|
1 /************************************************************************ |
|
2 * Copyright (C) 1996-2012, International Business Machines Corporation |
|
3 * and others. All Rights Reserved. |
|
4 ************************************************************************ |
|
5 * 2003-nov-07 srl Port from Java |
|
6 */ |
|
7 |
|
8 #include "astro.h" |
|
9 |
|
10 #if !UCONFIG_NO_FORMATTING |
|
11 |
|
12 #include "unicode/calendar.h" |
|
13 #include <math.h> |
|
14 #include <float.h> |
|
15 #include "unicode/putil.h" |
|
16 #include "uhash.h" |
|
17 #include "umutex.h" |
|
18 #include "ucln_in.h" |
|
19 #include "putilimp.h" |
|
20 #include <stdio.h> // for toString() |
|
21 |
|
22 #if defined (PI) |
|
23 #undef PI |
|
24 #endif |
|
25 |
|
26 #ifdef U_DEBUG_ASTRO |
|
27 # include "uresimp.h" // for debugging |
|
28 |
|
29 static void debug_astro_loc(const char *f, int32_t l) |
|
30 { |
|
31 fprintf(stderr, "%s:%d: ", f, l); |
|
32 } |
|
33 |
|
34 static void debug_astro_msg(const char *pat, ...) |
|
35 { |
|
36 va_list ap; |
|
37 va_start(ap, pat); |
|
38 vfprintf(stderr, pat, ap); |
|
39 fflush(stderr); |
|
40 } |
|
41 #include "unicode/datefmt.h" |
|
42 #include "unicode/ustring.h" |
|
43 static const char * debug_astro_date(UDate d) { |
|
44 static char gStrBuf[1024]; |
|
45 static DateFormat *df = NULL; |
|
46 if(df == NULL) { |
|
47 df = DateFormat::createDateTimeInstance(DateFormat::MEDIUM, DateFormat::MEDIUM, Locale::getUS()); |
|
48 df->adoptTimeZone(TimeZone::getGMT()->clone()); |
|
49 } |
|
50 UnicodeString str; |
|
51 df->format(d,str); |
|
52 u_austrncpy(gStrBuf,str.getTerminatedBuffer(),sizeof(gStrBuf)-1); |
|
53 return gStrBuf; |
|
54 } |
|
55 |
|
56 // must use double parens, i.e.: U_DEBUG_ASTRO_MSG(("four is: %d",4)); |
|
57 #define U_DEBUG_ASTRO_MSG(x) {debug_astro_loc(__FILE__,__LINE__);debug_astro_msg x;} |
|
58 #else |
|
59 #define U_DEBUG_ASTRO_MSG(x) |
|
60 #endif |
|
61 |
|
62 static inline UBool isINVALID(double d) { |
|
63 return(uprv_isNaN(d)); |
|
64 } |
|
65 |
|
66 static UMutex ccLock = U_MUTEX_INITIALIZER; |
|
67 |
|
68 U_CDECL_BEGIN |
|
69 static UBool calendar_astro_cleanup(void) { |
|
70 return TRUE; |
|
71 } |
|
72 U_CDECL_END |
|
73 |
|
74 U_NAMESPACE_BEGIN |
|
75 |
|
76 /** |
|
77 * The number of standard hours in one sidereal day. |
|
78 * Approximately 24.93. |
|
79 * @internal |
|
80 * @deprecated ICU 2.4. This class may be removed or modified. |
|
81 */ |
|
82 #define SIDEREAL_DAY (23.93446960027) |
|
83 |
|
84 /** |
|
85 * The number of sidereal hours in one mean solar day. |
|
86 * Approximately 24.07. |
|
87 * @internal |
|
88 * @deprecated ICU 2.4. This class may be removed or modified. |
|
89 */ |
|
90 #define SOLAR_DAY (24.065709816) |
|
91 |
|
92 /** |
|
93 * The average number of solar days from one new moon to the next. This is the time |
|
94 * it takes for the moon to return the same ecliptic longitude as the sun. |
|
95 * It is longer than the sidereal month because the sun's longitude increases |
|
96 * during the year due to the revolution of the earth around the sun. |
|
97 * Approximately 29.53. |
|
98 * |
|
99 * @see #SIDEREAL_MONTH |
|
100 * @internal |
|
101 * @deprecated ICU 2.4. This class may be removed or modified. |
|
102 */ |
|
103 const double CalendarAstronomer::SYNODIC_MONTH = 29.530588853; |
|
104 |
|
105 /** |
|
106 * The average number of days it takes |
|
107 * for the moon to return to the same ecliptic longitude relative to the |
|
108 * stellar background. This is referred to as the sidereal month. |
|
109 * It is shorter than the synodic month due to |
|
110 * the revolution of the earth around the sun. |
|
111 * Approximately 27.32. |
|
112 * |
|
113 * @see #SYNODIC_MONTH |
|
114 * @internal |
|
115 * @deprecated ICU 2.4. This class may be removed or modified. |
|
116 */ |
|
117 #define SIDEREAL_MONTH 27.32166 |
|
118 |
|
119 /** |
|
120 * The average number number of days between successive vernal equinoxes. |
|
121 * Due to the precession of the earth's |
|
122 * axis, this is not precisely the same as the sidereal year. |
|
123 * Approximately 365.24 |
|
124 * |
|
125 * @see #SIDEREAL_YEAR |
|
126 * @internal |
|
127 * @deprecated ICU 2.4. This class may be removed or modified. |
|
128 */ |
|
129 #define TROPICAL_YEAR 365.242191 |
|
130 |
|
131 /** |
|
132 * The average number of days it takes |
|
133 * for the sun to return to the same position against the fixed stellar |
|
134 * background. This is the duration of one orbit of the earth about the sun |
|
135 * as it would appear to an outside observer. |
|
136 * Due to the precession of the earth's |
|
137 * axis, this is not precisely the same as the tropical year. |
|
138 * Approximately 365.25. |
|
139 * |
|
140 * @see #TROPICAL_YEAR |
|
141 * @internal |
|
142 * @deprecated ICU 2.4. This class may be removed or modified. |
|
143 */ |
|
144 #define SIDEREAL_YEAR 365.25636 |
|
145 |
|
146 //------------------------------------------------------------------------- |
|
147 // Time-related constants |
|
148 //------------------------------------------------------------------------- |
|
149 |
|
150 /** |
|
151 * The number of milliseconds in one second. |
|
152 * @internal |
|
153 * @deprecated ICU 2.4. This class may be removed or modified. |
|
154 */ |
|
155 #define SECOND_MS U_MILLIS_PER_SECOND |
|
156 |
|
157 /** |
|
158 * The number of milliseconds in one minute. |
|
159 * @internal |
|
160 * @deprecated ICU 2.4. This class may be removed or modified. |
|
161 */ |
|
162 #define MINUTE_MS U_MILLIS_PER_MINUTE |
|
163 |
|
164 /** |
|
165 * The number of milliseconds in one hour. |
|
166 * @internal |
|
167 * @deprecated ICU 2.4. This class may be removed or modified. |
|
168 */ |
|
169 #define HOUR_MS U_MILLIS_PER_HOUR |
|
170 |
|
171 /** |
|
172 * The number of milliseconds in one day. |
|
173 * @internal |
|
174 * @deprecated ICU 2.4. This class may be removed or modified. |
|
175 */ |
|
176 #define DAY_MS U_MILLIS_PER_DAY |
|
177 |
|
178 /** |
|
179 * The start of the julian day numbering scheme used by astronomers, which |
|
180 * is 1/1/4713 BC (Julian), 12:00 GMT. This is given as the number of milliseconds |
|
181 * since 1/1/1970 AD (Gregorian), a negative number. |
|
182 * Note that julian day numbers and |
|
183 * the Julian calendar are <em>not</em> the same thing. Also note that |
|
184 * julian days start at <em>noon</em>, not midnight. |
|
185 * @internal |
|
186 * @deprecated ICU 2.4. This class may be removed or modified. |
|
187 */ |
|
188 #define JULIAN_EPOCH_MS -210866760000000.0 |
|
189 |
|
190 |
|
191 /** |
|
192 * Milliseconds value for 0.0 January 2000 AD. |
|
193 */ |
|
194 #define EPOCH_2000_MS 946598400000.0 |
|
195 |
|
196 //------------------------------------------------------------------------- |
|
197 // Assorted private data used for conversions |
|
198 //------------------------------------------------------------------------- |
|
199 |
|
200 // My own copies of these so compilers are more likely to optimize them away |
|
201 const double CalendarAstronomer::PI = 3.14159265358979323846; |
|
202 |
|
203 #define CalendarAstronomer_PI2 (CalendarAstronomer::PI*2.0) |
|
204 #define RAD_HOUR ( 12 / CalendarAstronomer::PI ) // radians -> hours |
|
205 #define DEG_RAD ( CalendarAstronomer::PI / 180 ) // degrees -> radians |
|
206 #define RAD_DEG ( 180 / CalendarAstronomer::PI ) // radians -> degrees |
|
207 |
|
208 /*** |
|
209 * Given 'value', add or subtract 'range' until 0 <= 'value' < range. |
|
210 * The modulus operator. |
|
211 */ |
|
212 inline static double normalize(double value, double range) { |
|
213 return value - range * ClockMath::floorDivide(value, range); |
|
214 } |
|
215 |
|
216 /** |
|
217 * Normalize an angle so that it's in the range 0 - 2pi. |
|
218 * For positive angles this is just (angle % 2pi), but the Java |
|
219 * mod operator doesn't work that way for negative numbers.... |
