intl/icu/source/i18n/astro.cpp

Wed, 31 Dec 2014 07:22:50 +0100

author
Michael Schloh von Bennewitz <michael@schloh.com>
date
Wed, 31 Dec 2014 07:22:50 +0100
branch
TOR_BUG_3246
changeset 4
fc2d59ddac77
permissions
-rw-r--r--

Correct previous dual key logic pending first delivery installment.

     1 /************************************************************************
     2  * Copyright (C) 1996-2012, International Business Machines Corporation
     3  * and others. All Rights Reserved.
     4  ************************************************************************
     5  *  2003-nov-07   srl       Port from Java
     6  */
     8 #include "astro.h"
    10 #if !UCONFIG_NO_FORMATTING
    12 #include "unicode/calendar.h"
    13 #include <math.h>
    14 #include <float.h>
    15 #include "unicode/putil.h"
    16 #include "uhash.h"
    17 #include "umutex.h"
    18 #include "ucln_in.h"
    19 #include "putilimp.h"
    20 #include <stdio.h>  // for toString()
    22 #if defined (PI) 
    23 #undef PI
    24 #endif
    26 #ifdef U_DEBUG_ASTRO
    27 # include "uresimp.h" // for debugging
    29 static void debug_astro_loc(const char *f, int32_t l)
    30 {
    31   fprintf(stderr, "%s:%d: ", f, l);
    32 }
    34 static void debug_astro_msg(const char *pat, ...)
    35 {
    36   va_list ap;
    37   va_start(ap, pat);
    38   vfprintf(stderr, pat, ap);
    39   fflush(stderr);
    40 }
    41 #include "unicode/datefmt.h"
    42 #include "unicode/ustring.h"
    43 static const char * debug_astro_date(UDate d) {
    44   static char gStrBuf[1024];
    45   static DateFormat *df = NULL;
    46   if(df == NULL) {
    47     df = DateFormat::createDateTimeInstance(DateFormat::MEDIUM, DateFormat::MEDIUM, Locale::getUS());
    48     df->adoptTimeZone(TimeZone::getGMT()->clone());
    49   }
    50   UnicodeString str;
    51   df->format(d,str);
    52   u_austrncpy(gStrBuf,str.getTerminatedBuffer(),sizeof(gStrBuf)-1);
    53   return gStrBuf;
    54 }
    56 // must use double parens, i.e.:  U_DEBUG_ASTRO_MSG(("four is: %d",4));
    57 #define U_DEBUG_ASTRO_MSG(x) {debug_astro_loc(__FILE__,__LINE__);debug_astro_msg x;}
    58 #else
    59 #define U_DEBUG_ASTRO_MSG(x)
    60 #endif
    62 static inline UBool isINVALID(double d) {
    63   return(uprv_isNaN(d));
    64 }
    66 static UMutex ccLock = U_MUTEX_INITIALIZER;
    68 U_CDECL_BEGIN
    69 static UBool calendar_astro_cleanup(void) {
    70   return TRUE;
    71 }
    72 U_CDECL_END
    74 U_NAMESPACE_BEGIN
    76 /**
    77  * The number of standard hours in one sidereal day.
    78  * Approximately 24.93.
    79  * @internal
    80  * @deprecated ICU 2.4. This class may be removed or modified.
    81  */
    82 #define SIDEREAL_DAY (23.93446960027)
    84 /**
    85  * The number of sidereal hours in one mean solar day.
    86  * Approximately 24.07.
    87  * @internal
    88  * @deprecated ICU 2.4. This class may be removed or modified.
    89  */
    90 #define SOLAR_DAY  (24.065709816)
    92 /**
    93  * The average number of solar days from one new moon to the next.  This is the time
    94  * it takes for the moon to return the same ecliptic longitude as the sun.
    95  * It is longer than the sidereal month because the sun's longitude increases
    96  * during the year due to the revolution of the earth around the sun.
    97  * Approximately 29.53.
    98  *
    99  * @see #SIDEREAL_MONTH
   100  * @internal
   101  * @deprecated ICU 2.4. This class may be removed or modified.
   102  */
   103 const double CalendarAstronomer::SYNODIC_MONTH  = 29.530588853;
   105 /**
   106  * The average number of days it takes
   107  * for the moon to return to the same ecliptic longitude relative to the
   108  * stellar background.  This is referred to as the sidereal month.
   109  * It is shorter than the synodic month due to
   110  * the revolution of the earth around the sun.
   111  * Approximately 27.32.
   112  *
   113  * @see #SYNODIC_MONTH
   114  * @internal
   115  * @deprecated ICU 2.4. This class may be removed or modified.
   116  */
   117 #define SIDEREAL_MONTH  27.32166
   119 /**
   120  * The average number number of days between successive vernal equinoxes.
   121  * Due to the precession of the earth's
   122  * axis, this is not precisely the same as the sidereal year.
   123  * Approximately 365.24
   124  *
   125  * @see #SIDEREAL_YEAR
   126  * @internal
   127  * @deprecated ICU 2.4. This class may be removed or modified.
   128  */
   129 #define TROPICAL_YEAR  365.242191
   131 /**
   132  * The average number of days it takes
   133  * for the sun to return to the same position against the fixed stellar
   134  * background.  This is the duration of one orbit of the earth about the sun
   135  * as it would appear to an outside observer.
   136  * Due to the precession of the earth's
   137  * axis, this is not precisely the same as the tropical year.
   138  * Approximately 365.25.
   139  *
   140  * @see #TROPICAL_YEAR
   141  * @internal
   142  * @deprecated ICU 2.4. This class may be removed or modified.
   143  */
   144 #define SIDEREAL_YEAR  365.25636
   146 //-------------------------------------------------------------------------
   147 // Time-related constants
   148 //-------------------------------------------------------------------------
   150 /**
   151  * The number of milliseconds in one second.
   152  * @internal
   153  * @deprecated ICU 2.4. This class may be removed or modified.
   154  */
   155 #define SECOND_MS  U_MILLIS_PER_SECOND
   157 /**
   158  * The number of milliseconds in one minute.
   159  * @internal
   160  * @deprecated ICU 2.4. This class may be removed or modified.
   161  */
   162 #define MINUTE_MS  U_MILLIS_PER_MINUTE
   164 /**
   165  * The number of milliseconds in one hour.
   166  * @internal
   167  * @deprecated ICU 2.4. This class may be removed or modified.
   168  */
   169 #define HOUR_MS   U_MILLIS_PER_HOUR
   171 /**
   172  * The number of milliseconds in one day.
   173  * @internal
   174  * @deprecated ICU 2.4. This class may be removed or modified.
   175  */
   176 #define DAY_MS U_MILLIS_PER_DAY
   178 /**
   179  * The start of the julian day numbering scheme used by astronomers, which
   180  * is 1/1/4713 BC (Julian), 12:00 GMT.  This is given as the number of milliseconds
   181  * since 1/1/1970 AD (Gregorian), a negative number.
   182  * Note that julian day numbers and
   183  * the Julian calendar are <em>not</em> the same thing.  Also note that
   184  * julian days start at <em>noon</em>, not midnight.
   185  * @internal
   186  * @deprecated ICU 2.4. This class may be removed or modified.
   187  */
   188 #define JULIAN_EPOCH_MS  -210866760000000.0
   191 /**
   192  * Milliseconds value for 0.0 January 2000 AD.
   193  */
   194 #define EPOCH_2000_MS  946598400000.0
   196 //-------------------------------------------------------------------------
   197 // Assorted private data used for conversions
   198 //-------------------------------------------------------------------------
   200 // My own copies of these so compilers are more likely to optimize them away
   201 const double CalendarAstronomer::PI = 3.14159265358979323846;
   203 #define CalendarAstronomer_PI2  (CalendarAstronomer::PI*2.0)
   204 #define RAD_HOUR  ( 12 / CalendarAstronomer::PI )     // radians -> hours
   205 #define DEG_RAD ( CalendarAstronomer::PI / 180 )      // degrees -> radians
   206 #define RAD_DEG  ( 180 / CalendarAstronomer::PI )     // radians -> degrees
   208 /***
   209  * Given 'value', add or subtract 'range' until 0 <= 'value' < range.
   210  * The modulus operator.
   211  */
   212 inline static double normalize(double value, double range)  {
   213     return value - range * ClockMath::floorDivide(value, range);
   214 }
   216 /**
   217  * Normalize an angle so that it's in the range 0 - 2pi.
   218  * For positive angles this is just (angle % 2pi), but the Java
   219  * mod operator doesn't work that way for negative numbers....
