael@0 | 1012 | // // If you want to account for refraction on the atmosphere, set h0 = -35/60 |
michael@0 | 1013 | // // degrees (-35 arc minutes), and if you want to compute the rise/set times |
michael@0 | 1014 | // // for the Sun's upper limb, set h0 = -50/60 (-50 arc minutes). |
michael@0 | 1015 | // // |
michael@0 | 1016 | // double h0 = -50/60 * DEG_RAD; |
michael@0 | 1017 | // |
michael@0 | 1018 | // double HA0 = ::acos( |
michael@0 | 1019 | // (sin(h0) - ::sin(fLatitude) * sin_sDec) / |
michael@0 | 1020 | // (cos(fLatitude) * cos(sDec*DEG_RAD)))*RAD_DEG; |
michael@0 | 1021 | // |
michael@0 | 1022 | // // When HA0 has been computed, leave it as it is for the Sun but multiply |
michael@0 | 1023 | // // by 365.2422/366.2422 for stellar objects, to convert from sidereal to |
michael@0 | 1024 | // // solar time. Finally compute: |
michael@0 | 1025 | // // |
michael@0 | 1026 | // // Rise time = MT - HA0 |
michael@0 | 1027 | // // Set time = MT + HA0 |
michael@0 | 1028 | // // |
michael@0 | 1029 | // // convert the times from degrees to hours by dividing by 15. |
michael@0 | 1030 | // // |
michael@0 | 1031 | // // If you'd like to check that your calculations are accurate or just |
michael@0 | 1032 | // // need a quick result, check the USNO's Sun or Moon Rise/Set Table, |
michael@0 | 1033 | // // <URL:http://aa.usno.navy.mil/AA/data/docs/RS_OneYear.html>. |
michael@0 | 1034 | // |
michael@0 | 1035 | // double result = MT + (rise ? -HA0 : HA0); // in degrees |
michael@0 | 1036 | // |
michael@0 | 1037 | // // Find UT midnight on this day |
michael@0 | 1038 | // long midnight = DAY_MS * (time / DAY_MS); |
michael@0 | 1039 | // |
michael@0 | 1040 | // return midnight + (long) (result * 3600000 / 15); |
michael@0 | 1041 | // } |
michael@0 | 1042 | |
michael@0 | 1043 | //------------------------------------------------------------------------- |
michael@0 | 1044 | // The Moon |
michael@0 | 1045 | //------------------------------------------------------------------------- |
michael@0 | 1046 | |
michael@0 | 1047 | #define moonL0 (318.351648 * CalendarAstronomer::PI/180 ) // Mean long. at epoch |
michael@0 | 1048 | #define moonP0 ( 36.340410 * CalendarAstronomer::PI/180 ) // Mean long. of perigee |
michael@0 | 1049 | #define moonN0 ( 318.510107 * CalendarAstronomer::PI/180 ) // Mean long. of node |
michael@0 | 1050 | #define moonI ( 5.145366 * CalendarAstronomer::PI/180 ) // Inclination of orbit |
michael@0 | 1051 | #define moonE ( 0.054900 ) // Eccentricity of orbit |
michael@0 | 1052 | |
michael@0 | 1053 | // These aren't used right now |
michael@0 | 1054 | #define moonA ( 3.84401e5 ) // semi-major axis (km) |
michael@0 | 1055 | #define moonT0 ( 0.5181 * CalendarAstronomer::PI/180 ) // Angular size at distance A |
michael@0 | 1056 | #define moonPi ( 0.9507 * CalendarAstronomer::PI/180 ) // Parallax at distance A |
michael@0 | 1057 | |
michael@0 | 1058 | /** |
michael@0 | 1059 | * The position of the moon at the time set on this |
michael@0 | 1060 | * object, in equatorial coordinates. |
michael@0 | 1061 | * @internal |
michael@0 | 1062 | * @deprecated ICU 2.4. This class may be removed or modified. |
michael@0 | 1063 | */ |
michael@0 | 1064 | const CalendarAstronomer::Equatorial& CalendarAstronomer::getMoonPosition() |
michael@0 | 1065 | { |
michael@0 | 1066 | // |
michael@0 | 1067 | // See page 142 of "Practial Astronomy with your Calculator", |
michael@0 | 1068 | // by Peter Duffet-Smith, for details on the algorithm. |
michael@0 | 1069 | // |
michael@0 | 1070 | if (moonPositionSet == FALSE) { |
michael@0 | 1071 | // Calculate the solar longitude. Has the side effect of |
michael@0 | 1072 | // filling in "meanAnomalySun" as well. |
michael@0 | 1073 | getSunLongitude(); |
michael@0 | 1074 | |