|
220 */ |
|
221 inline static double norm2PI(double angle) { |
|
222 return normalize(angle, CalendarAstronomer::PI * 2.0); |
|
223 } |
|
224 |
|
225 /** |
|
226 * Normalize an angle into the range -PI - PI |
|
227 */ |
|
228 inline static double normPI(double angle) { |
|
229 return normalize(angle + CalendarAstronomer::PI, CalendarAstronomer::PI * 2.0) - CalendarAstronomer::PI; |
|
230 } |
|
231 |
|
232 //------------------------------------------------------------------------- |
|
233 // Constructors |
|
234 //------------------------------------------------------------------------- |
|
235 |
|
236 /** |
|
237 * Construct a new <code>CalendarAstronomer</code> object that is initialized to |
|
238 * the current date and time. |
|
239 * @internal |
|
240 * @deprecated ICU 2.4. This class may be removed or modified. |
|
241 */ |
|
242 CalendarAstronomer::CalendarAstronomer(): |
|
243 fTime(Calendar::getNow()), fLongitude(0.0), fLatitude(0.0), fGmtOffset(0.0), moonPosition(0,0), moonPositionSet(FALSE) { |
|
244 clearCache(); |
|
245 } |
|
246 |
|
247 /** |
|
248 * Construct a new <code>CalendarAstronomer</code> object that is initialized to |
|
249 * the specified date and time. |
|
250 * @internal |
|
251 * @deprecated ICU 2.4. This class may be removed or modified. |
|
252 */ |
|
253 CalendarAstronomer::CalendarAstronomer(UDate d): fTime(d), fLongitude(0.0), fLatitude(0.0), fGmtOffset(0.0), moonPosition(0,0), moonPositionSet(FALSE) { |
|
254 clearCache(); |
|
255 } |
|
256 |
|
257 /** |
|
258 * Construct a new <code>CalendarAstronomer</code> object with the given |
|
259 * latitude and longitude. The object's time is set to the current |
|
260 * date and time. |
|
261 * <p> |
|
262 * @param longitude The desired longitude, in <em>degrees</em> east of |
|
263 * the Greenwich meridian. |
|
264 * |
|
265 * @param latitude The desired latitude, in <em>degrees</em>. Positive |
|
266 * values signify North, negative South. |
|
267 * |
|
268 * @see java.util.Date#getTime() |
|
269 * @internal |
|
270 * @deprecated ICU 2.4. This class may be removed or modified. |
|
271 */ |
|
272 CalendarAstronomer::CalendarAstronomer(double longitude, double latitude) : |
|
273 fTime(Calendar::getNow()), moonPosition(0,0), moonPositionSet(FALSE) { |
|
274 fLongitude = normPI(longitude * (double)DEG_RAD); |
|
275 fLatitude = normPI(latitude * (double)DEG_RAD); |
|
276 fGmtOffset = (double)(fLongitude * 24. * (double)HOUR_MS / (double)CalendarAstronomer_PI2); |
|
277 clearCache(); |
|
278 } |
|
279 |
|
280 CalendarAstronomer::~CalendarAstronomer() |
|
281 { |
|
282 } |
|
283 |
|
284 //------------------------------------------------------------------------- |
|
285 // Time and date getters and setters |
|
286 //------------------------------------------------------------------------- |
|
287 |
|
288 /** |
|
289 * Set the current date and time of this <code>CalendarAstronomer</code> object. All |
|
290 * astronomical calculations are performed based on this time setting. |
|
291 * |
|
292 * @param aTime the date and time, expressed as the number of milliseconds since |
|
293 * 1/1/1970 0:00 GMT (Gregorian). |
|
294 * |
|
295 * @see #setDate |
|
296 * @see #getTime |
|
297 * @internal |
|
298 * @deprecated ICU 2.4. This class may be removed or modified. |
|
299 */ |
|
300 void CalendarAstronomer::setTime(UDate aTime) { |
|
301 fTime = aTime; |
|
302 U_DEBUG_ASTRO_MSG(("setTime(%.1lf, %sL)\n", aTime, debug_astro_date(aTime+fGmtOffset))); |
|
303 clearCache(); |
|
304 } |
|
305 |
|
306 /** |
|
307 * Set the current date and time of this <code>CalendarAstronomer</code> object. All |
|
308 * astronomical calculations are performed based on this time setting. |
|
309 * |
|
310 * @param jdn the desired time, expressed as a "julian day number", |
|
311 * which is the number of elapsed days since |
|
312 * 1/1/4713 BC (Julian), 12:00 GMT. Note that julian day |
|
313 * numbers start at <em>noon</em>. To get the jdn for |
|
314 * the corresponding midnight, subtract 0.5. |
|
315 * |
|
316 * @see #getJulianDay |
|
317 * @see #JULIAN_EPOCH_MS |
|
318 * @internal |
|
319 * @deprecated ICU 2.4. This class may be removed or modified. |
|
320 */ |
|
321 void CalendarAstronomer::setJulianDay(double jdn) { |
|
322 fTime = (double)(jdn * DAY_MS) + JULIAN_EPOCH_MS; |
|
323 clearCache(); |
|
324 julianDay = jdn; |
|
325 } |
|
326 |
|
327 /** |
|
328 * Get the current time of this <code>CalendarAstronomer</code> object, |
|
329 * represented as the number of milliseconds since |
|
330 * 1/1/1970 AD 0:00 GMT (Gregorian). |
|
331 * |
|
332 * @see #setTime |
|
333 * @see #getDate |
|
334 * @internal |
|
335 * @deprecated ICU 2.4. This class may be removed or modified. |
|
336 */ |
|
337 UDate CalendarAstronomer::getTime() { |
|
338 return fTime; |
|
339 } |
|
340 |
|
341 /** |
|
342 * Get the current time of this <code>CalendarAstronomer</code> object, |
|
343 * expressed as a "julian day number", which is the number of elapsed |
|
344 * days since 1/1/4713 BC (Julian), 12:00 GMT. |
|
345 * |
|
346 * @see #setJulianDay |
|
347 * @see #JULIAN_EPOCH_MS |
|
348 * @internal |
|
349 * @deprecated ICU 2.4. This class may be removed or modified. |
|
350 */ |
|
351 double CalendarAstronomer::getJulianDay() { |
|
352 if (isINVALID(julianDay)) { |
|
353 julianDay = (fTime - (double)JULIAN_EPOCH_MS) / (double)DAY_MS; |
|
354 } |
|
355 return julianDay; |
|
356 } |
|
357 |
|
358 /** |
|
359 * Return this object's time expressed in julian centuries: |
|
360 * the number of centuries after 1/1/1900 AD, 12:00 GMT |
|
361 * |
|
362 * @see #getJulianDay |
|
363 * @internal |
|
364 * @deprecated ICU 2.4. This class may be removed or modified. |
|
365 */ |
|
366 double CalendarAstronomer::getJulianCentury() { |
|
367 if (isINVALID(julianCentury)) { |
|
368 julianCentury = (getJulianDay() - 2415020.0) / 36525.0; |
|
369 } |
|
370 return julianCentury; |
|
371 } |
|
372 |
|
373 /** |
|
374 * Returns the current Greenwich sidereal time, measured in hours |
|
375 * @internal |
|
376 * @deprecated ICU 2.4. This class may be removed or modified. |
|
377 */ |
|
378 double CalendarAstronomer::getGreenwichSidereal() { |
|
379 if (isINVALID(siderealTime)) { |
|
380 // See page 86 of "Practial Astronomy with your Calculator", |
|
381 // by Peter Duffet-Smith, for details on the algorithm. |
|
382 |
|
383 double UT = normalize(fTime/(double)HOUR_MS, 24.); |
|
384 |
|
385 siderealTime = normalize(getSiderealOffset() + UT*1.002737909, 24.); |
|
386 } |
|
387 return siderealTime; |
|
388 } |
|
389 |
|
390 double CalendarAstronomer::getSiderealOffset() { |
|
391 if (isINVALID(siderealT0)) { |
|
392 double JD = uprv_floor(getJulianDay() - 0.5) + 0.5; |
|
393 double S = JD - 2451545.0; |
|
394 double T = S / 36525.0; |
|
395 siderealT0 = normalize(6.697374558 + 2400.051336*T + 0.000025862*T*T, 24); |
|
396 } |
|
397 return siderealT0; |
|
398 } |
|
399 |
|
400 /** |
|
401 * Returns the current local sidereal time, measured in hours |
|
402 * @internal |
|
403 * @deprecated ICU 2.4. This class may be removed or modified. |
|
404 */ |
|
405 double CalendarAstronomer::getLocalSidereal() { |
|
406 return normalize(getGreenwichSidereal() + (fGmtOffset/(double)HOUR_MS), 24.); |
|
407 } |
|
408 |
|
409 /** |
|
410 * Converts local sidereal time to Universal Time. |
|
411 * |
|
412 * @param lst The Local Sidereal Time, in hours since sidereal midnight |
|
413 * on this object's current date. |
|
414 * |
|
415 * @return The corresponding Universal Time, in milliseconds since |
|
416 * 1 Jan 1970, GMT. |
|
417 */ |
|
418 double CalendarAstronomer::lstToUT(double lst) { |
|
419 // Convert to local mean time |
|
420 double lt = normalize((lst - getSiderealOffset()) * 0.9972695663, 24); |
|
421 |
|
422 // Then find local midnight on this day |
|
423 double base = (DAY_MS * ClockMath::floorDivide(fTime + fGmtOffset,(double)DAY_MS)) - fGmtOffset; |