   220  */
   221 inline static double norm2PI(double angle)  {
   222     return normalize(angle, CalendarAstronomer::PI * 2.0);
   223 }
   225 /**
   226  * Normalize an angle into the range -PI - PI
   227  */
   228 inline static  double normPI(double angle)  {
   229     return normalize(angle + CalendarAstronomer::PI, CalendarAstronomer::PI * 2.0) - CalendarAstronomer::PI;
   230 }
   232 //-------------------------------------------------------------------------
   233 // Constructors
   234 //-------------------------------------------------------------------------
   236 /**
   237  * Construct a new <code>CalendarAstronomer</code> object that is initialized to
   238  * the current date and time.
   239  * @internal
   240  * @deprecated ICU 2.4. This class may be removed or modified.
   241  */
   242 CalendarAstronomer::CalendarAstronomer():
   243   fTime(Calendar::getNow()), fLongitude(0.0), fLatitude(0.0), fGmtOffset(0.0), moonPosition(0,0), moonPositionSet(FALSE) {
   244   clearCache();
   245 }
   247 /**
   248  * Construct a new <code>CalendarAstronomer</code> object that is initialized to
   249  * the specified date and time.
   250  * @internal
   251  * @deprecated ICU 2.4. This class may be removed or modified.
   252  */
   253 CalendarAstronomer::CalendarAstronomer(UDate d): fTime(d), fLongitude(0.0), fLatitude(0.0), fGmtOffset(0.0), moonPosition(0,0), moonPositionSet(FALSE) {
   254   clearCache();
   255 }
   257 /**
   258  * Construct a new <code>CalendarAstronomer</code> object with the given
   259  * latitude and longitude.  The object's time is set to the current
   260  * date and time.
   261  * <p>
   262  * @param longitude The desired longitude, in <em>degrees</em> east of
   263  *                  the Greenwich meridian.
   264  *
   265  * @param latitude  The desired latitude, in <em>degrees</em>.  Positive
   266  *                  values signify North, negative South.
   267  *
   268  * @see java.util.Date#getTime()
   269  * @internal
   270  * @deprecated ICU 2.4. This class may be removed or modified.
   271  */
   272 CalendarAstronomer::CalendarAstronomer(double longitude, double latitude) :
   273   fTime(Calendar::getNow()), moonPosition(0,0), moonPositionSet(FALSE) {
   274   fLongitude = normPI(longitude * (double)DEG_RAD);
   275   fLatitude  = normPI(latitude  * (double)DEG_RAD);
   276   fGmtOffset = (double)(fLongitude * 24. * (double)HOUR_MS / (double)CalendarAstronomer_PI2);
   277   clearCache();
   278 }
   280 CalendarAstronomer::~CalendarAstronomer()
   281 {
   282 }
   284 //-------------------------------------------------------------------------
   285 // Time and date getters and setters
   286 //-------------------------------------------------------------------------
   288 /**
   289  * Set the current date and time of this <code>CalendarAstronomer</code> object.  All
   290  * astronomical calculations are performed based on this time setting.
   291  *
   292  * @param aTime the date and time, expressed as the number of milliseconds since
   293  *              1/1/1970 0:00 GMT (Gregorian).
   294  *
   295  * @see #setDate
   296  * @see #getTime
   297  * @internal
   298  * @deprecated ICU 2.4. This class may be removed or modified.
   299  */
   300 void CalendarAstronomer::setTime(UDate aTime) {
   301     fTime = aTime;
   302     U_DEBUG_ASTRO_MSG(("setTime(%.1lf, %sL)\n", aTime, debug_astro_date(aTime+fGmtOffset)));
   303     clearCache();
   304 }
   306 /**
   307  * Set the current date and time of this <code>CalendarAstronomer</code> object.  All
   308  * astronomical calculations are performed based on this time setting.
   309  *
   310  * @param jdn   the desired time, expressed as a "julian day number",
   311  *              which is the number of elapsed days since
   312  *              1/1/4713 BC (Julian), 12:00 GMT.  Note that julian day
   313  *              numbers start at <em>noon</em>.  To get the jdn for
   314  *              the corresponding midnight, subtract 0.5.
   315  *
   316  * @see #getJulianDay
   317  * @see #JULIAN_EPOCH_MS
   318  * @internal
   319  * @deprecated ICU 2.4. This class may be removed or modified.
   320  */
   321 void CalendarAstronomer::setJulianDay(double jdn) {
   322     fTime = (double)(jdn * DAY_MS) + JULIAN_EPOCH_MS;
   323     clearCache();
   324     julianDay = jdn;
   325 }
   327 /**
   328  * Get the current time of this <code>CalendarAstronomer</code> object,
   329  * represented as the number of milliseconds since
   330  * 1/1/1970 AD 0:00 GMT (Gregorian).
   331  *
   332  * @see #setTime
   333  * @see #getDate
   334  * @internal
   335  * @deprecated ICU 2.4. This class may be removed or modified.
   336  */
   337 UDate CalendarAstronomer::getTime() {
   338     return fTime;
   339 }
   341 /**
   342  * Get the current time of this <code>CalendarAstronomer</code> object,
   343  * expressed as a "julian day number", which is the number of elapsed
   344  * days since 1/1/4713 BC (Julian), 12:00 GMT.
   345  *
   346  * @see #setJulianDay
   347  * @see #JULIAN_EPOCH_MS
   348  * @internal
   349  * @deprecated ICU 2.4. This class may be removed or modified.
   350  */
   351 double CalendarAstronomer::getJulianDay() {
   352     if (isINVALID(julianDay)) {
   353         julianDay = (fTime - (double)JULIAN_EPOCH_MS) / (double)DAY_MS;
   354     }
   355     return julianDay;
   356 }
   358 /**
   359  * Return this object's time expressed in julian centuries:
   360  * the number of centuries after 1/1/1900 AD, 12:00 GMT
   361  *
   362  * @see #getJulianDay
   363  * @internal
   364  * @deprecated ICU 2.4. This class may be removed or modified.
   365  */
   366 double CalendarAstronomer::getJulianCentury() {
   367     if (isINVALID(julianCentury)) {
   368         julianCentury = (getJulianDay() - 2415020.0) / 36525.0;
   369     }
   370     return julianCentury;
   371 }
   373 /**
   374  * Returns the current Greenwich sidereal time, measured in hours
   375  * @internal
   376  * @deprecated ICU 2.4. This class may be removed or modified.
   377  */
   378 double CalendarAstronomer::getGreenwichSidereal() {
   379     if (isINVALID(siderealTime)) {
   380         // See page 86 of "Practial Astronomy with your Calculator",
   381         // by Peter Duffet-Smith, for details on the algorithm.
   383         double UT = normalize(fTime/(double)HOUR_MS, 24.);
   385         siderealTime = normalize(getSiderealOffset() + UT*1.002737909, 24.);
   386     }
   387     return siderealTime;
   388 }
   390 double CalendarAstronomer::getSiderealOffset() {
   391     if (isINVALID(siderealT0)) {
   392         double JD  = uprv_floor(getJulianDay() - 0.5) + 0.5;
   393         double S   = JD - 2451545.0;
   394         double T   = S / 36525.0;
   395         siderealT0 = normalize(6.697374558 + 2400.051336*T + 0.000025862*T*T, 24);
   396     }
   397     return siderealT0;
   398 }
   400 /**
   401  * Returns the current local sidereal time, measured in hours
   402  * @internal
   403  * @deprecated ICU 2.4. This class may be removed or modified.
   404  */
   405 double CalendarAstronomer::getLocalSidereal() {
   406     return normalize(getGreenwichSidereal() + (fGmtOffset/(double)HOUR_MS), 24.);
   407 }
   409 /**
   410  * Converts local sidereal time to Universal Time.
   411  *
   412  * @param lst   The Local Sidereal Time, in hours since sidereal midnight
   413  *              on this object's current date.
   414  *
   415  * @return      The corresponding Universal Time, in milliseconds since
   416  *              1 Jan 1970, GMT.
   417  */
   418 double CalendarAstronomer::lstToUT(double lst) {
   419     // Convert to local mean time
   420     double lt = normalize((lst - getSiderealOffset()) * 0.9972695663, 24);
   422     // Then find local midnight on this day
   423     double base = (DAY_MS * ClockMath::floorDivide(fTime + fGmtOffset,(double)DAY_MS)) - fGmtOffset;
   425     //out("    lt  =" + lt + " hours");
   426     //out("    base=" + new Date(base));
   428     return base + (long)(lt * HOUR_MS);
   429 }
   432 //-------------------------------------------------------------------------
   433 // Coordinate transformations, all based on the current time of this object
   434 //-------------------------------------------------------------------------
   436 /**
   437  * Convert from ecliptic to equatorial coordinates.
   438  *
   439  * @param ecliptic  A point in the sky in ecliptic coordinates.
   440  * @return          The corresponding point in equatorial coordinates.