michael@0 | 1075 | // |
michael@0 | 1076 | // Find the # of days since the epoch of our orbital parameters. |
michael@0 | 1077 | // TODO: Convert the time of day portion into ephemeris time |
michael@0 | 1078 | // |
michael@0 | 1079 | double day = getJulianDay() - JD_EPOCH; // Days since epoch |
michael@0 | 1080 | |
michael@0 | 1081 | // Calculate the mean longitude and anomaly of the moon, based on |
michael@0 | 1082 | // a circular orbit. Similar to the corresponding solar calculation. |
michael@0 | 1083 | double meanLongitude = norm2PI(13.1763966*PI/180*day + moonL0); |
michael@0 | 1084 | meanAnomalyMoon = norm2PI(meanLongitude - 0.1114041*PI/180 * day - moonP0); |
michael@0 | 1085 | |
michael@0 | 1086 | // |
michael@0 | 1087 | // Calculate the following corrections: |
michael@0 | 1088 | // Evection: the sun's gravity affects the moon's eccentricity |
michael@0 | 1089 | // Annual Eqn: variation in the effect due to earth-sun distance |
michael@0 | 1090 | // A3: correction factor (for ???) |
michael@0 | 1091 | // |
michael@0 | 1092 | double evection = 1.2739*PI/180 * ::sin(2 * (meanLongitude - sunLongitude) |
michael@0 | 1093 | - meanAnomalyMoon); |
michael@0 | 1094 | double annual = 0.1858*PI/180 * ::sin(meanAnomalySun); |
michael@0 | 1095 | double a3 = 0.3700*PI/180 * ::sin(meanAnomalySun); |
michael@0 | 1096 | |
michael@0 | 1097 | meanAnomalyMoon += evection - annual - a3; |
michael@0 | 1098 | |
michael@0 | 1099 | // |
michael@0 | 1100 | // More correction factors: |
michael@0 | 1101 | // center equation of the center correction |
michael@0 | 1102 | // a4 yet another error correction (???) |
michael@0 | 1103 | // |
michael@0 | 1104 | // TODO: Skip the equation of the center correction and solve Kepler's eqn? |
michael@0 | 1105 | // |
michael@0 | 1106 | double center = 6.2886*PI/180 * ::sin(meanAnomalyMoon); |
michael@0 | 1107 | double a4 = 0.2140*PI/180 * ::sin(2 * meanAnomalyMoon); |
michael@0 | 1108 | |
michael@0 | 1109 | // Now find the moon's corrected longitude |
michael@0 | 1110 | moonLongitude = meanLongitude + evection + center - annual + a4; |
michael@0 | 1111 | |
michael@0 | 1112 | // |
michael@0 | 1113 | // And finally, find the variation, caused by the fact that the sun's |
michael@0 | 1114 | // gravitational pull on the moon varies depending on which side of |
michael@0 | 1115 | // the earth the moon is on |
michael@0 | 1116 | // |
michael@0 | 1117 | double variation = 0.6583*CalendarAstronomer::PI/180 * ::sin(2*(moonLongitude - sunLongitude)); |
michael@0 | 1118 | |
michael@0 | 1119 | moonLongitude += variation; |
michael@0 | 1120 | |
michael@0 | 1121 | // |
michael@0 | 1122 | // What we've calculated so far is the moon's longitude in the plane |
michael@0 | 1123 | // of its own orbit. Now map to the ecliptic to get the latitude |
michael@0 | 1124 | // and longitude. First we need to find the longitude of the ascending |
michael@0 | 1125 | // node, the position on the ecliptic where it is crossed by the moon's |
michael@0 | 1126 | // orbit as it crosses from the southern to the northern hemisphere. |
michael@0 | 1127 | // |
michael@0 | 1128 | double nodeLongitude = norm2PI(moonN0 - 0.0529539*PI/180 * day); |
michael@0 | 1129 | |
michael@0 | 1130 | nodeLongitude -= 0.16*PI/180 * ::sin(meanAnomalySun); |
michael@0 | 1131 | |
michael@0 | 1132 | double y = ::sin(moonLongitude - nodeLongitude); |
michael@0 | 1133 | double x = cos(moonLongitude - nodeLongitude); |
michael@0 | 1134 | |
michael@0 | 1135 | moonEclipLong = ::atan2(y*cos(moonI), x) + nodeLongitude; |
michael@0 | 1136 | double moonEclipLat = ::asin(y * ::sin(moonI)); |
michael@0 | 1137 | |
michael@0 | 1138 | eclipticToEquatorial(moonPosition, moonEclipLong, moonEclipLat); |
michael@0 | 1139 | moonPositionSet = TRUE; |
michael@0 | 1140 | } |