|
424 |
|
425 //out(" lt =" + lt + " hours"); |
|
426 //out(" base=" + new Date(base)); |
|
427 |
|
428 return base + (long)(lt * HOUR_MS); |
|
429 } |
|
430 |
|
431 |
|
432 //------------------------------------------------------------------------- |
|
433 // Coordinate transformations, all based on the current time of this object |
|
434 //------------------------------------------------------------------------- |
|
435 |
|
436 /** |
|
437 * Convert from ecliptic to equatorial coordinates. |
|
438 * |
|
439 * @param ecliptic A point in the sky in ecliptic coordinates. |
|
440 * @return The corresponding point in equatorial coordinates. |
|
441 * @internal |
|
442 * @deprecated ICU 2.4. This class may be removed or modified. |
|
443 */ |
|
444 CalendarAstronomer::Equatorial& CalendarAstronomer::eclipticToEquatorial(CalendarAstronomer::Equatorial& result, const CalendarAstronomer::Ecliptic& ecliptic) |
|
445 { |
|
446 return eclipticToEquatorial(result, ecliptic.longitude, ecliptic.latitude); |
|
447 } |
|
448 |
|
449 /** |
|
450 * Convert from ecliptic to equatorial coordinates. |
|
451 * |
|
452 * @param eclipLong The ecliptic longitude |
|
453 * @param eclipLat The ecliptic latitude |
|
454 * |
|
455 * @return The corresponding point in equatorial coordinates. |
|
456 * @internal |
|
457 * @deprecated ICU 2.4. This class may be removed or modified. |
|
458 */ |
|
459 CalendarAstronomer::Equatorial& CalendarAstronomer::eclipticToEquatorial(CalendarAstronomer::Equatorial& result, double eclipLong, double eclipLat) |
|
460 { |
|
461 // See page 42 of "Practial Astronomy with your Calculator", |
|
462 // by Peter Duffet-Smith, for details on the algorithm. |
|
463 |
|
464 double obliq = eclipticObliquity(); |
|
465 double sinE = ::sin(obliq); |
|
466 double cosE = cos(obliq); |
|
467 |
|
468 double sinL = ::sin(eclipLong); |
|
469 double cosL = cos(eclipLong); |
|
470 |
|
471 double sinB = ::sin(eclipLat); |
|
472 double cosB = cos(eclipLat); |
|
473 double tanB = tan(eclipLat); |
|
474 |
|
475 result.set(atan2(sinL*cosE - tanB*sinE, cosL), |
|
476 asin(sinB*cosE + cosB*sinE*sinL) ); |
|
477 return result; |
|
478 } |
|
479 |
|
480 /** |
|
481 * Convert from ecliptic longitude to equatorial coordinates. |
|
482 * |
|
483 * @param eclipLong The ecliptic longitude |
|
484 * |
|
485 * @return The corresponding point in equatorial coordinates. |
|
486 * @internal |
|
487 * @deprecated ICU 2.4. This class may be removed or modified. |
|
488 */ |
|
489 CalendarAstronomer::Equatorial& CalendarAstronomer::eclipticToEquatorial(CalendarAstronomer::Equatorial& result, double eclipLong) |
|
490 { |
|
491 return eclipticToEquatorial(result, eclipLong, 0); // TODO: optimize |
|
492 } |
|
493 |
|
494 /** |
|
495 * @internal |
|
496 * @deprecated ICU 2.4. This class may be removed or modified. |
|
497 */ |
|
498 CalendarAstronomer::Horizon& CalendarAstronomer::eclipticToHorizon(CalendarAstronomer::Horizon& result, double eclipLong) |
|
499 { |
|
500 Equatorial equatorial; |
|
501 eclipticToEquatorial(equatorial, eclipLong); |
|
502 |
|
503 double H = getLocalSidereal()*CalendarAstronomer::PI/12 - equatorial.ascension; // Hour-angle |
|
504 |
|
505 double sinH = ::sin(H); |
|
506 double cosH = cos(H); |
|
507 double sinD = ::sin(equatorial.declination); |
|
508 double cosD = cos(equatorial.declination); |
|
509 double sinL = ::sin(fLatitude); |
|
510 double cosL = cos(fLatitude); |
|
511 |
|
512 double altitude = asin(sinD*sinL + cosD*cosL*cosH); |
|
513 double azimuth = atan2(-cosD*cosL*sinH, sinD - sinL * ::sin(altitude)); |
|
514 |
|
515 result.set(azimuth, altitude); |
|
516 return result; |
|
517 } |
|
518 |
|
519 |
|
520 //------------------------------------------------------------------------- |
|
521 // The Sun |
|
522 //------------------------------------------------------------------------- |
|
523 |
|
524 // |
|
525 // Parameters of the Sun's orbit as of the epoch Jan 0.0 1990 |
|
526 // Angles are in radians (after multiplying by CalendarAstronomer::PI/180) |
|
527 // |
|
528 #define JD_EPOCH 2447891.5 // Julian day of epoch |
|
529 |
|
530 #define SUN_ETA_G (279.403303 * CalendarAstronomer::PI/180) // Ecliptic longitude at epoch |
|
531 #define SUN_OMEGA_G (282.768422 * CalendarAstronomer::PI/180) // Ecliptic longitude of perigee |
|
532 #define SUN_E 0.016713 // Eccentricity of orbit |
|
533 //double sunR0 1.495585e8 // Semi-major axis in KM |
|
534 //double sunTheta0 (0.533128 * CalendarAstronomer::PI/180) // Angular diameter at R0 |
|
535 |
|
536 // The following three methods, which compute the sun parameters |
|
537 // given above for an arbitrary epoch (whatever time the object is |
|
538 // set to), make only a small difference as compared to using the |
|
539 // above constants. E.g., Sunset times might differ by ~12 |
|
540 // seconds. Furthermore, the eta-g computation is befuddled by |
|
541 // Duffet-Smith's incorrect coefficients (p.86). I've corrected |
|
542 // the first-order coefficient but the others may be off too - no |
|
543 // way of knowing without consulting another source. |
|
544 |
|
545 // /** |
|
546 // * Return the sun's ecliptic longitude at perigee for the current time. |
|
547 // * See Duffett-Smith, p. 86. |
|
548 // * @return radians |
|
549 // */ |
|
550 // private double getSunOmegaG() { |
|
551 // double T = getJulianCentury(); |
|
552 // return (281.2208444 + (1.719175 + 0.000452778*T)*T) * DEG_RAD; |
|
553 // } |
|
554 |
|
555 // /** |
|
556 // * Return the sun's ecliptic longitude for the current time. |
|
557 // * See Duffett-Smith, p. 86. |
|
558 // * @return radians |
|
559 // */ |
|
560 // private double getSunEtaG() { |
|
561 // double T = getJulianCentury(); |
|
562 // //return (279.6966778 + (36000.76892 + 0.0003025*T)*T) * DEG_RAD; |
|
563 // // |
|
564 // // The above line is from Duffett-Smith, and yields manifestly wrong |
|
565 // // results. The below constant is derived empirically to match the |
|
566 // // constant he gives for the 1990 EPOCH. |
|
567 // // |
|
568 // return (279.6966778 + (-0.3262541582718024 + 0.0003025*T)*T) * DEG_RAD; |
|
569 // } |
|
570 |
|
571 // /** |
|
572 // * Return the sun's eccentricity of orbit for the current time. |
|
573 // * See Duffett-Smith, p. 86. |
|
574 // * @return double |
|
575 // */ |
|
576 // private double getSunE() { |
|
577 // double T = getJulianCentury(); |
|
578 // return 0.01675104 - (0.0000418 + 0.000000126*T)*T; |
|
579 // } |
|
580 |
|
581 /** |
|
582 * Find the "true anomaly" (longitude) of an object from |
|
583 * its mean anomaly and the eccentricity of its orbit. This uses |
|
584 * an iterative solution to Kepler's equation. |
|
585 * |
|
586 * @param meanAnomaly The object's longitude calculated as if it were in |
|
587 * a regular, circular orbit, measured in radians |
|
588 * from the point of perigee. |
|
589 * |
|
590 * @param eccentricity The eccentricity of the orbit |
|
591 * |
|
592 * @return The true anomaly (longitude) measured in radians |
|
593 */ |
|
594 static double trueAnomaly(double meanAnomaly, double eccentricity) |
|
595 { |
|
596 // First, solve Kepler's equation iteratively |
|
597 // Duffett-Smith, p.90 |
|
598 double delta; |
|
599 double E = meanAnomaly; |
|
600 do { |
|
601 delta = E - eccentricity * ::sin(E) - meanAnomaly; |
|
602 E = E - delta / (1 - eccentricity * ::cos(E)); |
|
603 } |
|
604 while (uprv_fabs(delta) > 1e-5); // epsilon = 1e-5 rad |
|
605 |
|
606 return 2.0 * ::atan( ::tan(E/2) * ::sqrt( (1+eccentricity) |
|
607 /(1-eccentricity) ) ); |
|
608 } |
|
609 |
|
610 /** |
|
611 * The longitude of the sun at the time specified by this object. |
|
612 * The longitude is measured in radians along the ecliptic |
|
613 * from the "first point of Aries," the point at which the ecliptic |
|
614 * crosses the earth's equatorial plane at the vernal equinox. |