   441  * @internal
   442  * @deprecated ICU 2.4. This class may be removed or modified.
   443  */
   444 CalendarAstronomer::Equatorial& CalendarAstronomer::eclipticToEquatorial(CalendarAstronomer::Equatorial& result, const CalendarAstronomer::Ecliptic& ecliptic)
   445 {
   446     return eclipticToEquatorial(result, ecliptic.longitude, ecliptic.latitude);
   447 }
   449 /**
   450  * Convert from ecliptic to equatorial coordinates.
   451  *
   452  * @param eclipLong     The ecliptic longitude
   453  * @param eclipLat      The ecliptic latitude
   454  *
   455  * @return              The corresponding point in equatorial coordinates.
   456  * @internal
   457  * @deprecated ICU 2.4. This class may be removed or modified.
   458  */
   459 CalendarAstronomer::Equatorial& CalendarAstronomer::eclipticToEquatorial(CalendarAstronomer::Equatorial& result, double eclipLong, double eclipLat)
   460 {
   461     // See page 42 of "Practial Astronomy with your Calculator",
   462     // by Peter Duffet-Smith, for details on the algorithm.
   464     double obliq = eclipticObliquity();
   465     double sinE = ::sin(obliq);
   466     double cosE = cos(obliq);
   468     double sinL = ::sin(eclipLong);
   469     double cosL = cos(eclipLong);
   471     double sinB = ::sin(eclipLat);
   472     double cosB = cos(eclipLat);
   473     double tanB = tan(eclipLat);
   475     result.set(atan2(sinL*cosE - tanB*sinE, cosL),
   476         asin(sinB*cosE + cosB*sinE*sinL) );
   477     return result;
   478 }
   480 /**
   481  * Convert from ecliptic longitude to equatorial coordinates.
   482  *
   483  * @param eclipLong     The ecliptic longitude
   484  *
   485  * @return              The corresponding point in equatorial coordinates.
   486  * @internal
   487  * @deprecated ICU 2.4. This class may be removed or modified.
   488  */
   489 CalendarAstronomer::Equatorial& CalendarAstronomer::eclipticToEquatorial(CalendarAstronomer::Equatorial& result, double eclipLong)
   490 {
   491     return eclipticToEquatorial(result, eclipLong, 0);  // TODO: optimize
   492 }
   494 /**
   495  * @internal
   496  * @deprecated ICU 2.4. This class may be removed or modified.
   497  */
   498 CalendarAstronomer::Horizon& CalendarAstronomer::eclipticToHorizon(CalendarAstronomer::Horizon& result, double eclipLong)
   499 {
   500     Equatorial equatorial;
   501     eclipticToEquatorial(equatorial, eclipLong);
   503     double H = getLocalSidereal()*CalendarAstronomer::PI/12 - equatorial.ascension;     // Hour-angle
   505     double sinH = ::sin(H);
   506     double cosH = cos(H);
   507     double sinD = ::sin(equatorial.declination);
   508     double cosD = cos(equatorial.declination);
   509     double sinL = ::sin(fLatitude);
   510     double cosL = cos(fLatitude);
   512     double altitude = asin(sinD*sinL + cosD*cosL*cosH);
   513     double azimuth  = atan2(-cosD*cosL*sinH, sinD - sinL * ::sin(altitude));
   515     result.set(azimuth, altitude);
   516     return result;
   517 }
   520 //-------------------------------------------------------------------------
   521 // The Sun
   522 //-------------------------------------------------------------------------
   524 //
   525 // Parameters of the Sun's orbit as of the epoch Jan 0.0 1990
   526 // Angles are in radians (after multiplying by CalendarAstronomer::PI/180)
   527 //
   528 #define JD_EPOCH  2447891.5 // Julian day of epoch
   530 #define SUN_ETA_G    (279.403303 * CalendarAstronomer::PI/180) // Ecliptic longitude at epoch
   531 #define SUN_OMEGA_G  (282.768422 * CalendarAstronomer::PI/180) // Ecliptic longitude of perigee
   532 #define SUN_E         0.016713          // Eccentricity of orbit
   533 //double sunR0        1.495585e8        // Semi-major axis in KM
   534 //double sunTheta0    (0.533128 * CalendarAstronomer::PI/180) // Angular diameter at R0
   536 // The following three methods, which compute the sun parameters
   537 // given above for an arbitrary epoch (whatever time the object is
   538 // set to), make only a small difference as compared to using the
   539 // above constants.  E.g., Sunset times might differ by ~12
   540 // seconds.  Furthermore, the eta-g computation is befuddled by
   541 // Duffet-Smith's incorrect coefficients (p.86).  I've corrected
   542 // the first-order coefficient but the others may be off too - no
   543 // way of knowing without consulting another source.
   545 //  /**
   546 //   * Return the sun's ecliptic longitude at perigee for the current time.
   547 //   * See Duffett-Smith, p. 86.
   548 //   * @return radians
   549 //   */
   550 //  private double getSunOmegaG() {
   551 //      double T = getJulianCentury();
   552 //      return (281.2208444 + (1.719175 + 0.000452778*T)*T) * DEG_RAD;
   553 //  }
   555 //  /**
   556 //   * Return the sun's ecliptic longitude for the current time.
   557 //   * See Duffett-Smith, p. 86.
   558 //   * @return radians
   559 //   */
   560 //  private double getSunEtaG() {
   561 //      double T = getJulianCentury();
   562 //      //return (279.6966778 + (36000.76892 + 0.0003025*T)*T) * DEG_RAD;
   563 //      //
   564 //      // The above line is from Duffett-Smith, and yields manifestly wrong
   565 //      // results.  The below constant is derived empirically to match the
   566 //      // constant he gives for the 1990 EPOCH.
   567 //      //
   568 //      return (279.6966778 + (-0.3262541582718024 + 0.0003025*T)*T) * DEG_RAD;
   569 //  }
   571 //  /**
   572 //   * Return the sun's eccentricity of orbit for the current time.
   573 //   * See Duffett-Smith, p. 86.
   574 //   * @return double
   575 //   */
   576 //  private double getSunE() {
   577 //      double T = getJulianCentury();
   578 //      return 0.01675104 - (0.0000418 + 0.000000126*T)*T;
   579 //  }
   581 /**
   582  * Find the "true anomaly" (longitude) of an object from
   583  * its mean anomaly and the eccentricity of its orbit.  This uses
   584  * an iterative solution to Kepler's equation.
   585  *
   586  * @param meanAnomaly   The object's longitude calculated as if it were in
   587  *                      a regular, circular orbit, measured in radians
   588  *                      from the point of perigee.
   589  *
   590  * @param eccentricity  The eccentricity of the orbit
   591  *
   592  * @return The true anomaly (longitude) measured in radians
   593  */
   594 static double trueAnomaly(double meanAnomaly, double eccentricity)
   595 {
   596     // First, solve Kepler's equation iteratively
   597     // Duffett-Smith, p.90
   598     double delta;
   599     double E = meanAnomaly;
   600     do {
   601         delta = E - eccentricity * ::sin(E) - meanAnomaly;
   602         E = E - delta / (1 - eccentricity * ::cos(E));
   603     }
   604     while (uprv_fabs(delta) > 1e-5); // epsilon = 1e-5 rad
   606     return 2.0 * ::atan( ::tan(E/2) * ::sqrt( (1+eccentricity)
   607                                              /(1-eccentricity) ) );
   608 }
   610 /**
   611  * The longitude of the sun at the time specified by this object.
   612  * The longitude is measured in radians along the ecliptic
   613  * from the "first point of Aries," the point at which the ecliptic
   614  * crosses the earth's equatorial plane at the vernal equinox.
   615  * <p>
   616  * Currently, this method uses an approximation of the two-body Kepler's
   617  * equation for the earth and the sun.  It does not take into account the
   618  * perturbations caused by the other planets, the moon, etc.
   619  * @internal
   620  * @deprecated ICU 2.4. This class may be removed or modified.
   621  */
   622 double CalendarAstronomer::getSunLongitude()
   623 {
   624     // See page 86 of "Practial Astronomy with your Calculator",
   625     // by Peter Duffet-Smith, for details on the algorithm.
   627     if (isINVALID(sunLongitude)) {
   628         getSunLongitude(getJulianDay(), sunLongitude, meanAnomalySun);
   629     }
   630     return sunLongitude;
   631 }
   633 /**
   634  * TODO Make this public when the entire class is package-private.
   635  */
   636 /*public*/ void CalendarAstronomer::getSunLongitude(double jDay, double &longitude, double &meanAnomaly)
   637 {
   638     // See page 86 of "Practial Astronomy with your Calculator",
   639     // by Peter Duffet-Smith, for details on the algorithm.