michael@0 | 1141 | return moonPosition; |
michael@0 | 1142 | } |
michael@0 | 1143 | |
michael@0 | 1144 | /** |
michael@0 | 1145 | * The "age" of the moon at the time specified in this object. |
michael@0 | 1146 | * This is really the angle between the |
michael@0 | 1147 | * current ecliptic longitudes of the sun and the moon, |
michael@0 | 1148 | * measured in radians. |
michael@0 | 1149 | * |
michael@0 | 1150 | * @see #getMoonPhase |
michael@0 | 1151 | * @internal |
michael@0 | 1152 | * @deprecated ICU 2.4. This class may be removed or modified. |
michael@0 | 1153 | */ |
michael@0 | 1154 | double CalendarAstronomer::getMoonAge() { |
michael@0 | 1155 | // See page 147 of "Practial Astronomy with your Calculator", |
michael@0 | 1156 | // by Peter Duffet-Smith, for details on the algorithm. |
michael@0 | 1157 | // |
michael@0 | 1158 | // Force the moon's position to be calculated. We're going to use |
michael@0 | 1159 | // some the intermediate results cached during that calculation. |
michael@0 | 1160 | // |
michael@0 | 1161 | getMoonPosition(); |
michael@0 | 1162 | |
michael@0 | 1163 | return norm2PI(moonEclipLong - sunLongitude); |
michael@0 | 1164 | } |
michael@0 | 1165 | |
michael@0 | 1166 | /** |
michael@0 | 1167 | * Calculate the phase of the moon at the time set in this object. |
michael@0 | 1168 | * The returned phase is a <code>double</code> in the range |
michael@0 | 1169 | * <code>0 <= phase < 1</code>, interpreted as follows: |
michael@0 | 1170 | * <ul> |
michael@0 | 1171 | * <li>0.00: New moon |
michael@0 | 1172 | * <li>0.25: First quarter |
michael@0 | 1173 | * <li>0.50: Full moon |
michael@0 | 1174 | * <li>0.75: Last quarter |
michael@0 | 1175 | * </ul> |
michael@0 | 1176 | * |
michael@0 | 1177 | * @see #getMoonAge |
michael@0 | 1178 | * @internal |
michael@0 | 1179 | * @deprecated ICU 2.4. This class may be removed or modified. |
michael@0 | 1180 | */ |
michael@0 | 1181 | double CalendarAstronomer::getMoonPhase() { |
michael@0 | 1182 | // See page 147 of "Practial Astronomy with your Calculator", |
michael@0 | 1183 | // by Peter Duffet-Smith, for details on the algorithm. |
michael@0 | 1184 | return 0.5 * (1 - cos(getMoonAge())); |
michael@0 | 1185 | } |
michael@0 | 1186 | |
michael@0 | 1187 | /** |
michael@0 | 1188 | * Constant representing a new moon. |
michael@0 | 1189 | * For use with {@link #getMoonTime getMoonTime} |
michael@0 | 1190 | * @internal |
michael@0 | 1191 | * @deprecated ICU 2.4. This class may be removed or modified. |
michael@0 | 1192 | */ |
michael@0 | 1193 | const CalendarAstronomer::MoonAge CalendarAstronomer::NEW_MOON() { |
michael@0 | 1194 | return CalendarAstronomer::MoonAge(0); |
michael@0 | 1195 | } |
michael@0 | 1196 | |
michael@0 | 1197 | /** |
michael@0 | 1198 | * Constant representing the moon's first quarter. |
michael@0 | 1199 | * For use with {@link #getMoonTime getMoonTime} |
michael@0 | 1200 | * @internal |
michael@0 | 1201 | * @deprecated ICU 2.4. This class may be removed or modified. |
michael@0 | 1202 | */ |
michael@0 | 1203 | /*const CalendarAstronomer::MoonAge CalendarAstronomer::FIRST_QUARTER() { |
michael@0 | 1204 | return CalendarAstronomer::MoonAge(CalendarAstronomer::PI/2); |
michael@0 | 1205 | }*/ |
michael@0 | 1206 | |
michael@0 | 1207 | /** |
michael@0 | 1208 | * Constant representing a full moon. |
michael@0 | 1209 | * For use with {@link #getMoonTime getMoonTime} |
michael@0 | 1210 | * @internal |
michael@0 | 1211 | * @deprecated ICU 2.4. This class may be removed or modified. |
michael@0 | 1212 | */ |
michael@0 | 1213 | const CalendarAstronomer::MoonAge CalendarAstronomer::FULL_MOON() { |
michael@0 | 1214 | return CalendarAstronomer::MoonAge(CalendarAstronomer::PI); |
michael@0 | 1215 | } |
michael@0 | 1216 | /** |