|
615 * <p> |
|
616 * Currently, this method uses an approximation of the two-body Kepler's |
|
617 * equation for the earth and the sun. It does not take into account the |
|
618 * perturbations caused by the other planets, the moon, etc. |
|
619 * @internal |
|
620 * @deprecated ICU 2.4. This class may be removed or modified. |
|
621 */ |
|
622 double CalendarAstronomer::getSunLongitude() |
|
623 { |
|
624 // See page 86 of "Practial Astronomy with your Calculator", |
|
625 // by Peter Duffet-Smith, for details on the algorithm. |
|
626 |
|
627 if (isINVALID(sunLongitude)) { |
|
628 getSunLongitude(getJulianDay(), sunLongitude, meanAnomalySun); |
|
629 } |
|
630 return sunLongitude; |
|
631 } |
|
632 |
|
633 /** |
|
634 * TODO Make this public when the entire class is package-private. |
|
635 */ |
|
636 /*public*/ void CalendarAstronomer::getSunLongitude(double jDay, double &longitude, double &meanAnomaly) |
|
637 { |
|
638 // See page 86 of "Practial Astronomy with your Calculator", |
|
639 // by Peter Duffet-Smith, for details on the algorithm. |
|
640 |
|
641 double day = jDay - JD_EPOCH; // Days since epoch |
|
642 |
|
643 // Find the angular distance the sun in a fictitious |
|
644 // circular orbit has travelled since the epoch. |
|
645 double epochAngle = norm2PI(CalendarAstronomer_PI2/TROPICAL_YEAR*day); |
|
646 |
|
647 // The epoch wasn't at the sun's perigee; find the angular distance |
|
648 // since perigee, which is called the "mean anomaly" |
|
649 meanAnomaly = norm2PI(epochAngle + SUN_ETA_G - SUN_OMEGA_G); |
|
650 |
|
651 // Now find the "true anomaly", e.g. the real solar longitude |
|
652 // by solving Kepler's equation for an elliptical orbit |
|
653 // NOTE: The 3rd ed. of the book lists omega_g and eta_g in different |
|
654 // equations; omega_g is to be correct. |
|
655 longitude = norm2PI(trueAnomaly(meanAnomaly, SUN_E) + SUN_OMEGA_G); |
|
656 } |
|
657 |
|
658 /** |
|
659 * The position of the sun at this object's current date and time, |
|
660 * in equatorial coordinates. |
|
661 * @internal |
|
662 * @deprecated ICU 2.4. This class may be removed or modified. |
|
663 */ |
|
664 CalendarAstronomer::Equatorial& CalendarAstronomer::getSunPosition(CalendarAstronomer::Equatorial& result) { |
|
665 return eclipticToEquatorial(result, getSunLongitude(), 0); |
|
666 } |
|
667 |
|
668 |
|
669 /** |
|
670 * Constant representing the vernal equinox. |
|
671 * For use with {@link #getSunTime getSunTime}. |
|
672 * Note: In this case, "vernal" refers to the northern hemisphere's seasons. |
|
673 * @internal |
|
674 * @deprecated ICU 2.4. This class may be removed or modified. |
|
675 */ |
|
676 /*double CalendarAstronomer::VERNAL_EQUINOX() { |
|
677 return 0; |
|
678 }*/ |
|
679 |
|
680 /** |
|
681 * Constant representing the summer solstice. |
|
682 * For use with {@link #getSunTime getSunTime}. |
|
683 * Note: In this case, "summer" refers to the northern hemisphere's seasons. |
|
684 * @internal |
|
685 * @deprecated ICU 2.4. This class may be removed or modified. |
|
686 */ |
|
687 double CalendarAstronomer::SUMMER_SOLSTICE() { |
|
688 return (CalendarAstronomer::PI/2); |
|
689 } |
|
690 |
|
691 /** |
|
692 * Constant representing the autumnal equinox. |
|
693 * For use with {@link #getSunTime getSunTime}. |
|
694 * Note: In this case, "autumn" refers to the northern hemisphere's seasons. |
|
695 * @internal |
|
696 * @deprecated ICU 2.4. This class may be removed or modified. |
|
697 */ |
|
698 /*double CalendarAstronomer::AUTUMN_EQUINOX() { |
|
699 return (CalendarAstronomer::PI); |
|
700 }*/ |
|
701 |
|
702 /** |
|
703 * Constant representing the winter solstice. |
|
704 * For use with {@link #getSunTime getSunTime}. |
|
705 * Note: In this case, "winter" refers to the northern hemisphere's seasons. |
|
706 * @internal |
|
707 * @deprecated ICU 2.4. This class may be removed or modified. |
|
708 */ |
|
709 double CalendarAstronomer::WINTER_SOLSTICE() { |
|
710 return ((CalendarAstronomer::PI*3)/2); |
|
711 } |
|
712 |
|
713 CalendarAstronomer::AngleFunc::~AngleFunc() {} |
|
714 |
|
715 /** |
|
716 * Find the next time at which the sun's ecliptic longitude will have |
|
717 * the desired value. |
|
718 * @internal |
|
719 * @deprecated ICU 2.4. This class may be removed or modified. |
|
720 */ |
|
721 class SunTimeAngleFunc : public CalendarAstronomer::AngleFunc { |
|
722 public: |
|
723 virtual ~SunTimeAngleFunc(); |
|
724 virtual double eval(CalendarAstronomer& a) { return a.getSunLongitude(); } |
|
725 }; |
|
726 |
|
727 SunTimeAngleFunc::~SunTimeAngleFunc() {} |
|
728 |
|
729 UDate CalendarAstronomer::getSunTime(double desired, UBool next) |
|
730 { |
|
731 SunTimeAngleFunc func; |
|
732 return timeOfAngle( func, |
|
733 desired, |
|
734 TROPICAL_YEAR, |
|
735 MINUTE_MS, |
|
736 next); |
|
737 } |
|
738 |
|
739 CalendarAstronomer::CoordFunc::~CoordFunc() {} |
|
740 |
|
741 class RiseSetCoordFunc : public CalendarAstronomer::CoordFunc { |
|
742 public: |
|
743 virtual ~RiseSetCoordFunc(); |
|
744 virtual void eval(CalendarAstronomer::Equatorial& result, CalendarAstronomer&a) { a.getSunPosition(result); } |
|
745 }; |
|
746 |
|
747 RiseSetCoordFunc::~RiseSetCoordFunc() {} |
|
748 |
|
749 UDate CalendarAstronomer::getSunRiseSet(UBool rise) |
|
750 { |
|
751 UDate t0 = fTime; |
|
752 |
|
753 // Make a rough guess: 6am or 6pm local time on the current day |
|
754 double noon = ClockMath::floorDivide(fTime + fGmtOffset, (double)DAY_MS)*DAY_MS - fGmtOffset + (12*HOUR_MS); |
|
755 |
|
756 U_DEBUG_ASTRO_MSG(("Noon=%.2lf, %sL, gmtoff %.2lf\n", noon, debug_astro_date(noon+fGmtOffset), fGmtOffset)); |
|
757 setTime(noon + ((rise ? -6 : 6) * HOUR_MS)); |
|
758 U_DEBUG_ASTRO_MSG(("added %.2lf ms as a guess,\n", ((rise ? -6. : 6.) * HOUR_MS))); |
|
759 |
|
760 RiseSetCoordFunc func; |
|
761 double t = riseOrSet(func, |
|
762 rise, |
|
763 .533 * DEG_RAD, // Angular Diameter |
|
764 34. /60.0 * DEG_RAD, // Refraction correction |
|
765 MINUTE_MS / 12.); // Desired accuracy |
|
766 |
|
767 setTime(t0); |
|
768 return t; |
|
769 } |
|
770 |
|
771 // Commented out - currently unused. ICU 2.6, Alan |
|
772 // //------------------------------------------------------------------------- |
|
773 // // Alternate Sun Rise/Set |
|
774 // // See Duffett-Smith p.93 |
|
775 // //------------------------------------------------------------------------- |
|
776 // |
|
777 // // This yields worse results (as compared to USNO data) than getSunRiseSet(). |
|
778 // /** |
|
779 // * TODO Make this when the entire class is package-private. |
|
780 // */ |
|
781 // /*public*/ long getSunRiseSet2(boolean rise) { |
|
782 // // 1. Calculate coordinates of the sun's center for midnight |
|
783 // double jd = uprv_floor(getJulianDay() - 0.5) + 0.5; |
|
784 // double[] sl = getSunLongitude(jd);// double lambda1 = sl[0]; |
|
785 // Equatorial pos1 = eclipticToEquatorial(lambda1, 0); |
|
786 // |
|
787 // // 2. Add ... to lambda to get position 24 hours later |
|
788 // double lambda2 = lambda1 + 0.985647*DEG_RAD; |
|
789 // Equatorial pos2 = eclipticToEquatorial(lambda2, 0); |
|
790 // |
|
791 // // 3. Calculate LSTs of rising and setting for these two positions |
|
792 // double tanL = ::tan(fLatitude); |
|
793 // double H = ::acos(-tanL * ::tan(pos1.declination)); |
|
794 // double lst1r = (CalendarAstronomer_PI2 + pos1.ascension - H) * 24 / CalendarAstronomer_PI2; |
|
795 // double lst1s = (pos1.ascension + H) * 24 / CalendarAstronomer_PI2; |
|
796 // H = ::acos(-tanL * ::tan(pos2.declination)); |
|
797 // double lst2r = (CalendarAstronomer_PI2-H + pos2.ascension ) * 24 / CalendarAstronomer_PI2; |
|
798 // double lst2s = (H + pos2.ascension ) * 24 / CalendarAstronomer_PI2; |
|
799 // if (lst1r > 24) lst1r -= 24; |
|
800 // if (lst1s > 24) lst1s -= 24; |
|
801 // if (lst2r > 24) lst2r -= 24; |
|
802 // if (lst2s > 24) lst2s -= 24; |