   641     double day = jDay - JD_EPOCH;       // Days since epoch
   643     // Find the angular distance the sun in a fictitious
   644     // circular orbit has travelled since the epoch.
   645     double epochAngle = norm2PI(CalendarAstronomer_PI2/TROPICAL_YEAR*day);
   647     // The epoch wasn't at the sun's perigee; find the angular distance
   648     // since perigee, which is called the "mean anomaly"
   649     meanAnomaly = norm2PI(epochAngle + SUN_ETA_G - SUN_OMEGA_G);
   651     // Now find the "true anomaly", e.g. the real solar longitude
   652     // by solving Kepler's equation for an elliptical orbit
   653     // NOTE: The 3rd ed. of the book lists omega_g and eta_g in different
   654     // equations; omega_g is to be correct.
   655     longitude =  norm2PI(trueAnomaly(meanAnomaly, SUN_E) + SUN_OMEGA_G);
   656 }
   658 /**
   659  * The position of the sun at this object's current date and time,
   660  * in equatorial coordinates.
   661  * @internal
   662  * @deprecated ICU 2.4. This class may be removed or modified.
   663  */
   664 CalendarAstronomer::Equatorial& CalendarAstronomer::getSunPosition(CalendarAstronomer::Equatorial& result) {
   665     return eclipticToEquatorial(result, getSunLongitude(), 0);
   666 }
   669 /**
   670  * Constant representing the vernal equinox.
   671  * For use with {@link #getSunTime getSunTime}.
   672  * Note: In this case, "vernal" refers to the northern hemisphere's seasons.
   673  * @internal
   674  * @deprecated ICU 2.4. This class may be removed or modified.
   675  */
   676 /*double CalendarAstronomer::VERNAL_EQUINOX() {
   677   return 0;
   678 }*/
   680 /**
   681  * Constant representing the summer solstice.
   682  * For use with {@link #getSunTime getSunTime}.
   683  * Note: In this case, "summer" refers to the northern hemisphere's seasons.
   684  * @internal
   685  * @deprecated ICU 2.4. This class may be removed or modified.
   686  */
   687 double CalendarAstronomer::SUMMER_SOLSTICE() {
   688     return  (CalendarAstronomer::PI/2);
   689 }
   691 /**
   692  * Constant representing the autumnal equinox.
   693  * For use with {@link #getSunTime getSunTime}.
   694  * Note: In this case, "autumn" refers to the northern hemisphere's seasons.
   695  * @internal
   696  * @deprecated ICU 2.4. This class may be removed or modified.
   697  */
   698 /*double CalendarAstronomer::AUTUMN_EQUINOX() {
   699   return  (CalendarAstronomer::PI);
   700 }*/
   702 /**
   703  * Constant representing the winter solstice.
   704  * For use with {@link #getSunTime getSunTime}.
   705  * Note: In this case, "winter" refers to the northern hemisphere's seasons.
   706  * @internal
   707  * @deprecated ICU 2.4. This class may be removed or modified.
   708  */
   709 double CalendarAstronomer::WINTER_SOLSTICE() {
   710     return  ((CalendarAstronomer::PI*3)/2);
   711 }
   713 CalendarAstronomer::AngleFunc::~AngleFunc() {}
   715 /**
   716  * Find the next time at which the sun's ecliptic longitude will have
   717  * the desired value.
   718  * @internal
   719  * @deprecated ICU 2.4. This class may be removed or modified.
   720  */
   721 class SunTimeAngleFunc : public CalendarAstronomer::AngleFunc {
   722 public:
   723     virtual ~SunTimeAngleFunc();
   724     virtual double eval(CalendarAstronomer& a) { return a.getSunLongitude(); }
   725 };
   727 SunTimeAngleFunc::~SunTimeAngleFunc() {}
   729 UDate CalendarAstronomer::getSunTime(double desired, UBool next)
   730 {
   731     SunTimeAngleFunc func;
   732     return timeOfAngle( func,
   733                         desired,
   734                         TROPICAL_YEAR,
   735                         MINUTE_MS,
   736                         next);
   737 }
   739 CalendarAstronomer::CoordFunc::~CoordFunc() {}
   741 class RiseSetCoordFunc : public CalendarAstronomer::CoordFunc {
   742 public:
   743     virtual ~RiseSetCoordFunc();
   744     virtual void eval(CalendarAstronomer::Equatorial& result, CalendarAstronomer&a) {  a.getSunPosition(result); }
   745 };
   747 RiseSetCoordFunc::~RiseSetCoordFunc() {}
   749 UDate CalendarAstronomer::getSunRiseSet(UBool rise)
   750 {
   751     UDate t0 = fTime;
   753     // Make a rough guess: 6am or 6pm local time on the current day
   754     double noon = ClockMath::floorDivide(fTime + fGmtOffset, (double)DAY_MS)*DAY_MS - fGmtOffset + (12*HOUR_MS);
   756     U_DEBUG_ASTRO_MSG(("Noon=%.2lf, %sL, gmtoff %.2lf\n", noon, debug_astro_date(noon+fGmtOffset), fGmtOffset));
   757     setTime(noon +  ((rise ? -6 : 6) * HOUR_MS));
   758     U_DEBUG_ASTRO_MSG(("added %.2lf ms as a guess,\n", ((rise ? -6. : 6.) * HOUR_MS)));
   760     RiseSetCoordFunc func;
   761     double t = riseOrSet(func,
   762                          rise,
   763                          .533 * DEG_RAD,        // Angular Diameter
   764                          34. /60.0 * DEG_RAD,    // Refraction correction
   765                          MINUTE_MS / 12.);       // Desired accuracy
   767     setTime(t0);
   768     return t;
   769 }
   771 // Commented out - currently unused. ICU 2.6, Alan
   772 //    //-------------------------------------------------------------------------
   773 //    // Alternate Sun Rise/Set
   774 //    // See Duffett-Smith p.93
   775 //    //-------------------------------------------------------------------------
   776 //
   777 //    // This yields worse results (as compared to USNO data) than getSunRiseSet().
   778 //    /**
   779 //     * TODO Make this when the entire class is package-private.
   780 //     */
   781 //    /*public*/ long getSunRiseSet2(boolean rise) {
   782 //        // 1. Calculate coordinates of the sun's center for midnight
   783 //        double jd = uprv_floor(getJulianDay() - 0.5) + 0.5;
   784 //        double[] sl = getSunLongitude(jd);//        double lambda1 = sl[0];
   785 //        Equatorial pos1 = eclipticToEquatorial(lambda1, 0);
   786 //
   787 //        // 2. Add ... to lambda to get position 24 hours later
   788 //        double lambda2 = lambda1 + 0.985647*DEG_RAD;
   789 //        Equatorial pos2 = eclipticToEquatorial(lambda2, 0);
   790 //
   791 //        // 3. Calculate LSTs of rising and setting for these two positions
   792 //        double tanL = ::tan(fLatitude);
   793 //        double H = ::acos(-tanL * ::tan(pos1.declination));
   794 //        double lst1r = (CalendarAstronomer_PI2 + pos1.ascension - H) * 24 / CalendarAstronomer_PI2;
   795 //        double lst1s = (pos1.ascension + H) * 24 / CalendarAstronomer_PI2;
   796 //               H = ::acos(-tanL * ::tan(pos2.declination));
   797 //        double lst2r = (CalendarAstronomer_PI2-H + pos2.ascension ) * 24 / CalendarAstronomer_PI2;
   798 //        double lst2s = (H + pos2.ascension ) * 24 / CalendarAstronomer_PI2;
   799 //        if (lst1r > 24) lst1r -= 24;
   800 //        if (lst1s > 24) lst1s -= 24;
   801 //        if (lst2r > 24) lst2r -= 24;
   802 //        if (lst2s > 24) lst2s -= 24;
   803 //
   804 //        // 4. Convert LSTs to GSTs.  If GST1 > GST2, add 24 to GST2.
   805 //        double gst1r = lstToGst(lst1r);
   806 //        double gst1s = lstToGst(lst1s);
   807 //        double gst2r = lstToGst(lst2r);
   808 //        double gst2s = lstToGst(lst2s);
   809 //        if (gst1r > gst2r) gst2r += 24;
   810 //        if (gst1s > gst2s) gst2s += 24;
   811 //
   812 //        // 5. Calculate GST at 0h UT of this date
   813 //        double t00 = utToGst(0);
   814 //
   815 //        // 6. Calculate GST at 0h on the observer's longitude
   816 //        double offset = ::round(fLongitude*12/PI); // p.95 step 6; he _rounds_ to nearest 15 deg.