michael@0 | 1217 | * Constant representing the moon's last quarter. |
michael@0 | 1218 | * For use with {@link #getMoonTime getMoonTime} |
michael@0 | 1219 | * @internal |
michael@0 | 1220 | * @deprecated ICU 2.4. This class may be removed or modified. |
michael@0 | 1221 | */ |
michael@0 | 1222 | |
michael@0 | 1223 | class MoonTimeAngleFunc : public CalendarAstronomer::AngleFunc { |
michael@0 | 1224 | public: |
michael@0 | 1225 | virtual ~MoonTimeAngleFunc(); |
michael@0 | 1226 | virtual double eval(CalendarAstronomer&a) { return a.getMoonAge(); } |
michael@0 | 1227 | }; |
michael@0 | 1228 | |
michael@0 | 1229 | MoonTimeAngleFunc::~MoonTimeAngleFunc() {} |
michael@0 | 1230 | |
michael@0 | 1231 | /*const CalendarAstronomer::MoonAge CalendarAstronomer::LAST_QUARTER() { |
michael@0 | 1232 | return CalendarAstronomer::MoonAge((CalendarAstronomer::PI*3)/2); |
michael@0 | 1233 | }*/ |
michael@0 | 1234 | |
michael@0 | 1235 | /** |
michael@0 | 1236 | * Find the next or previous time at which the Moon's ecliptic |
michael@0 | 1237 | * longitude will have the desired value. |
michael@0 | 1238 | * <p> |
michael@0 | 1239 | * @param desired The desired longitude. |
michael@0 | 1240 | * @param next <tt>true</tt> if the next occurrance of the phase |
michael@0 | 1241 | * is desired, <tt>false</tt> for the previous occurrance. |
michael@0 | 1242 | * @internal |
michael@0 | 1243 | * @deprecated ICU 2.4. This class may be removed or modified. |
michael@0 | 1244 | */ |
michael@0 | 1245 | UDate CalendarAstronomer::getMoonTime(double desired, UBool next) |
michael@0 | 1246 | { |
michael@0 | 1247 | MoonTimeAngleFunc func; |
michael@0 | 1248 | return timeOfAngle( func, |
michael@0 | 1249 | desired, |
michael@0 | 1250 | SYNODIC_MONTH, |
michael@0 | 1251 | MINUTE_MS, |
michael@0 | 1252 | next); |
michael@0 | 1253 | } |
michael@0 | 1254 | |
michael@0 | 1255 | /** |
michael@0 | 1256 | * Find the next or previous time at which the moon will be in the |
michael@0 | 1257 | * desired phase. |
michael@0 | 1258 | * <p> |
michael@0 | 1259 | * @param desired The desired phase of the moon. |
michael@0 | 1260 | * @param next <tt>true</tt> if the next occurrance of the phase |
michael@0 | 1261 | * is desired, <tt>false</tt> for the previous occurrance. |
michael@0 | 1262 | * @internal |
michael@0 | 1263 | * @deprecated ICU 2.4. This class may be removed or modified. |
michael@0 | 1264 | */ |
michael@0 | 1265 | UDate CalendarAstronomer::getMoonTime(const CalendarAstronomer::MoonAge& desired, UBool next) { |
michael@0 | 1266 | return getMoonTime(desired.value, next); |
michael@0 | 1267 | } |
michael@0 | 1268 | |
michael@0 | 1269 | class MoonRiseSetCoordFunc : public CalendarAstronomer::CoordFunc { |
michael@0 | 1270 | public: |
michael@0 | 1271 | virtual ~MoonRiseSetCoordFunc(); |
michael@0 | 1272 | virtual void eval(CalendarAstronomer::Equatorial& result, CalendarAstronomer&a) { result = a.getMoonPosition(); } |
michael@0 | 1273 | }; |
michael@0 | 1274 | |
michael@0 | 1275 | MoonRiseSetCoordFunc::~MoonRiseSetCoordFunc() {} |
michael@0 | 1276 | |
michael@0 | 1277 | /** |
michael@0 | 1278 | * Returns the time (GMT) of sunrise or sunset on the local date to which |
michael@0 | 1279 | * this calendar is currently set. |
michael@0 | 1280 | * @internal |
michael@0 | 1281 | * @deprecated ICU 2.4. This class may be removed or modified. |
michael@0 | 1282 | */ |
michael@0 | 1283 | UDate CalendarAstronomer::getMoonRiseSet(UBool rise) |
michael@0 | 1284 | { |
michael@0 | 1285 | MoonRiseSetCoordFunc func; |
michael@0 | 1286 | return riseOrSet(func, |
michael@0 | 1287 | rise, |
michael@0 | 1288 | .533 * DEG_RAD, // Angular Diameter |
michael@0 | 1289 | 34 /60.0 * DEG_RAD, // Refraction correction |
michael@0 | 1290 | MINUTE_MS); // Desired accuracy |