|
803 // |
|
804 // // 4. Convert LSTs to GSTs. If GST1 > GST2, add 24 to GST2. |
|
805 // double gst1r = lstToGst(lst1r); |
|
806 // double gst1s = lstToGst(lst1s); |
|
807 // double gst2r = lstToGst(lst2r); |
|
808 // double gst2s = lstToGst(lst2s); |
|
809 // if (gst1r > gst2r) gst2r += 24; |
|
810 // if (gst1s > gst2s) gst2s += 24; |
|
811 // |
|
812 // // 5. Calculate GST at 0h UT of this date |
|
813 // double t00 = utToGst(0); |
|
814 // |
|
815 // // 6. Calculate GST at 0h on the observer's longitude |
|
816 // double offset = ::round(fLongitude*12/PI); // p.95 step 6; he _rounds_ to nearest 15 deg. |
|
817 // double t00p = t00 - offset*1.002737909; |
|
818 // if (t00p < 0) t00p += 24; // do NOT normalize |
|
819 // |
|
820 // // 7. Adjust |
|
821 // if (gst1r < t00p) { |
|
822 // gst1r += 24; |
|
823 // gst2r += 24; |
|
824 // } |
|
825 // if (gst1s < t00p) { |
|
826 // gst1s += 24; |
|
827 // gst2s += 24; |
|
828 // } |
|
829 // |
|
830 // // 8. |
|
831 // double gstr = (24.07*gst1r-t00*(gst2r-gst1r))/(24.07+gst1r-gst2r); |
|
832 // double gsts = (24.07*gst1s-t00*(gst2s-gst1s))/(24.07+gst1s-gst2s); |
|
833 // |
|
834 // // 9. Correct for parallax, refraction, and sun's diameter |
|
835 // double dec = (pos1.declination + pos2.declination) / 2; |
|
836 // double psi = ::acos(sin(fLatitude) / cos(dec)); |
|
837 // double x = 0.830725 * DEG_RAD; // parallax+refraction+diameter |
|
838 // double y = ::asin(sin(x) / ::sin(psi)) * RAD_DEG; |
|
839 // double delta_t = 240 * y / cos(dec) / 3600; // hours |
|
840 // |
|
841 // // 10. Add correction to GSTs, subtract from GSTr |
|
842 // gstr -= delta_t; |
|
843 // gsts += delta_t; |
|
844 // |
|
845 // // 11. Convert GST to UT and then to local civil time |
|
846 // double ut = gstToUt(rise ? gstr : gsts); |
|
847 // //System.out.println((rise?"rise=":"set=") + ut + ", delta_t=" + delta_t); |
|
848 // long midnight = DAY_MS * (time / DAY_MS); // Find UT midnight on this day |
|
849 // return midnight + (long) (ut * 3600000); |
|
850 // } |
|
851 |
|
852 // Commented out - currently unused. ICU 2.6, Alan |
|
853 // /** |
|
854 // * Convert local sidereal time to Greenwich sidereal time. |
|
855 // * Section 15. Duffett-Smith p.21 |
|
856 // * @param lst in hours (0..24) |
|
857 // * @return GST in hours (0..24) |
|
858 // */ |
|
859 // double lstToGst(double lst) { |
|
860 // double delta = fLongitude * 24 / CalendarAstronomer_PI2; |
|
861 // return normalize(lst - delta, 24); |
|
862 // } |
|
863 |
|
864 // Commented out - currently unused. ICU 2.6, Alan |
|
865 // /** |
|
866 // * Convert UT to GST on this date. |
|
867 // * Section 12. Duffett-Smith p.17 |
|
868 // * @param ut in hours |
|
869 // * @return GST in hours |
|
870 // */ |
|
871 // double utToGst(double ut) { |
|
872 // return normalize(getT0() + ut*1.002737909, 24); |
|
873 // } |
|
874 |
|
875 // Commented out - currently unused. ICU 2.6, Alan |
|
876 // /** |
|
877 // * Convert GST to UT on this date. |
|
878 // * Section 13. Duffett-Smith p.18 |
|
879 // * @param gst in hours |
|
880 // * @return UT in hours |
|
881 // */ |
|
882 // double gstToUt(double gst) { |
|
883 // return normalize(gst - getT0(), 24) * 0.9972695663; |
|
884 // } |
|
885 |
|
886 // Commented out - currently unused. ICU 2.6, Alan |
|
887 // double getT0() { |
|
888 // // Common computation for UT <=> GST |
|
889 // |
|
890 // // Find JD for 0h UT |
|
891 // double jd = uprv_floor(getJulianDay() - 0.5) + 0.5; |
|
892 // |
|
893 // double s = jd - 2451545.0; |
|
894 // double t = s / 36525.0; |
|
895 // double t0 = 6.697374558 + (2400.051336 + 0.000025862*t)*t; |
|
896 // return t0; |
|
897 // } |
|
898 |
|
899 // Commented out - currently unused. ICU 2.6, Alan |
|
900 // //------------------------------------------------------------------------- |
|
901 // // Alternate Sun Rise/Set |
|
902 // // See sci.astro FAQ |
|
903 // // http://www.faqs.org/faqs/astronomy/faq/part3/section-5.html |
|
904 // //------------------------------------------------------------------------- |
|
905 // |
|
906 // // Note: This method appears to produce inferior accuracy as |
|
907 // // compared to getSunRiseSet(). |
|
908 // |
|
909 // /** |
|
910 // * TODO Make this when the entire class is package-private. |
|
911 // */ |
|
912 // /*public*/ long getSunRiseSet3(boolean rise) { |
|
913 // |
|
914 // // Compute day number for 0.0 Jan 2000 epoch |
|
915 // double d = (double)(time - EPOCH_2000_MS) / DAY_MS; |
|
916 // |
|
917 // // Now compute the Local Sidereal Time, LST: |
|
918 // // |
|
919 // double LST = 98.9818 + 0.985647352 * d + /*UT*15 + long*/ |
|
920 // fLongitude*RAD_DEG; |
|
921 // // |
|
922 // // (east long. positive). Note that LST is here expressed in degrees, |
|
923 // // where 15 degrees corresponds to one hour. Since LST really is an angle, |
|
924 // // it's convenient to use one unit---degrees---throughout. |
|
925 // |
|
926 // // COMPUTING THE SUN'S POSITION |
|
927 // // ---------------------------- |
|
928 // // |
|
929 // // To be able to compute the Sun's rise/set times, you need to be able to |
|
930 // // compute the Sun's position at any time. First compute the "day |
|
931 // // number" d as outlined above, for the desired moment. Next compute: |
|
932 // // |
|
933 // double oblecl = 23.4393 - 3.563E-7 * d; |
|
934 // // |
|
935 // double w = 282.9404 + 4.70935E-5 * d; |
|
936 // double M = 356.0470 + 0.9856002585 * d; |
|
937 // double e = 0.016709 - 1.151E-9 * d; |
|
938 // // |
|
939 // // This is the obliquity of the ecliptic, plus some of the elements of |
|
940 // // the Sun's apparent orbit (i.e., really the Earth's orbit): w = |
|
941 // // argument of perihelion, M = mean anomaly, e = eccentricity. |
|
942 // // Semi-major axis is here assumed to be exactly 1.0 (while not strictly |
|
943 // // true, this is still an accurate approximation). Next compute E, the |
|
944 // // eccentric anomaly: |
|
945 // // |
|
946 // double E = M + e*(180/PI) * ::sin(M*DEG_RAD) * ( 1.0 + e*cos(M*DEG_RAD) ); |
|
947 // // |
|
948 // // where E and M are in degrees. This is it---no further iterations are |
|
949 // // needed because we know e has a sufficiently small value. Next compute |
|
950 // // the true anomaly, v, and the distance, r: |
|
951 // // |
|
952 // /* r * cos(v) = */ double A = cos(E*DEG_RAD) - e; |
|
953 // /* r * ::sin(v) = */ double B = ::sqrt(1 - e*e) * ::sin(E*DEG_RAD); |
|
954 // // |
|
955 // // and |
|
956 // // |
|
957 // // r = sqrt( A*A + B*B ) |
|
958 // double v = ::atan2( B, A )*RAD_DEG; |
|
959 // // |
|
960 // // The Sun's true longitude, slon, can now be computed: |
|
961 // // |
|
962 // double slon = v + w; |
|
963 // // |
|
964 // // Since the Sun is always at the ecliptic (or at least very very close to |
|
965 // // it), we can use simplified formulae to convert slon (the Sun's ecliptic |
|
966 // // longitude) to sRA and sDec (the Sun's RA and Dec): |
|
967 // // |
|
968 // // ::sin(slon) * cos(oblecl) |
|
969 // // tan(sRA) = ------------------------- |
|
970 // // cos(slon) |
|
971 // // |
|
972 // // ::sin(sDec) = ::sin(oblecl) * ::sin(slon) |
|
973 // // |
|
974 // // As was the case when computing az, the Azimuth, if possible use an |
|
975 // // atan2() function to compute sRA. |
|
976 // |
|
977 // double sRA = ::atan2(sin(slon*DEG_RAD) * cos(oblecl*DEG_RAD), cos(slon*DEG_RAD))*RAD_DEG; |
|
978 // |
|
979 // double sin_sDec = ::sin(oblecl*DEG_RAD) * ::sin(slon*DEG_RAD); |
|
980 // double sDec = ::asin(sin_sDec)*RAD_DEG; |
|
981 // |
|
982 // // COMPUTING RISE AND SET TIMES |
|
983 // // ---------------------------- |
|
984 // // |
|
985 // // To compute when an object rises or sets, you must compute when it |
|
986 // // passes the meridian and the HA of rise/set. Then the rise time is |
|
987 // // the meridian time minus HA for rise/set, and the set time is the |
|