   817 //        double t00p = t00 - offset*1.002737909;
   818 //        if (t00p < 0) t00p += 24; // do NOT normalize
   819 //
   820 //        // 7. Adjust
   821 //        if (gst1r < t00p) {
   822 //            gst1r += 24;
   823 //            gst2r += 24;
   824 //        }
   825 //        if (gst1s < t00p) {
   826 //            gst1s += 24;
   827 //            gst2s += 24;
   828 //        }
   829 //
   830 //        // 8.
   831 //        double gstr = (24.07*gst1r-t00*(gst2r-gst1r))/(24.07+gst1r-gst2r);
   832 //        double gsts = (24.07*gst1s-t00*(gst2s-gst1s))/(24.07+gst1s-gst2s);
   833 //
   834 //        // 9. Correct for parallax, refraction, and sun's diameter
   835 //        double dec = (pos1.declination + pos2.declination) / 2;
   836 //        double psi = ::acos(sin(fLatitude) / cos(dec));
   837 //        double x = 0.830725 * DEG_RAD; // parallax+refraction+diameter
   838 //        double y = ::asin(sin(x) / ::sin(psi)) * RAD_DEG;
   839 //        double delta_t = 240 * y / cos(dec) / 3600; // hours
   840 //
   841 //        // 10. Add correction to GSTs, subtract from GSTr
   842 //        gstr -= delta_t;
   843 //        gsts += delta_t;
   844 //
   845 //        // 11. Convert GST to UT and then to local civil time
   846 //        double ut = gstToUt(rise ? gstr : gsts);
   847 //        //System.out.println((rise?"rise=":"set=") + ut + ", delta_t=" + delta_t);
   848 //        long midnight = DAY_MS * (time / DAY_MS); // Find UT midnight on this day
   849 //        return midnight + (long) (ut * 3600000);
   850 //    }
   852 // Commented out - currently unused. ICU 2.6, Alan
   853 //    /**
   854 //     * Convert local sidereal time to Greenwich sidereal time.
   855 //     * Section 15.  Duffett-Smith p.21
   856 //     * @param lst in hours (0..24)
   857 //     * @return GST in hours (0..24)
   858 //     */
   859 //    double lstToGst(double lst) {
   860 //        double delta = fLongitude * 24 / CalendarAstronomer_PI2;
   861 //        return normalize(lst - delta, 24);
   862 //    }
   864 // Commented out - currently unused. ICU 2.6, Alan
   865 //    /**
   866 //     * Convert UT to GST on this date.
   867 //     * Section 12.  Duffett-Smith p.17
   868 //     * @param ut in hours
   869 //     * @return GST in hours
   870 //     */
   871 //    double utToGst(double ut) {
   872 //        return normalize(getT0() + ut*1.002737909, 24);
   873 //    }
   875 // Commented out - currently unused. ICU 2.6, Alan
   876 //    /**
   877 //     * Convert GST to UT on this date.
   878 //     * Section 13.  Duffett-Smith p.18
   879 //     * @param gst in hours
   880 //     * @return UT in hours
   881 //     */
   882 //    double gstToUt(double gst) {
   883 //        return normalize(gst - getT0(), 24) * 0.9972695663;
   884 //    }
   886 // Commented out - currently unused. ICU 2.6, Alan
   887 //    double getT0() {
   888 //        // Common computation for UT <=> GST
   889 //
   890 //        // Find JD for 0h UT
   891 //        double jd = uprv_floor(getJulianDay() - 0.5) + 0.5;
   892 //
   893 //        double s = jd - 2451545.0;
   894 //        double t = s / 36525.0;
   895 //        double t0 = 6.697374558 + (2400.051336 + 0.000025862*t)*t;
   896 //        return t0;
   897 //    }
   899 // Commented out - currently unused. ICU 2.6, Alan
   900 //    //-------------------------------------------------------------------------
   901 //    // Alternate Sun Rise/Set
   902 //    // See sci.astro FAQ
   903 //    // http://www.faqs.org/faqs/astronomy/faq/part3/section-5.html
   904 //    //-------------------------------------------------------------------------
   905 //
   906 //    // Note: This method appears to produce inferior accuracy as
   907 //    // compared to getSunRiseSet().
   908 //
   909 //    /**
   910 //     * TODO Make this when the entire class is package-private.
   911 //     */
   912 //    /*public*/ long getSunRiseSet3(boolean rise) {
   913 //
   914 //        // Compute day number for 0.0 Jan 2000 epoch
   915 //        double d = (double)(time - EPOCH_2000_MS) / DAY_MS;
   916 //
   917 //        // Now compute the Local Sidereal Time, LST:
   918 //        //
   919 //        double LST  =  98.9818  +  0.985647352 * d  +  /*UT*15  +  long*/
   920 //            fLongitude*RAD_DEG;
   921 //        //
   922 //        // (east long. positive).  Note that LST is here expressed in degrees,
   923 //        // where 15 degrees corresponds to one hour.  Since LST really is an angle,
   924 //        // it's convenient to use one unit---degrees---throughout.
   925 //
   926 //        //    COMPUTING THE SUN'S POSITION
   927 //        //    ----------------------------
   928 //        //
   929 //        // To be able to compute the Sun's rise/set times, you need to be able to
   930 //        // compute the Sun's position at any time.  First compute the "day
   931 //        // number" d as outlined above, for the desired moment.  Next compute:
   932 //        //
   933 //        double oblecl = 23.4393 - 3.563E-7 * d;
   934 //        //
   935 //        double w  =  282.9404  +  4.70935E-5   * d;
   936 //        double M  =  356.0470  +  0.9856002585 * d;
   937 //        double e  =  0.016709  -  1.151E-9     * d;
   938 //        //
   939 //        // This is the obliquity of the ecliptic, plus some of the elements of
   940 //        // the Sun's apparent orbit (i.e., really the Earth's orbit): w =
   941 //        // argument of perihelion, M = mean anomaly, e = eccentricity.
   942 //        // Semi-major axis is here assumed to be exactly 1.0 (while not strictly
   943 //        // true, this is still an accurate approximation).  Next compute E, the
   944 //        // eccentric anomaly:
   945 //        //
   946 //        double E = M + e*(180/PI) * ::sin(M*DEG_RAD) * ( 1.0 + e*cos(M*DEG_RAD) );
   947 //        //
   948 //        // where E and M are in degrees.  This is it---no further iterations are
   949 //        // needed because we know e has a sufficiently small value.  Next compute
   950 //        // the true anomaly, v, and the distance, r:
   951 //        //
   952 //        /*      r * cos(v)  =  */ double A  =  cos(E*DEG_RAD) - e;
   953 //        /*      r * ::sin(v)  =  */ double B  =  ::sqrt(1 - e*e) * ::sin(E*DEG_RAD);
   954 //        //
   955 //        // and
   956 //        //
   957 //        //      r  =  sqrt( A*A + B*B )
   958 //        double v  =  ::atan2( B, A )*RAD_DEG;
   959 //        //
   960 //        // The Sun's true longitude, slon, can now be computed:
   961 //        //
   962 //        double slon  =  v + w;
   963 //        //
   964 //        // Since the Sun is always at the ecliptic (or at least very very close to
   965 //        // it), we can use simplified formulae to convert slon (the Sun's ecliptic
   966 //        // longitude) to sRA and sDec (the Sun's RA and Dec):
   967 //        //
   968 //        //                   ::sin(slon) * cos(oblecl)
   969 //        //     tan(sRA)  =  -------------------------
   970 //        //            cos(slon)
   971 //        //
   972 //        //     ::sin(sDec) =  ::sin(oblecl) * ::sin(slon)
   973 //        //
   974 //        // As was the case when computing az, the Azimuth, if possible use an
   975 //        // atan2() function to compute sRA.
   976 //
   977 //        double sRA = ::atan2(sin(slon*DEG_RAD) * cos(oblecl*DEG_RAD), cos(slon*DEG_RAD))*RAD_DEG;
   978 //
   979 //        double sin_sDec = ::sin(oblecl*DEG_RAD) * ::sin(slon*DEG_RAD);
   980 //        double sDec = ::asin(sin_sDec)*RAD_DEG;
   981 //
   982 //        //    COMPUTING RISE AND SET TIMES
   983 //        //    ----------------------------
   984 //        //
   985 //        // To compute when an object rises or sets, you must compute when it
   986 //        // passes the meridian and the HA of rise/set.  Then the rise time is
   987 //        // the meridian time minus HA for rise/set, and the set time is the
   988 //        // meridian time plus the HA for rise/set.