michael@0 | 1291 | } |
michael@0 | 1292 | |
michael@0 | 1293 | //------------------------------------------------------------------------- |
michael@0 | 1294 | // Interpolation methods for finding the time at which a given event occurs |
michael@0 | 1295 | //------------------------------------------------------------------------- |
michael@0 | 1296 | |
michael@0 | 1297 | UDate CalendarAstronomer::timeOfAngle(AngleFunc& func, double desired, |
michael@0 | 1298 | double periodDays, double epsilon, UBool next) |
michael@0 | 1299 | { |
michael@0 | 1300 | // Find the value of the function at the current time |
michael@0 | 1301 | double lastAngle = func.eval(*this); |
michael@0 | 1302 | |
michael@0 | 1303 | // Find out how far we are from the desired angle |
michael@0 | 1304 | double deltaAngle = norm2PI(desired - lastAngle) ; |
michael@0 | 1305 | |
michael@0 | 1306 | // Using the average period, estimate the next (or previous) time at |
michael@0 | 1307 | // which the desired angle occurs. |
michael@0 | 1308 | double deltaT = (deltaAngle + (next ? 0.0 : - CalendarAstronomer_PI2 )) * (periodDays*DAY_MS) / CalendarAstronomer_PI2; |
michael@0 | 1309 | |
michael@0 | 1310 | double lastDeltaT = deltaT; // Liu |
michael@0 | 1311 | UDate startTime = fTime; // Liu |
michael@0 | 1312 | |
michael@0 | 1313 | setTime(fTime + uprv_ceil(deltaT)); |
michael@0 | 1314 | |
michael@0 | 1315 | // Now iterate until we get the error below epsilon. Throughout |
michael@0 | 1316 | // this loop we use normPI to get values in the range -Pi to Pi, |
michael@0 | 1317 | // since we're using them as correction factors rather than absolute angles. |
michael@0 | 1318 | do { |
michael@0 | 1319 | // Evaluate the function at the time we've estimated |
michael@0 | 1320 | double angle = func.eval(*this); |
michael@0 | 1321 | |
michael@0 | 1322 | // Find the # of milliseconds per radian at this point on the curve |
michael@0 | 1323 | double factor = uprv_fabs(deltaT / normPI(angle-lastAngle)); |
michael@0 | 1324 | |
michael@0 | 1325 | // Correct the time estimate based on how far off the angle is |
michael@0 | 1326 | deltaT = normPI(desired - angle) * factor; |
michael@0 | 1327 | |
michael@0 | 1328 | // HACK: |
michael@0 | 1329 | // |
michael@0 | 1330 | // If abs(deltaT) begins to diverge we need to quit this loop. |
michael@0 | 1331 | // This only appears to happen when attempting to locate, for |
michael@0 | 1332 | // example, a new moon on the day of the new moon. E.g.: |
michael@0 | 1333 | // |
michael@0 | 1334 | // This result is correct: |
michael@0 | 1335 | // newMoon(7508(Mon Jul 23 00:00:00 CST 1990,false))= |
michael@0 | 1336 | // Sun Jul 22 10:57:41 CST 1990 |
michael@0 | 1337 | // |
michael@0 | 1338 | // But attempting to make the same call a day earlier causes deltaT |
michael@0 | 1339 | // to diverge: |
michael@0 | 1340 | // CalendarAstronomer.timeOfAngle() diverging: 1.348508727575625E9 -> |
michael@0 | 1341 | // 1.3649828540224032E9 |
michael@0 | 1342 | // newMoon(7507(Sun Jul 22 00:00:00 CST 1990,false))= |
michael@0 | 1343 | // Sun Jul 08 13:56:15 CST 1990 |
michael@0 | 1344 | // |
michael@0 | 1345 | // As a temporary solution, we catch this specific condition and |
michael@0 | 1346 | // adjust our start time by one eighth period days (either forward |
michael@0 | 1347 | // or backward) and try again. |
michael@0 | 1348 | // Liu 11/9/00 |
michael@0 | 1349 | if (uprv_fabs(deltaT) > uprv_fabs(lastDeltaT)) { |
michael@0 | 1350 | double delta = uprv_ceil (periodDays * DAY_MS / 8.0); |
michael@0 | 1351 | setTime(startTime + (next ? delta : -delta)); |
michael@0 | 1352 | return timeOfAngle(func, desired, periodDays, epsilon, next); |
michael@0 | 1353 | } |
michael@0 | 1354 | |
michael@0 | 1355 | lastDeltaT = deltaT; |