988 // // meridian time plus the HA for rise/set. |
|
989 // // |
|
990 // // To find the meridian time, compute the Local Sidereal Time at 0h local |
|
991 // // time (or 0h UT if you prefer to work in UT) as outlined above---name |
|
992 // // that quantity LST0. The Meridian Time, MT, will now be: |
|
993 // // |
|
994 // // MT = RA - LST0 |
|
995 // double MT = normalize(sRA - LST, 360); |
|
996 // // |
|
997 // // where "RA" is the object's Right Ascension (in degrees!). If negative, |
|
998 // // add 360 deg to MT. If the object is the Sun, leave the time as it is, |
|
999 // // but if it's stellar, multiply MT by 365.2422/366.2422, to convert from |
|
1000 // // sidereal to solar time. Now, compute HA for rise/set, name that |
|
1001 // // quantity HA0: |
|
1002 // // |
|
1003 // // ::sin(h0) - ::sin(lat) * ::sin(Dec) |
|
1004 // // cos(HA0) = --------------------------------- |
|
1005 // // cos(lat) * cos(Dec) |
|
1006 // // |
|
1007 // // where h0 is the altitude selected to represent rise/set. For a purely |
|
1008 // // mathematical horizon, set h0 = 0 and simplify to: |
|
1009 // // |
|
1010 // // cos(HA0) = - tan(lat) * tan(Dec) |
|
1011 // // |
|
1012 // // If you want to account for refraction on the atmosphere, set h0 = -35/60 |
|
1013 // // degrees (-35 arc minutes), and if you want to compute the rise/set times |
|
1014 // // for the Sun's upper limb, set h0 = -50/60 (-50 arc minutes). |
|
1015 // // |
|
1016 // double h0 = -50/60 * DEG_RAD; |
|
1017 // |
|
1018 // double HA0 = ::acos( |
|
1019 // (sin(h0) - ::sin(fLatitude) * sin_sDec) / |
|
1020 // (cos(fLatitude) * cos(sDec*DEG_RAD)))*RAD_DEG; |
|
1021 // |
|
1022 // // When HA0 has been computed, leave it as it is for the Sun but multiply |
|
1023 // // by 365.2422/366.2422 for stellar objects, to convert from sidereal to |
|
1024 // // solar time. Finally compute: |
|
1025 // // |
|
1026 // // Rise time = MT - HA0 |
|
1027 // // Set time = MT + HA0 |
|
1028 // // |
|
1029 // // convert the times from degrees to hours by dividing by 15. |
|
1030 // // |
|
1031 // // If you'd like to check that your calculations are accurate or just |
|
1032 // // need a quick result, check the USNO's Sun or Moon Rise/Set Table, |
|
1033 // // <URL:http://aa.usno.navy.mil/AA/data/docs/RS_OneYear.html>. |
|
1034 // |
|
1035 // double result = MT + (rise ? -HA0 : HA0); // in degrees |
|
1036 // |
|
1037 // // Find UT midnight on this day |
|
1038 // long midnight = DAY_MS * (time / DAY_MS); |
|
1039 // |
|
1040 // return midnight + (long) (result * 3600000 / 15); |
|
1041 // } |
|
1042 |
|
1043 //------------------------------------------------------------------------- |
|
1044 // The Moon |
|
1045 //------------------------------------------------------------------------- |
|
1046 |
|
1047 #define moonL0 (318.351648 * CalendarAstronomer::PI/180 ) // Mean long. at epoch |
|
1048 #define moonP0 ( 36.340410 * CalendarAstronomer::PI/180 ) // Mean long. of perigee |
|
1049 #define moonN0 ( 318.510107 * CalendarAstronomer::PI/180 ) // Mean long. of node |
|
1050 #define moonI ( 5.145366 * CalendarAstronomer::PI/180 ) // Inclination of orbit |
|
1051 #define moonE ( 0.054900 ) // Eccentricity of orbit |
|
1052 |
|
1053 // These aren't used right now |
|
1054 #define moonA ( 3.84401e5 ) // semi-major axis (km) |
|
1055 #define moonT0 ( 0.5181 * CalendarAstronomer::PI/180 ) // Angular size at distance A |
|
1056 #define moonPi ( 0.9507 * CalendarAstronomer::PI/180 ) // Parallax at distance A |
|
1057 |
|
1058 /** |
|
1059 * The position of the moon at the time set on this |
|
1060 * object, in equatorial coordinates. |
|
1061 * @internal |
|
1062 * @deprecated ICU 2.4. This class may be removed or modified. |
|
1063 */ |
|
1064 const CalendarAstronomer::Equatorial& CalendarAstronomer::getMoonPosition() |
|
1065 { |
|
1066 // |
|
1067 // See page 142 of "Practial Astronomy with your Calculator", |
|
1068 // by Peter Duffet-Smith, for details on the algorithm. |
|
1069 // |
|
1070 if (moonPositionSet == FALSE) { |
|
1071 // Calculate the solar longitude. Has the side effect of |
|
1072 // filling in "meanAnomalySun" as well. |
|
1073 getSunLongitude(); |
|
1074 |
|
1075 // |
|
1076 // Find the # of days since the epoch of our orbital parameters. |
|
1077 // TODO: Convert the time of day portion into ephemeris time |
|
1078 // |
|
1079 double day = getJulianDay() - JD_EPOCH; // Days since epoch |
|
1080 |
|
1081 // Calculate the mean longitude and anomaly of the moon, based on |
|
1082 // a circular orbit. Similar to the corresponding solar calculation. |
|
1083 double meanLongitude = norm2PI(13.1763966*PI/180*day + moonL0); |
|
1084 meanAnomalyMoon = norm2PI(meanLongitude - 0.1114041*PI/180 * day - moonP0); |
|
1085 |
|
1086 // |
|
1087 // Calculate the following corrections: |
|
1088 // Evection: the sun's gravity affects the moon's eccentricity |
|
1089 // Annual Eqn: variation in the effect due to earth-sun distance |
|
1090 // A3: correction factor (for ???) |
|
1091 // |
|
1092 double evection = 1.2739*PI/180 * ::sin(2 * (meanLongitude - sunLongitude) |
|
1093 - meanAnomalyMoon); |
|
1094 double annual = 0.1858*PI/180 * ::sin(meanAnomalySun); |
|
1095 double a3 = 0.3700*PI/180 * ::sin(meanAnomalySun); |
|
1096 |
|
1097 meanAnomalyMoon += evection - annual - a3; |
|
1098 |
|
1099 // |
|
1100 // More correction factors: |
|
1101 // center equation of the center correction |
|
1102 // a4 yet another error correction (???) |
|
1103 // |
|
1104 // TODO: Skip the equation of the center correction and solve Kepler's eqn? |
|
1105 // |
|
1106 double center = 6.2886*PI/180 * ::sin(meanAnomalyMoon); |
|
1107 double a4 = 0.2140*PI/180 * ::sin(2 * meanAnomalyMoon); |
|
1108 |
|
1109 // Now find the moon's corrected longitude |
|
1110 moonLongitude = meanLongitude + evection + center - annual + a4; |
|
1111 |
|
1112 // |
|
1113 // And finally, find the variation, caused by the fact that the sun's |
|
1114 // gravitational pull on the moon varies depending on which side of |
|
1115 // the earth the moon is on |
|
1116 // |
|
1117 double variation = 0.6583*CalendarAstronomer::PI/180 * ::sin(2*(moonLongitude - sunLongitude)); |
|
1118 |
|
1119 moonLongitude += variation; |
|
1120 |
|
1121 // |
|
1122 // What we've calculated so far is the moon's longitude in the plane |
|
1123 // of its own orbit. Now map to the ecliptic to get the latitude |
|
1124 // and longitude. First we need to find the longitude of the ascending |
|
1125 // node, the position on the ecliptic where it is crossed by the moon's |
|
1126 // orbit as it crosses from the southern to the northern hemisphere. |
|
1127 // |
|
1128 double nodeLongitude = norm2PI(moonN0 - 0.0529539*PI/180 * day); |
|
1129 |
|
1130 nodeLongitude -= 0.16*PI/180 * ::sin(meanAnomalySun); |
|
1131 |
|
1132 double y = ::sin(moonLongitude - nodeLongitude); |
|
1133 double x = cos(moonLongitude - nodeLongitude); |
|
1134 |
|
1135 moonEclipLong = ::atan2(y*cos(moonI), x) + nodeLongitude; |
|
1136 double moonEclipLat = ::asin(y * ::sin(moonI)); |
|
1137 |
|
1138 eclipticToEquatorial(moonPosition, moonEclipLong, moonEclipLat); |
|
1139 moonPositionSet = TRUE; |
|
1140 } |
|
1141 return moonPosition; |
|
1142 } |
|
1143 |
|
1144 /** |
|
1145 * The "age" of the moon at the time specified in this object. |
|
1146 * This is really the angle between the |
|
1147 * current ecliptic longitudes of the sun and the moon, |
|
1148 * measured in radians. |
|
1149 * |
|
1150 * @see #getMoonPhase |
|
1151 * @internal |
|
1152 * @deprecated ICU 2.4. This class may be removed or modified. |
|
1153 */ |
|
1154 double CalendarAstronomer::getMoonAge() { |
|
1155 // See page 147 of "Practial Astronomy with your Calculator", |
|
1156 // by Peter Duffet-Smith, for details on the algorithm. |
|
1157 // |
|
1158 // Force the moon's position to be calculated. We're going to use |
|