   989 //        //
   990 //        // To find the meridian time, compute the Local Sidereal Time at 0h local
   991 //        // time (or 0h UT if you prefer to work in UT) as outlined above---name
   992 //        // that quantity LST0.  The Meridian Time, MT, will now be:
   993 //        //
   994 //        //     MT  =  RA - LST0
   995 //        double MT = normalize(sRA - LST, 360);
   996 //        //
   997 //        // where "RA" is the object's Right Ascension (in degrees!).  If negative,
   998 //        // add 360 deg to MT.  If the object is the Sun, leave the time as it is,
   999 //        // but if it's stellar, multiply MT by 365.2422/366.2422, to convert from
  1000 //        // sidereal to solar time.  Now, compute HA for rise/set, name that
  1001 //        // quantity HA0:
  1002 //        //
  1003 //        //                 ::sin(h0)  -  ::sin(lat) * ::sin(Dec)
  1004 //        // cos(HA0)  =  ---------------------------------
  1005 //        //                      cos(lat) * cos(Dec)
  1006 //        //
  1007 //        // where h0 is the altitude selected to represent rise/set.  For a purely
  1008 //        // mathematical horizon, set h0 = 0 and simplify to:
  1009 //        //
  1010 //        //    cos(HA0)  =  - tan(lat) * tan(Dec)
  1011 //        //
  1012 //        // If you want to account for refraction on the atmosphere, set h0 = -35/60
  1013 //        // degrees (-35 arc minutes), and if you want to compute the rise/set times
  1014 //        // for the Sun's upper limb, set h0 = -50/60 (-50 arc minutes).
  1015 //        //
  1016 //        double h0 = -50/60 * DEG_RAD;
  1017 //
  1018 //        double HA0 = ::acos(
  1019 //          (sin(h0) - ::sin(fLatitude) * sin_sDec) /
  1020 //          (cos(fLatitude) * cos(sDec*DEG_RAD)))*RAD_DEG;
  1021 //
  1022 //        // When HA0 has been computed, leave it as it is for the Sun but multiply
  1023 //        // by 365.2422/366.2422 for stellar objects, to convert from sidereal to
  1024 //        // solar time.  Finally compute:
  1025 //        //
  1026 //        //    Rise time  =  MT - HA0
  1027 //        //    Set  time  =  MT + HA0
  1028 //        //
  1029 //        // convert the times from degrees to hours by dividing by 15.
  1030 //        //
  1031 //        // If you'd like to check that your calculations are accurate or just
  1032 //        // need a quick result, check the USNO's Sun or Moon Rise/Set Table,
  1033 //        // <URL:http://aa.usno.navy.mil/AA/data/docs/RS_OneYear.html>.
  1034 //
  1035 //        double result = MT + (rise ? -HA0 : HA0); // in degrees
  1036 //
  1037 //        // Find UT midnight on this day
  1038 //        long midnight = DAY_MS * (time / DAY_MS);
  1039 //
  1040 //        return midnight + (long) (result * 3600000 / 15);
  1041 //    }
  1043 //-------------------------------------------------------------------------
  1044 // The Moon
  1045 //-------------------------------------------------------------------------
  1047 #define moonL0  (318.351648 * CalendarAstronomer::PI/180 )   // Mean long. at epoch
  1048 #define moonP0 ( 36.340410 * CalendarAstronomer::PI/180 )   // Mean long. of perigee
  1049 #define moonN0 ( 318.510107 * CalendarAstronomer::PI/180 )   // Mean long. of node
  1050 #define moonI  (   5.145366 * CalendarAstronomer::PI/180 )   // Inclination of orbit
  1051 #define moonE  (   0.054900 )            // Eccentricity of orbit
  1053 // These aren't used right now
  1054 #define moonA  (   3.84401e5 )           // semi-major axis (km)
  1055 #define moonT0 (   0.5181 * CalendarAstronomer::PI/180 )     // Angular size at distance A
  1056 #define moonPi (   0.9507 * CalendarAstronomer::PI/180 )     // Parallax at distance A
  1058 /**
  1059  * The position of the moon at the time set on this
  1060  * object, in equatorial coordinates.
  1061  * @internal
  1062  * @deprecated ICU 2.4. This class may be removed or modified.
  1063  */
  1064 const CalendarAstronomer::Equatorial& CalendarAstronomer::getMoonPosition()
  1066     //
  1067     // See page 142 of "Practial Astronomy with your Calculator",
  1068     // by Peter Duffet-Smith, for details on the algorithm.
  1069     //
  1070     if (moonPositionSet == FALSE) {
  1071         // Calculate the solar longitude.  Has the side effect of
  1072         // filling in "meanAnomalySun" as well.
  1073         getSunLongitude();
  1075         //
  1076         // Find the # of days since the epoch of our orbital parameters.
  1077         // TODO: Convert the time of day portion into ephemeris time
  1078         //
  1079         double day = getJulianDay() - JD_EPOCH;       // Days since epoch
  1081         // Calculate the mean longitude and anomaly of the moon, based on
  1082         // a circular orbit.  Similar to the corresponding solar calculation.
  1083         double meanLongitude = norm2PI(13.1763966*PI/180*day + moonL0);
  1084         meanAnomalyMoon = norm2PI(meanLongitude - 0.1114041*PI/180 * day - moonP0);
  1086         //
  1087         // Calculate the following corrections:
  1088         //  Evection:   the sun's gravity affects the moon's eccentricity
  1089         //  Annual Eqn: variation in the effect due to earth-sun distance
  1090         //  A3:         correction factor (for ???)
  1091         //
  1092         double evection = 1.2739*PI/180 * ::sin(2 * (meanLongitude - sunLongitude)
  1093             - meanAnomalyMoon);
  1094         double annual   = 0.1858*PI/180 * ::sin(meanAnomalySun);
  1095         double a3       = 0.3700*PI/180 * ::sin(meanAnomalySun);
  1097         meanAnomalyMoon += evection - annual - a3;
  1099         //
  1100         // More correction factors:
  1101         //  center  equation of the center correction
  1102         //  a4      yet another error correction (???)
  1103         //
  1104         // TODO: Skip the equation of the center correction and solve Kepler's eqn?
  1105         //
  1106         double center = 6.2886*PI/180 * ::sin(meanAnomalyMoon);
  1107         double a4 =     0.2140*PI/180 * ::sin(2 * meanAnomalyMoon);
  1109         // Now find the moon's corrected longitude
  1110         moonLongitude = meanLongitude + evection + center - annual + a4;
  1112         //
  1113         // And finally, find the variation, caused by the fact that the sun's
  1114         // gravitational pull on the moon varies depending on which side of
  1115         // the earth the moon is on
  1116         //
  1117         double variation = 0.6583*CalendarAstronomer::PI/180 * ::sin(2*(moonLongitude - sunLongitude));
  1119         moonLongitude += variation;
  1121         //
  1122         // What we've calculated so far is the moon's longitude in the plane
  1123         // of its own orbit.  Now map to the ecliptic to get the latitude
  1124         // and longitude.  First we need to find the longitude of the ascending
  1125         // node, the position on the ecliptic where it is crossed by the moon's
  1126         // orbit as it crosses from the southern to the northern hemisphere.
  1127         //
  1128         double nodeLongitude = norm2PI(moonN0 - 0.0529539*PI/180 * day);
  1130         nodeLongitude -= 0.16*PI/180 * ::sin(meanAnomalySun);
  1132         double y = ::sin(moonLongitude - nodeLongitude);
  1133         double x = cos(moonLongitude - nodeLongitude);
  1135         moonEclipLong = ::atan2(y*cos(moonI), x) + nodeLongitude;
  1136         double moonEclipLat = ::asin(y * ::sin(moonI));
  1138         eclipticToEquatorial(moonPosition, moonEclipLong, moonEclipLat);
  1139         moonPositionSet = TRUE;
  1141     return moonPosition;
  1144 /**
  1145  * The "age" of the moon at the time specified in this object.
  1146  * This is really the angle between the
  1147  * current ecliptic longitudes of the sun and the moon,
  1148  * measured in radians.
  1150  * @see #getMoonPhase
  1151  * @internal
  1152  * @deprecated ICU 2.4. This class may be removed or modified.
  1153  */
  1154 double CalendarAstronomer::getMoonAge() {
  1155     // See page 147 of "Practial Astronomy with your Calculator",
  1156     // by Peter Duffet-Smith, for details on the algorithm.
  1157     //
  1158     // Force the moon's position to be calculated.  We're going to use
  1159     // some the intermediate results cached during that calculation.
  1160     //
  1161     getMoonPosition();
  1163     return norm2PI(moonEclipLong - sunLongitude);
  1166 /**
  1167  * Calculate the phase of the moon at the time set in this object.
  1168  * The returned phase is a <code>double</code> in the range
  1169  * <code>0 <= phase < 1</code>, interpreted as follows:
  1170  * <ul>
  1171  * <li>0.00: New moon
  1172  * <li>0.25: First quarter
  1173  * <li>0.50: Full moon
  1174  * <li>0.75: Last quarter
  1175  * </ul>
  1177  * @see #getMoonAge
  1178  * @internal
  1179  * @deprecated ICU 2.4. This class may be removed or modified.