michael@0 | 1356 | lastAngle = angle; |
michael@0 | 1357 | |
michael@0 | 1358 | setTime(fTime + uprv_ceil(deltaT)); |
michael@0 | 1359 | } |
michael@0 | 1360 | while (uprv_fabs(deltaT) > epsilon); |
michael@0 | 1361 | |
michael@0 | 1362 | return fTime; |
michael@0 | 1363 | } |
michael@0 | 1364 | |
michael@0 | 1365 | UDate CalendarAstronomer::riseOrSet(CoordFunc& func, UBool rise, |
michael@0 | 1366 | double diameter, double refraction, |
michael@0 | 1367 | double epsilon) |
michael@0 | 1368 | { |
michael@0 | 1369 | Equatorial pos; |
michael@0 | 1370 | double tanL = ::tan(fLatitude); |
michael@0 | 1371 | double deltaT = 0; |
michael@0 | 1372 | int32_t count = 0; |
michael@0 | 1373 | |
michael@0 | 1374 | // |
michael@0 | 1375 | // Calculate the object's position at the current time, then use that |
michael@0 | 1376 | // position to calculate the time of rising or setting. The position |
michael@0 | 1377 | // will be different at that time, so iterate until the error is allowable. |
michael@0 | 1378 | // |
michael@0 | 1379 | U_DEBUG_ASTRO_MSG(("setup rise=%s, dia=%.3lf, ref=%.3lf, eps=%.3lf\n", |
michael@0 | 1380 | rise?"T":"F", diameter, refraction, epsilon)); |
michael@0 | 1381 | do { |
michael@0 | 1382 | // See "Practical Astronomy With Your Calculator, section 33. |
michael@0 | 1383 | func.eval(pos, *this); |
michael@0 | 1384 | double angle = ::acos(-tanL * ::tan(pos.declination)); |
michael@0 | 1385 | double lst = ((rise ? CalendarAstronomer_PI2-angle : angle) + pos.ascension ) * 24 / CalendarAstronomer_PI2; |
michael@0 | 1386 | |
michael@0 | 1387 | // Convert from LST to Universal Time. |
michael@0 | 1388 | UDate newTime = lstToUT( lst ); |
michael@0 | 1389 | |
michael@0 | 1390 | deltaT = newTime - fTime; |
michael@0 | 1391 | setTime(newTime); |
michael@0 | 1392 | U_DEBUG_ASTRO_MSG(("%d] dT=%.3lf, angle=%.3lf, lst=%.3lf, A=%.3lf/D=%.3lf\n", |
michael@0 | 1393 | count, deltaT, angle, lst, pos.ascension, pos.declination)); |
michael@0 | 1394 | } |
michael@0 | 1395 | while (++ count < 5 && uprv_fabs(deltaT) > epsilon); |
michael@0 | 1396 | |
michael@0 | 1397 | // Calculate the correction due to refraction and the object's angular diameter |
michael@0 | 1398 | double cosD = ::cos(pos.declination); |
michael@0 | 1399 | double psi = ::acos(sin(fLatitude) / cosD); |
michael@0 | 1400 | double x = diameter / 2 + refraction; |
michael@0 | 1401 | double y = ::asin(sin(x) / ::sin(psi)); |
michael@0 | 1402 | long delta = (long)((240 * y * RAD_DEG / cosD)*SECOND_MS); |
michael@0 | 1403 | |
michael@0 | 1404 | return fTime + (rise ? -delta : delta); |
michael@0 | 1405 | } |
michael@0 | 1406 | /** |
michael@0 | 1407 | * Return the obliquity of the ecliptic (the angle between the ecliptic |
michael@0 | 1408 | * and the earth's equator) at the current time. This varies due to |
michael@0 | 1409 | * the precession of the earth's axis. |
michael@0 | 1410 | * |
michael@0 | 1411 | * @return the obliquity of the ecliptic relative to the equator, |
michael@0 | 1412 | * measured in radians. |
michael@0 | 1413 | */ |
michael@0 | 1414 | double CalendarAstronomer::eclipticObliquity() { |
michael@0 | 1415 | if (isINVALID(eclipObliquity)) { |
michael@0 | 1416 | const double epoch = 2451545.0; // 2000 AD, January 1.5 |
michael@0 | 1417 | |
michael@0 | 1418 | double T = (getJulianDay() - epoch) / 36525; |
michael@0 | 1419 | |
michael@0 | 1420 | eclipObliquity = 23.439292 |
michael@0 | 1421 | - 46.815/3600 * T |
michael@0 | 1422 | - 0.0006/3600 * T*T |
michael@0 | 1423 | + 0.00181/3600 * T*T*T; |
michael@0 | 1424 | |
michael@0 | 1425 | eclipObliquity *= DEG_RAD; |
michael@0 | 1426 | } |
michael@0 | 1427 | return eclipObliquity; |
michael@0 | 1428 | } |
michael@0 | 1429 | |
michael@0 | 1430 | |