1159 // some the intermediate results cached during that calculation. |
|
1160 // |
|
1161 getMoonPosition(); |
|
1162 |
|
1163 return norm2PI(moonEclipLong - sunLongitude); |
|
1164 } |
|
1165 |
|
1166 /** |
|
1167 * Calculate the phase of the moon at the time set in this object. |
|
1168 * The returned phase is a <code>double</code> in the range |
|
1169 * <code>0 <= phase < 1</code>, interpreted as follows: |
|
1170 * <ul> |
|
1171 * <li>0.00: New moon |
|
1172 * <li>0.25: First quarter |
|
1173 * <li>0.50: Full moon |
|
1174 * <li>0.75: Last quarter |
|
1175 * </ul> |
|
1176 * |
|
1177 * @see #getMoonAge |
|
1178 * @internal |
|
1179 * @deprecated ICU 2.4. This class may be removed or modified. |
|
1180 */ |
|
1181 double CalendarAstronomer::getMoonPhase() { |
|
1182 // See page 147 of "Practial Astronomy with your Calculator", |
|
1183 // by Peter Duffet-Smith, for details on the algorithm. |
|
1184 return 0.5 * (1 - cos(getMoonAge())); |
|
1185 } |
|
1186 |
|
1187 /** |
|
1188 * Constant representing a new moon. |
|
1189 * For use with {@link #getMoonTime getMoonTime} |
|
1190 * @internal |
|
1191 * @deprecated ICU 2.4. This class may be removed or modified. |
|
1192 */ |
|
1193 const CalendarAstronomer::MoonAge CalendarAstronomer::NEW_MOON() { |
|
1194 return CalendarAstronomer::MoonAge(0); |
|
1195 } |
|
1196 |
|
1197 /** |
|
1198 * Constant representing the moon's first quarter. |
|
1199 * For use with {@link #getMoonTime getMoonTime} |
|
1200 * @internal |
|
1201 * @deprecated ICU 2.4. This class may be removed or modified. |
|
1202 */ |
|
1203 /*const CalendarAstronomer::MoonAge CalendarAstronomer::FIRST_QUARTER() { |
|
1204 return CalendarAstronomer::MoonAge(CalendarAstronomer::PI/2); |
|
1205 }*/ |
|
1206 |
|
1207 /** |
|
1208 * Constant representing a full moon. |
|
1209 * For use with {@link #getMoonTime getMoonTime} |
|
1210 * @internal |
|
1211 * @deprecated ICU 2.4. This class may be removed or modified. |
|
1212 */ |
|
1213 const CalendarAstronomer::MoonAge CalendarAstronomer::FULL_MOON() { |
|
1214 return CalendarAstronomer::MoonAge(CalendarAstronomer::PI); |
|
1215 } |
|
1216 /** |
|
1217 * Constant representing the moon's last quarter. |
|
1218 * For use with {@link #getMoonTime getMoonTime} |
|
1219 * @internal |
|
1220 * @deprecated ICU 2.4. This class may be removed or modified. |
|
1221 */ |
|
1222 |
|
1223 class MoonTimeAngleFunc : public CalendarAstronomer::AngleFunc { |
|
1224 public: |
|
1225 virtual ~MoonTimeAngleFunc(); |
|
1226 virtual double eval(CalendarAstronomer&a) { return a.getMoonAge(); } |
|
1227 }; |
|
1228 |
|
1229 MoonTimeAngleFunc::~MoonTimeAngleFunc() {} |
|
1230 |
|
1231 /*const CalendarAstronomer::MoonAge CalendarAstronomer::LAST_QUARTER() { |
|
1232 return CalendarAstronomer::MoonAge((CalendarAstronomer::PI*3)/2); |
|
1233 }*/ |
|
1234 |
|
1235 /** |
|
1236 * Find the next or previous time at which the Moon's ecliptic |
|
1237 * longitude will have the desired value. |
|
1238 * <p> |
|
1239 * @param desired The desired longitude. |
|
1240 * @param next <tt>true</tt> if the next occurrance of the phase |
|
1241 * is desired, <tt>false</tt> for the previous occurrance. |
|
1242 * @internal |
|
1243 * @deprecated ICU 2.4. This class may be removed or modified. |
|
1244 */ |
|
1245 UDate CalendarAstronomer::getMoonTime(double desired, UBool next) |
|
1246 { |
|
1247 MoonTimeAngleFunc func; |
|
1248 return timeOfAngle( func, |
|
1249 desired, |
|
1250 SYNODIC_MONTH, |
|
1251 MINUTE_MS, |
|
1252 next); |
|
1253 } |
|
1254 |
|
1255 /** |
|
1256 * Find the next or previous time at which the moon will be in the |
|
1257 * desired phase. |
|
1258 * <p> |
|
1259 * @param desired The desired phase of the moon. |
|
1260 * @param next <tt>true</tt> if the next occurrance of the phase |
|
1261 * is desired, <tt>false</tt> for the previous occurrance. |
|
1262 * @internal |
|
1263 * @deprecated ICU 2.4. This class may be removed or modified. |
|
1264 */ |
|
1265 UDate CalendarAstronomer::getMoonTime(const CalendarAstronomer::MoonAge& desired, UBool next) { |
|
1266 return getMoonTime(desired.value, next); |
|
1267 } |
|
1268 |
|
1269 class MoonRiseSetCoordFunc : public CalendarAstronomer::CoordFunc { |
|
1270 public: |
|
1271 virtual ~MoonRiseSetCoordFunc(); |
|
1272 virtual void eval(CalendarAstronomer::Equatorial& result, CalendarAstronomer&a) { result = a.getMoonPosition(); } |
|
1273 }; |
|
1274 |
|
1275 MoonRiseSetCoordFunc::~MoonRiseSetCoordFunc() {} |
|
1276 |
|
1277 /** |
|
1278 * Returns the time (GMT) of sunrise or sunset on the local date to which |
|
1279 * this calendar is currently set. |
|
1280 * @internal |
|
1281 * @deprecated ICU 2.4. This class may be removed or modified. |
|
1282 */ |
|
1283 UDate CalendarAstronomer::getMoonRiseSet(UBool rise) |
|
1284 { |
|
1285 MoonRiseSetCoordFunc func; |
|
1286 return riseOrSet(func, |
|
1287 rise, |
|
1288 .533 * DEG_RAD, // Angular Diameter |
|
1289 34 /60.0 * DEG_RAD, // Refraction correction |
|
1290 MINUTE_MS); // Desired accuracy |
|
1291 } |
|
1292 |
|
1293 //------------------------------------------------------------------------- |
|
1294 // Interpolation methods for finding the time at which a given event occurs |
|
1295 //------------------------------------------------------------------------- |
|
1296 |
|
1297 UDate CalendarAstronomer::timeOfAngle(AngleFunc& func, double desired, |
|
1298 double periodDays, double epsilon, UBool next) |
|
1299 { |
|
1300 // Find the value of the function at the current time |
|
1301 double lastAngle = func.eval(*this); |
|
1302 |
|
1303 // Find out how far we are from the desired angle |
|
1304 double deltaAngle = norm2PI(desired - lastAngle) ; |
|
1305 |
|
1306 // Using the average period, estimate the next (or previous) time at |
|
1307 // which the desired angle occurs. |
|
1308 double deltaT = (deltaAngle + (next ? 0.0 : - CalendarAstronomer_PI2 )) * (periodDays*DAY_MS) / CalendarAstronomer_PI2; |
|
1309 |
|
1310 double lastDeltaT = deltaT; // Liu |
|
1311 UDate startTime = fTime; // Liu |
|
1312 |
|
1313 setTime(fTime + uprv_ceil(deltaT)); |
|
1314 |
|
1315 // Now iterate until we get the error below epsilon. Throughout |
|
1316 // this loop we use normPI to get values in the range -Pi to Pi, |
|
1317 // since we're using them as correction factors rather than absolute angles. |
|
1318 do { |
|
1319 // Evaluate the function at the time we've estimated |
|
1320 double angle = func.eval(*this); |
|
1321 |
|
1322 // Find the # of milliseconds per radian at this point on the curve |
|
1323 double factor = uprv_fabs(deltaT / normPI(angle-lastAngle)); |
|
1324 |
|
1325 // Correct the time estimate based on how far off the angle is |
|
1326 deltaT = normPI(desired - angle) * factor; |
|
1327 |
|
1328 // HACK: |
|
1329 // |
|
1330 // If abs(deltaT) begins to diverge we need to quit this loop. |
|
1331 // This only appears to happen when attempting to locate, for |
|
1332 // example, a new moon on the day of the new moon. E.g.: |
|
1333 // |
|
1334 // This result is correct: |
|
1335 // newMoon(7508(Mon Jul 23 00:00:00 CST 1990,false))= |
|
1336 // Sun Jul 22 10:57:41 CST 1990 |
|
1337 // |
|
1338 // But attempting to make the same call a day earlier causes deltaT |
|
1339 // to diverge: |
|
1340 // CalendarAstronomer.timeOfAngle() diverging: 1.348508727575625E9 -> |
|
1341 // 1.3649828540224032E9 |
|
1342 // newMoon(7507(Sun Jul 22 00:00:00 CST 1990,false))= |
|
1343 // Sun Jul 08 13:56:15 CST 1990 |
|
1344 // |
|
1345 // As a temporary solution, we catch this specific condition and |
|
1346 // adjust our start time by one eighth period days (either forward |
|
1347 // or backward) and try again. |
|
1348 // Liu 11/9/00 |
|
1349 if (uprv_fabs(deltaT) > uprv_fabs(lastDeltaT)) { |
|
1350 double delta = uprv_ceil (periodDays * DAY_MS / 8.0); |
|
1351 setTime(startTime + (next ? delta : -delta)); |
|