  1180  */
  1181 double CalendarAstronomer::getMoonPhase() {
  1182     // See page 147 of "Practial Astronomy with your Calculator",
  1183     // by Peter Duffet-Smith, for details on the algorithm.
  1184     return 0.5 * (1 - cos(getMoonAge()));
  1187 /**
  1188  * Constant representing a new moon.
  1189  * For use with {@link #getMoonTime getMoonTime}
  1190  * @internal
  1191  * @deprecated ICU 2.4. This class may be removed or modified.
  1192  */
  1193 const CalendarAstronomer::MoonAge CalendarAstronomer::NEW_MOON() {
  1194     return  CalendarAstronomer::MoonAge(0);
  1197 /**
  1198  * Constant representing the moon's first quarter.
  1199  * For use with {@link #getMoonTime getMoonTime}
  1200  * @internal
  1201  * @deprecated ICU 2.4. This class may be removed or modified.
  1202  */
  1203 /*const CalendarAstronomer::MoonAge CalendarAstronomer::FIRST_QUARTER() {
  1204   return   CalendarAstronomer::MoonAge(CalendarAstronomer::PI/2);
  1205 }*/
  1207 /**
  1208  * Constant representing a full moon.
  1209  * For use with {@link #getMoonTime getMoonTime}
  1210  * @internal
  1211  * @deprecated ICU 2.4. This class may be removed or modified.
  1212  */
  1213 const CalendarAstronomer::MoonAge CalendarAstronomer::FULL_MOON() {
  1214     return   CalendarAstronomer::MoonAge(CalendarAstronomer::PI);
  1216 /**
  1217  * Constant representing the moon's last quarter.
  1218  * For use with {@link #getMoonTime getMoonTime}
  1219  * @internal
  1220  * @deprecated ICU 2.4. This class may be removed or modified.
  1221  */
  1223 class MoonTimeAngleFunc : public CalendarAstronomer::AngleFunc {
  1224 public:
  1225     virtual ~MoonTimeAngleFunc();
  1226     virtual double eval(CalendarAstronomer&a) { return a.getMoonAge(); }
  1227 };
  1229 MoonTimeAngleFunc::~MoonTimeAngleFunc() {}
  1231 /*const CalendarAstronomer::MoonAge CalendarAstronomer::LAST_QUARTER() {
  1232   return  CalendarAstronomer::MoonAge((CalendarAstronomer::PI*3)/2);
  1233 }*/
  1235 /**
  1236  * Find the next or previous time at which the Moon's ecliptic
  1237  * longitude will have the desired value.
  1238  * <p>
  1239  * @param desired   The desired longitude.
  1240  * @param next      <tt>true</tt> if the next occurrance of the phase
  1241  *                  is desired, <tt>false</tt> for the previous occurrance.
  1242  * @internal
  1243  * @deprecated ICU 2.4. This class may be removed or modified.
  1244  */
  1245 UDate CalendarAstronomer::getMoonTime(double desired, UBool next)
  1247     MoonTimeAngleFunc func;
  1248     return timeOfAngle( func,
  1249                         desired,
  1250                         SYNODIC_MONTH,
  1251                         MINUTE_MS,
  1252                         next);
  1255 /**
  1256  * Find the next or previous time at which the moon will be in the
  1257  * desired phase.
  1258  * <p>
  1259  * @param desired   The desired phase of the moon.
  1260  * @param next      <tt>true</tt> if the next occurrance of the phase
  1261  *                  is desired, <tt>false</tt> for the previous occurrance.
  1262  * @internal
  1263  * @deprecated ICU 2.4. This class may be removed or modified.
  1264  */
  1265 UDate CalendarAstronomer::getMoonTime(const CalendarAstronomer::MoonAge& desired, UBool next) {
  1266     return getMoonTime(desired.value, next);
  1269 class MoonRiseSetCoordFunc : public CalendarAstronomer::CoordFunc {
  1270 public:
  1271     virtual ~MoonRiseSetCoordFunc();
  1272     virtual void eval(CalendarAstronomer::Equatorial& result, CalendarAstronomer&a) { result = a.getMoonPosition(); }
  1273 };
  1275 MoonRiseSetCoordFunc::~MoonRiseSetCoordFunc() {}
  1277 /**
  1278  * Returns the time (GMT) of sunrise or sunset on the local date to which
  1279  * this calendar is currently set.
  1280  * @internal
  1281  * @deprecated ICU 2.4. This class may be removed or modified.
  1282  */
  1283 UDate CalendarAstronomer::getMoonRiseSet(UBool rise)
  1285     MoonRiseSetCoordFunc func;
  1286     return riseOrSet(func,
  1287                      rise,
  1288                      .533 * DEG_RAD,        // Angular Diameter
  1289                      34 /60.0 * DEG_RAD,    // Refraction correction
  1290                      MINUTE_MS);            // Desired accuracy
  1293 //-------------------------------------------------------------------------
  1294 // Interpolation methods for finding the time at which a given event occurs
  1295 //-------------------------------------------------------------------------
  1297 UDate CalendarAstronomer::timeOfAngle(AngleFunc& func, double desired,
  1298                                       double periodDays, double epsilon, UBool next)
  1300     // Find the value of the function at the current time
  1301     double lastAngle = func.eval(*this);
  1303     // Find out how far we are from the desired angle
  1304     double deltaAngle = norm2PI(desired - lastAngle) ;
  1306     // Using the average period, estimate the next (or previous) time at
  1307     // which the desired angle occurs.
  1308     double deltaT =  (deltaAngle + (next ? 0.0 : - CalendarAstronomer_PI2 )) * (periodDays*DAY_MS) / CalendarAstronomer_PI2;
  1310     double lastDeltaT = deltaT; // Liu
  1311     UDate startTime = fTime; // Liu
  1313     setTime(fTime + uprv_ceil(deltaT));
  1315     // Now iterate until we get the error below epsilon.  Throughout
  1316     // this loop we use normPI to get values in the range -Pi to Pi,
  1317     // since we're using them as correction factors rather than absolute angles.
  1318     do {
  1319         // Evaluate the function at the time we've estimated
  1320         double angle = func.eval(*this);
  1322         // Find the # of milliseconds per radian at this point on the curve
  1323         double factor = uprv_fabs(deltaT / normPI(angle-lastAngle));
  1325         // Correct the time estimate based on how far off the angle is
  1326         deltaT = normPI(desired - angle) * factor;
  1328         // HACK:
  1329         //
  1330         // If abs(deltaT) begins to diverge we need to quit this loop.
  1331         // This only appears to happen when attempting to locate, for
  1332         // example, a new moon on the day of the new moon.  E.g.:
  1333         //
  1334         // This result is correct:
  1335         // newMoon(7508(Mon Jul 23 00:00:00 CST 1990,false))=
  1336         //   Sun Jul 22 10:57:41 CST 1990
  1337         //
  1338         // But attempting to make the same call a day earlier causes deltaT
  1339         // to diverge:
  1340         // CalendarAstronomer.timeOfAngle() diverging: 1.348508727575625E9 ->
  1341         //   1.3649828540224032E9
  1342         // newMoon(7507(Sun Jul 22 00:00:00 CST 1990,false))=
  1343         //   Sun Jul 08 13:56:15 CST 1990
  1344         //
  1345         // As a temporary solution, we catch this specific condition and
  1346         // adjust our start time by one eighth period days (either forward
  1347         // or backward) and try again.
  1348         // Liu 11/9/00
  1349         if (uprv_fabs(deltaT) > uprv_fabs(lastDeltaT)) {
  1350             double delta = uprv_ceil (periodDays * DAY_MS / 8.0);
  1351             setTime(startTime + (next ? delta : -delta));
  1352             return timeOfAngle(func, desired, periodDays, epsilon, next);
  1355         lastDeltaT = deltaT;
  1356         lastAngle = angle;
  1358         setTime(fTime + uprv_ceil(deltaT));
  1360     while (uprv_fabs(deltaT) > epsilon);
  1362     return fTime;
  1365 UDate CalendarAstronomer::riseOrSet(CoordFunc& func, UBool rise,
  1366                                     double diameter, double refraction,
  1367                                     double epsilon)
  1369     Equatorial pos;
  1370     double      tanL   = ::tan(fLatitude);
  1371     double     deltaT = 0;
  1372     int32_t         count = 0;
  1374     //
  1375     // Calculate the object's position at the current time, then use that
  1376     // position to calculate the time of rising or setting.  The position
  1377     // will be different at that time, so iterate until the error is allowable.