michael@0 | 1431 | //------------------------------------------------------------------------- |
michael@0 | 1432 | // Private data |
michael@0 | 1433 | //------------------------------------------------------------------------- |
michael@0 | 1434 | void CalendarAstronomer::clearCache() { |
michael@0 | 1435 | const double INVALID = uprv_getNaN(); |
michael@0 | 1436 | |
michael@0 | 1437 | julianDay = INVALID; |
michael@0 | 1438 | julianCentury = INVALID; |
michael@0 | 1439 | sunLongitude = INVALID; |
michael@0 | 1440 | meanAnomalySun = INVALID; |
michael@0 | 1441 | moonLongitude = INVALID; |
michael@0 | 1442 | moonEclipLong = INVALID; |
michael@0 | 1443 | meanAnomalyMoon = INVALID; |
michael@0 | 1444 | eclipObliquity = INVALID; |
michael@0 | 1445 | siderealTime = INVALID; |
michael@0 | 1446 | siderealT0 = INVALID; |
michael@0 | 1447 | moonPositionSet = FALSE; |
michael@0 | 1448 | } |
michael@0 | 1449 | |
michael@0 | 1450 | //private static void out(String s) { |
michael@0 | 1451 | // System.out.println(s); |
michael@0 | 1452 | //} |
michael@0 | 1453 | |
michael@0 | 1454 | //private static String deg(double rad) { |
michael@0 | 1455 | // return Double.toString(rad * RAD_DEG); |
michael@0 | 1456 | //} |
michael@0 | 1457 | |
michael@0 | 1458 | //private static String hours(long ms) { |
michael@0 | 1459 | // return Double.toString((double)ms / HOUR_MS) + " hours"; |
michael@0 | 1460 | //} |
michael@0 | 1461 | |
michael@0 | 1462 | /** |
michael@0 | 1463 | * @internal |
michael@0 | 1464 | * @deprecated ICU 2.4. This class may be removed or modified. |
michael@0 | 1465 | */ |
michael@0 | 1466 | /*UDate CalendarAstronomer::local(UDate localMillis) { |
michael@0 | 1467 | // TODO - srl ? |
michael@0 | 1468 | TimeZone *tz = TimeZone::createDefault(); |
michael@0 | 1469 | int32_t rawOffset; |
michael@0 | 1470 | int32_t dstOffset; |
michael@0 | 1471 | UErrorCode status = U_ZERO_ERROR; |
michael@0 | 1472 | tz->getOffset(localMillis, TRUE, rawOffset, dstOffset, status); |
michael@0 | 1473 | delete tz; |
michael@0 | 1474 | return localMillis - rawOffset; |
michael@0 | 1475 | }*/ |
michael@0 | 1476 | |
michael@0 | 1477 | // Debugging functions |
michael@0 | 1478 | UnicodeString CalendarAstronomer::Ecliptic::toString() const |
michael@0 | 1479 | { |
michael@0 | 1480 | #ifdef U_DEBUG_ASTRO |
michael@0 | 1481 | char tmp[800]; |
michael@0 | 1482 | sprintf(tmp, "[%.5f,%.5f]", longitude*RAD_DEG, latitude*RAD_DEG); |
michael@0 | 1483 | return UnicodeString(tmp, ""); |
michael@0 | 1484 | #else |
michael@0 | 1485 | return UnicodeString(); |
michael@0 | 1486 | #endif |
michael@0 | 1487 | } |
michael@0 | 1488 | |
michael@0 | 1489 | UnicodeString CalendarAstronomer::Equatorial::toString() const |
michael@0 | 1490 | { |
michael@0 | 1491 | #ifdef U_DEBUG_ASTRO |
michael@0 | 1492 | char tmp[400]; |
michael@0 | 1493 | sprintf(tmp, "%f,%f", |
michael@0 | 1494 | (ascension*RAD_DEG), (declination*RAD_DEG)); |
michael@0 | 1495 | return UnicodeString(tmp, ""); |
michael@0 | 1496 | #else |
michael@0 | 1497 | return UnicodeString(); |
michael@0 | 1498 | #endif |
michael@0 | 1499 | } |
michael@0 | 1500 | |
michael@0 | 1501 | UnicodeString CalendarAstronomer::Horizon::toString() const |
michael@0 | 1502 | { |
michael@0 | 1503 | #ifdef U_DEBUG_ASTRO |
michael@0 | 1504 | char tmp[800]; |
michael@0 | 1505 | sprintf(tmp, "[%.5f,%.5f]", altitude*RAD_DEG, azimuth*RAD_DEG); |
michael@0 | 1506 | return UnicodeString(tmp, ""); |
michael@0 | 1507 | #else |
michael@0 | 1508 | return UnicodeString(); |
michael@0 | 1509 | #endif |
michael@0 | 1510 | } |
michael@0 | 1511 | |
michael@0 | 1512 | |
michael@0 | 1513 | // static private String radToHms(double angle) { |
michael@0 | 1514 | // int hrs = (int) (angle*RAD_HOUR); |
michael@0 | 1515 | // int min = (int)((angle*RAD_HOUR - hrs) * 60); |
michael@0 | 1516 | // int sec = (int)((angle*RAD_HOUR - hrs - min/60.0) * 3600); |
michael@0 | 1517 | |
michael@0 | 1518 | // return Integer.toString(hrs) + "h" + min + "m" + sec + "s"; |
michael@0 | 1519 | // } |
michael@0 | 1520 | |
michael@0 | 1521 | // static private String radToDms(double angle) { |
michael@0 | 1522 | // int deg = (int) (angle*RAD_DEG); |
michael@0 | 1523 | // int min = (int)((angle*RAD_DEG - deg) * 60); |
michael@0 | 1524 | // int sec = (int)((angle*RAD_DEG - deg - min/60.0) * 3600); |
michael@0 | 1525 | |
michael@0 | 1526 | // return Integer.toString(deg) + "\u00b0" + min + "'" + sec + "\""; |
michael@0 | 1527 | // } |
michael@0 | 1528 | |
michael@0 | 1529 | // =============== Calendar Cache ================ |
michael@0 | 1530 | |
michael@0 | 1531 | void CalendarCache::createCache(CalendarCache** cache, UErrorCode& status) { |
michael@0 | 1532 | ucln_i18n_registerCleanup(UCLN_I18N_ASTRO_CALENDAR, calendar_astro_cleanup); |
michael@0 | 1533 | if(cache == NULL) { |
michael@0 | 1534 | status = U_MEMORY_ALLOCATION_ERROR; |
michael@0 | 1535 | } else { |
michael@0 | 1536 | *cache = new CalendarCache(32, status); |
michael@0 | 1537 | if(U_FAILURE(status)) { |
michael@0 | 1538 | delete *cache; |
michael@0 | 1539 | *cache = NULL; |
michael@0 | 1540 | } |
michael@0 | 1541 | } |
michael@0 | 1542 | } |
michael@0 | 1543 | |
michael@0 | 1544 | int32_t CalendarCache::get(CalendarCache** cache, int32_t key, UErrorCode &status) { |
michael@0 | 1545 | int32_t res; |
michael@0 | 1546 | |
michael@0 | 1547 | if(U_FAILURE(status)) { |
michael@0 | 1548 | return 0; |
michael@0 | 1549 | } |
michael@0 | 1550 | umtx_lock(&ccLock); |
michael@0 | 1551 | |
michael@0 | 1552 | if(*cache == NULL) { |
michael@0 | 1553 | createCache(cache, status); |
michael@0 | 1554 | if(U_FAILURE(status)) { |
michael@0 | 1555 | umtx_unlock(&ccLock); |
michael@0 | 1556 | return 0; |
michael@0 | 1557 | } |
michael@0 | 1558 | } |
michael@0 | 1559 | |
michael@0 | 1560 | res = uhash_igeti((*cache)->fTable, key); |
michael@0 | 1561 | U_DEBUG_ASTRO_MSG(("%p: GET: [%d] == %d\n", (*cache)->fTable, key, res)); |
michael@0 | 1562 | |
michael@0 | 1563 | umtx_unlock(&ccLock); |
michael@0 | 1564 | return res; |
michael@0 | 1565 | } |
michael@0 | 1566 | |
michael@0 | 1567 | void CalendarCache::put(CalendarCache** cache, int32_t key, int32_t value, UErrorCode &status) { |
michael@0 | 1568 | if(U_FAILURE(status)) { |
michael@0 | 1569 | return; |
michael@0 | 1570 | } |
michael@0 | 1571 | umtx_lock(&ccLock); |
michael@0 | 1572 | |
michael@0 | 1573 | if(*cache == NULL) { |
michael@0 | 1574 | createCache(cache, status); |
michael@0 | 1575 | if(U_FAILURE(status)) { |
michael@0 | 1576 | umtx_unlock(&ccLock); |
michael@0 | 1577 | return; |
michael@0 | 1578 | } |
michael@0 | 1579 | } |
michael@0 | 1580 | |
michael@0 | 1581 | uhash_iputi((*cache)->fTable, key, value, &status); |
michael@0 | 1582 | U_DEBUG_ASTRO_MSG(("%p: PUT: [%d] := %d\n", (*cache)->fTable, key, value)); |
michael@0 | 1583 | |
michael@0 | 1584 | umtx_unlock(&ccLock); |
michael@0 | 1585 | } |
michael@0 | 1586 | |
michael@0 | 1587 | CalendarCache::CalendarCache(int32_t size, UErrorCode &status) { |
michael@0 | 1588 | fTable = uhash_openSize(uhash_hashLong, uhash_compareLong, NULL, size, &status); |
michael@0 | 1589 | U_DEBUG_ASTRO_MSG(("%p: Opening.\n", fTable)); |
michael@0 | 1590 | } |
michael@0 | 1591 | |
michael@0 | 1592 | CalendarCache::~CalendarCache() { |
michael@0 | 1593 | if(fTable != NULL) { |
michael@0 | 1594 | U_DEBUG_ASTRO_MSG(("%p: Closing.\n", fTable)); |
michael@0 | 1595 | uhash_close(fTable); |
michael@0 | 1596 | } |
michael@0 | 1597 | } |
michael@0 | 1598 | |
michael@0 | 1599 | U_NAMESPACE_END |
michael@0 | 1600 | |
michael@0 | 1601 | #endif // !UCONFIG_NO_FORMATTING |