  1378     //
  1379     U_DEBUG_ASTRO_MSG(("setup rise=%s, dia=%.3lf, ref=%.3lf, eps=%.3lf\n",
  1380         rise?"T":"F", diameter, refraction, epsilon));
  1381     do {
  1382         // See "Practical Astronomy With Your Calculator, section 33.
  1383         func.eval(pos, *this);
  1384         double angle = ::acos(-tanL * ::tan(pos.declination));
  1385         double lst = ((rise ? CalendarAstronomer_PI2-angle : angle) + pos.ascension ) * 24 / CalendarAstronomer_PI2;
  1387         // Convert from LST to Universal Time.
  1388         UDate newTime = lstToUT( lst );
  1390         deltaT = newTime - fTime;
  1391         setTime(newTime);
  1392         U_DEBUG_ASTRO_MSG(("%d] dT=%.3lf, angle=%.3lf, lst=%.3lf,   A=%.3lf/D=%.3lf\n",
  1393             count, deltaT, angle, lst, pos.ascension, pos.declination));
  1395     while (++ count < 5 && uprv_fabs(deltaT) > epsilon);
  1397     // Calculate the correction due to refraction and the object's angular diameter
  1398     double cosD  = ::cos(pos.declination);
  1399     double psi   = ::acos(sin(fLatitude) / cosD);
  1400     double x     = diameter / 2 + refraction;
  1401     double y     = ::asin(sin(x) / ::sin(psi));
  1402     long  delta  = (long)((240 * y * RAD_DEG / cosD)*SECOND_MS);
  1404     return fTime + (rise ? -delta : delta);
  1406 											   /**
  1407  * Return the obliquity of the ecliptic (the angle between the ecliptic
  1408  * and the earth's equator) at the current time.  This varies due to
  1409  * the precession of the earth's axis.
  1411  * @return  the obliquity of the ecliptic relative to the equator,
  1412  *          measured in radians.
  1413  */
  1414 double CalendarAstronomer::eclipticObliquity() {
  1415     if (isINVALID(eclipObliquity)) {
  1416         const double epoch = 2451545.0;     // 2000 AD, January 1.5
  1418         double T = (getJulianDay() - epoch) / 36525;
  1420         eclipObliquity = 23.439292
  1421             - 46.815/3600 * T
  1422             - 0.0006/3600 * T*T
  1423             + 0.00181/3600 * T*T*T;
  1425         eclipObliquity *= DEG_RAD;
  1427     return eclipObliquity;
  1431 //-------------------------------------------------------------------------
  1432 // Private data
  1433 //-------------------------------------------------------------------------
  1434 void CalendarAstronomer::clearCache() {
  1435     const double INVALID = uprv_getNaN();
  1437     julianDay       = INVALID;
  1438     julianCentury   = INVALID;
  1439     sunLongitude    = INVALID;
  1440     meanAnomalySun  = INVALID;
  1441     moonLongitude   = INVALID;
  1442     moonEclipLong   = INVALID;
  1443     meanAnomalyMoon = INVALID;
  1444     eclipObliquity  = INVALID;
  1445     siderealTime    = INVALID;
  1446     siderealT0      = INVALID;
  1447     moonPositionSet = FALSE;
  1450 //private static void out(String s) {
  1451 //    System.out.println(s);
  1452 //}
  1454 //private static String deg(double rad) {
  1455 //    return Double.toString(rad * RAD_DEG);
  1456 //}
  1458 //private static String hours(long ms) {
  1459 //    return Double.toString((double)ms / HOUR_MS) + " hours";
  1460 //}
  1462 /**
  1463  * @internal
  1464  * @deprecated ICU 2.4. This class may be removed or modified.
  1465  */
  1466 /*UDate CalendarAstronomer::local(UDate localMillis) {
  1467   // TODO - srl ?
  1468   TimeZone *tz = TimeZone::createDefault();
  1469   int32_t rawOffset;
  1470   int32_t dstOffset;
  1471   UErrorCode status = U_ZERO_ERROR;
  1472   tz->getOffset(localMillis, TRUE, rawOffset, dstOffset, status);
  1473   delete tz;
  1474   return localMillis - rawOffset;
  1475 }*/
  1477 // Debugging functions
  1478 UnicodeString CalendarAstronomer::Ecliptic::toString() const
  1480 #ifdef U_DEBUG_ASTRO
  1481     char tmp[800];
  1482     sprintf(tmp, "[%.5f,%.5f]", longitude*RAD_DEG, latitude*RAD_DEG);
  1483     return UnicodeString(tmp, "");
  1484 #else
  1485     return UnicodeString();
  1486 #endif
  1489 UnicodeString CalendarAstronomer::Equatorial::toString() const
  1491 #ifdef U_DEBUG_ASTRO
  1492     char tmp[400];
  1493     sprintf(tmp, "%f,%f",
  1494         (ascension*RAD_DEG), (declination*RAD_DEG));
  1495     return UnicodeString(tmp, "");
  1496 #else
  1497     return UnicodeString();
  1498 #endif
  1501 UnicodeString CalendarAstronomer::Horizon::toString() const
  1503 #ifdef U_DEBUG_ASTRO
  1504     char tmp[800];
  1505     sprintf(tmp, "[%.5f,%.5f]", altitude*RAD_DEG, azimuth*RAD_DEG);
  1506     return UnicodeString(tmp, "");
  1507 #else
  1508     return UnicodeString();
  1509 #endif
  1513 //  static private String radToHms(double angle) {
  1514 //    int hrs = (int) (angle*RAD_HOUR);
  1515 //    int min = (int)((angle*RAD_HOUR - hrs) * 60);
  1516 //    int sec = (int)((angle*RAD_HOUR - hrs - min/60.0) * 3600);
  1518 //    return Integer.toString(hrs) + "h" + min + "m" + sec + "s";
  1519 //  }
  1521 //  static private String radToDms(double angle) {
  1522 //    int deg = (int) (angle*RAD_DEG);
  1523 //    int min = (int)((angle*RAD_DEG - deg) * 60);
  1524 //    int sec = (int)((angle*RAD_DEG - deg - min/60.0) * 3600);
  1526 //    return Integer.toString(deg) + "\u00b0" + min + "'" + sec + "\"";
  1527 //  }
  1529 // =============== Calendar Cache ================
  1531 void CalendarCache::createCache(CalendarCache** cache, UErrorCode& status) {
  1532     ucln_i18n_registerCleanup(UCLN_I18N_ASTRO_CALENDAR, calendar_astro_cleanup);
  1533     if(cache == NULL) {
  1534         status = U_MEMORY_ALLOCATION_ERROR;
  1535     } else {
  1536         *cache = new CalendarCache(32, status);
  1537         if(U_FAILURE(status)) {
  1538             delete *cache;
  1539             *cache = NULL;
  1544 int32_t CalendarCache::get(CalendarCache** cache, int32_t key, UErrorCode &status) {
  1545     int32_t res;
  1547     if(U_FAILURE(status)) {
  1548         return 0;
  1550     umtx_lock(&ccLock);
  1552     if(*cache == NULL) {
  1553         createCache(cache, status);
  1554         if(U_FAILURE(status)) {
  1555             umtx_unlock(&ccLock);
  1556             return 0;
  1560     res = uhash_igeti((*cache)->fTable, key);
  1561     U_DEBUG_ASTRO_MSG(("%p: GET: [%d] == %d\n", (*cache)->fTable, key, res));
  1563     umtx_unlock(&ccLock);
  1564     return res;
  1567 void CalendarCache::put(CalendarCache** cache, int32_t key, int32_t value, UErrorCode &status) {
  1568     if(U_FAILURE(status)) {
  1569         return;
  1571     umtx_lock(&ccLock);
  1573     if(*cache == NULL) {
  1574         createCache(cache, status);
  1575         if(U_FAILURE(status)) {
  1576             umtx_unlock(&ccLock);
  1577             return;
  1581     uhash_iputi((*cache)->fTable, key, value, &status);
  1582     U_DEBUG_ASTRO_MSG(("%p: PUT: [%d] := %d\n", (*cache)->fTable, key, value));
  1584     umtx_unlock(&ccLock);
  1587 CalendarCache::CalendarCache(int32_t size, UErrorCode &status) {
  1588     fTable = uhash_openSize(uhash_hashLong, uhash_compareLong, NULL, size, &status);
  1589     U_DEBUG_ASTRO_MSG(("%p: Opening.\n", fTable));
  1592 CalendarCache::~CalendarCache() {
  1593     if(fTable != NULL) {
  1594         U_DEBUG_ASTRO_MSG(("%p: Closing.\n", fTable));
  1595         uhash_close(fTable);
  1599 U_NAMESPACE_END
  1601 #endif //  !UCONFIG_NO_FORMATTING

mercurial