1352 return timeOfAngle(func, desired, periodDays, epsilon, next); |
|
1353 } |
|
1354 |
|
1355 lastDeltaT = deltaT; |
|
1356 lastAngle = angle; |
|
1357 |
|
1358 setTime(fTime + uprv_ceil(deltaT)); |
|
1359 } |
|
1360 while (uprv_fabs(deltaT) > epsilon); |
|
1361 |
|
1362 return fTime; |
|
1363 } |
|
1364 |
|
1365 UDate CalendarAstronomer::riseOrSet(CoordFunc& func, UBool rise, |
|
1366 double diameter, double refraction, |
|
1367 double epsilon) |
|
1368 { |
|
1369 Equatorial pos; |
|
1370 double tanL = ::tan(fLatitude); |
|
1371 double deltaT = 0; |
|
1372 int32_t count = 0; |
|
1373 |
|
1374 // |
|
1375 // Calculate the object's position at the current time, then use that |
|
1376 // position to calculate the time of rising or setting. The position |
|
1377 // will be different at that time, so iterate until the error is allowable. |
|
1378 // |
|
1379 U_DEBUG_ASTRO_MSG(("setup rise=%s, dia=%.3lf, ref=%.3lf, eps=%.3lf\n", |
|
1380 rise?"T":"F", diameter, refraction, epsilon)); |
|
1381 do { |
|
1382 // See "Practical Astronomy With Your Calculator, section 33. |
|
1383 func.eval(pos, *this); |
|
1384 double angle = ::acos(-tanL * ::tan(pos.declination)); |
|
1385 double lst = ((rise ? CalendarAstronomer_PI2-angle : angle) + pos.ascension ) * 24 / CalendarAstronomer_PI2; |
|
1386 |
|
1387 // Convert from LST to Universal Time. |
|
1388 UDate newTime = lstToUT( lst ); |
|
1389 |
|
1390 deltaT = newTime - fTime; |
|
1391 setTime(newTime); |
|
1392 U_DEBUG_ASTRO_MSG(("%d] dT=%.3lf, angle=%.3lf, lst=%.3lf, A=%.3lf/D=%.3lf\n", |
|
1393 count, deltaT, angle, lst, pos.ascension, pos.declination)); |
|
1394 } |
|
1395 while (++ count < 5 && uprv_fabs(deltaT) > epsilon); |
|
1396 |
|
1397 // Calculate the correction due to refraction and the object's angular diameter |
|
1398 double cosD = ::cos(pos.declination); |
|
1399 double psi = ::acos(sin(fLatitude) / cosD); |
|
1400 double x = diameter / 2 + refraction; |
|
1401 double y = ::asin(sin(x) / ::sin(psi)); |
|
1402 long delta = (long)((240 * y * RAD_DEG / cosD)*SECOND_MS); |
|
1403 |
|
1404 return fTime + (rise ? -delta : delta); |
|
1405 } |
|
1406 /** |
|
1407 * Return the obliquity of the ecliptic (the angle between the ecliptic |
|
1408 * and the earth's equator) at the current time. This varies due to |
|
1409 * the precession of the earth's axis. |
|
1410 * |
|
1411 * @return the obliquity of the ecliptic relative to the equator, |
|
1412 * measured in radians. |
|
1413 */ |
|
1414 double CalendarAstronomer::eclipticObliquity() { |
|
1415 if (isINVALID(eclipObliquity)) { |
|
1416 const double epoch = 2451545.0; // 2000 AD, January 1.5 |
|
1417 |
|
1418 double T = (getJulianDay() - epoch) / 36525; |
|
1419 |
|
1420 eclipObliquity = 23.439292 |
|
1421 - 46.815/3600 * T |
|
1422 - 0.0006/3600 * T*T |
|
1423 + 0.00181/3600 * T*T*T; |
|
1424 |
|
1425 eclipObliquity *= DEG_RAD; |
|
1426 } |
|
1427 return eclipObliquity; |
|
1428 } |
|
1429 |
|
1430 |
|
1431 //------------------------------------------------------------------------- |
|
1432 // Private data |
|
1433 //------------------------------------------------------------------------- |
|
1434 void CalendarAstronomer::clearCache() { |
|
1435 const double INVALID = uprv_getNaN(); |
|
1436 |
|
1437 julianDay = INVALID; |
|
1438 julianCentury = INVALID; |
|
1439 sunLongitude = INVALID; |
|
1440 meanAnomalySun = INVALID; |
|
1441 moonLongitude = INVALID; |
|
1442 moonEclipLong = INVALID; |
|
1443 meanAnomalyMoon = INVALID; |
|
1444 eclipObliquity = INVALID; |
|
1445 siderealTime = INVALID; |
|
1446 siderealT0 = INVALID; |
|
1447 moonPositionSet = FALSE; |
|
1448 } |
|
1449 |
|
1450 //private static void out(String s) { |
|
1451 // System.out.println(s); |
|
1452 //} |
|
1453 |
|
1454 //private static String deg(double rad) { |
|
1455 // return Double.toString(rad * RAD_DEG); |
|
1456 //} |
|
1457 |
|
1458 //private static String hours(long ms) { |
|
1459 // return Double.toString((double)ms / HOUR_MS) + " hours"; |
|
1460 //} |
|
1461 |
|
1462 /** |
|
1463 * @internal |
|
1464 * @deprecated ICU 2.4. This class may be removed or modified. |
|
1465 */ |
|
1466 /*UDate CalendarAstronomer::local(UDate localMillis) { |
|
1467 // TODO - srl ? |
|
1468 TimeZone *tz = TimeZone::createDefault(); |
|
1469 int32_t rawOffset; |
|
1470 int32_t dstOffset; |
|
1471 UErrorCode status = U_ZERO_ERROR; |
|
1472 tz->getOffset(localMillis, TRUE, rawOffset, dstOffset, status); |
|
1473 delete tz; |
|
1474 return localMillis - rawOffset; |
|
1475 }*/ |
|
1476 |
|
1477 // Debugging functions |
|
1478 UnicodeString CalendarAstronomer::Ecliptic::toString() const |
|
1479 { |
|
1480 #ifdef U_DEBUG_ASTRO |
|
1481 char tmp[800]; |
|
1482 sprintf(tmp, "[%.5f,%.5f]", longitude*RAD_DEG, latitude*RAD_DEG); |
|
1483 return UnicodeString(tmp, ""); |
|
1484 #else |
|
1485 return UnicodeString(); |
|
1486 #endif |
|
1487 } |
|
1488 |
|
1489 UnicodeString CalendarAstronomer::Equatorial::toString() const |
|
1490 { |
|
1491 #ifdef U_DEBUG_ASTRO |
|
1492 char tmp[400]; |
|
1493 sprintf(tmp, "%f,%f", |
|
1494 (ascension*RAD_DEG), (declination*RAD_DEG)); |
|
1495 return UnicodeString(tmp, ""); |
|
1496 #else |
|
1497 return UnicodeString(); |
|
1498 #endif |
|
1499 } |
|
1500 |
|
1501 UnicodeString CalendarAstronomer::Horizon::toString() const |
|
1502 { |
|
1503 #ifdef U_DEBUG_ASTRO |
|
1504 char tmp[800]; |
|
1505 sprintf(tmp, "[%.5f,%.5f]", altitude*RAD_DEG, azimuth*RAD_DEG); |
|
1506 return UnicodeString(tmp, ""); |
|
1507 #else |
|
1508 return UnicodeString(); |
|
1509 #endif |
|
1510 } |
|
1511 |
|
1512 |
|
1513 // static private String radToHms(double angle) { |
|
1514 // int hrs = (int) (angle*RAD_HOUR); |
|
1515 // int min = (int)((angle*RAD_HOUR - hrs) * 60); |
|
1516 // int sec = (int)((angle*RAD_HOUR - hrs - min/60.0) * 3600); |
|
1517 |
|
1518 // return Integer.toString(hrs) + "h" + min + "m" + sec + "s"; |
|
1519 // } |
|
1520 |
|
1521 // static private String radToDms(double angle) { |
|
1522 // int deg = (int) (angle*RAD_DEG); |
|
1523 // int min = (int)((angle*RAD_DEG - deg) * 60); |
|
1524 // int sec = (int)((angle*RAD_DEG - deg - min/60.0) * 3600); |
|
1525 |
|
1526 // return Integer.toString(deg) + "\u00b0" + min + "'" + sec + "\""; |
|
1527 // } |
|
1528 |
|
1529 // =============== Calendar Cache ================ |
|
1530 |
|
1531 void CalendarCache::createCache(CalendarCache** cache, UErrorCode& status) { |
|
1532 ucln_i18n_registerCleanup(UCLN_I18N_ASTRO_CALENDAR, calendar_astro_cleanup); |
|
1533 if(cache == NULL) { |
|
1534 status = U_MEMORY_ALLOCATION_ERROR; |
|
1535 } else { |
|
1536 *cache = new CalendarCache(32, status); |
|
1537 if(U_FAILURE(status)) { |
|
1538 delete *cache; |
|
1539 *cache = NULL; |
|
1540 } |
|
1541 } |
|
1542 } |
|
1543 |
|
1544 int32_t CalendarCache::get(CalendarCache** cache, int32_t key, UErrorCode &status) { |
|
1545 int32_t res; |
|
1546 |
|
1547 if(U_FAILURE(status)) { |
|
1548 return 0; |
|
1549 } |
|
1550 umtx_lock(&ccLock); |
|
1551 |
|
1552 if(*cache == NULL) { |
|
1553 createCache(cache, status); |
|
1554 if(U_FAILURE(status)) { |
|
1555 umtx_unlock(&ccLock); |
|
1556 return 0; |
|
1557 } |
|
1558 } |
|
1559 |
|
1560 res = uhash_igeti((*cache)->fTable, key); |
|
1561 U_DEBUG_ASTRO_MSG(("%p: GET: [%d] == %d\n", (*cache)->fTable, key, res)); |
|
1562 |
|
1563 umtx_unlock(&ccLock); |
|
1564 return res; |
|
1565 } |
|
1566 |
|
1567 void CalendarCache::put(CalendarCache** cache, int32_t key, int32_t value, UErrorCode &status) { |
|
1568 if(U_FAILURE(status)) { |
|
1569 return; |
|
1570 } |
|
1571 umtx_lock(&ccLock); |
|
1572 |
|
1573 if(*cache == NULL) { |
|
1574 createCache(cache, status); |
|
1575 if(U_FAILURE(status)) { |
|
1576 umtx_unlock(&ccLock); |
|
1577 return; |
|
1578 } |
|
1579 } |
|
1580 |
|
1581 uhash_iputi((*cache)->fTable, key, value, &status); |
|
1582 U_DEBUG_ASTRO_MSG(("%p: PUT: [%d] := %d\n", (*cache)->fTable, key, value)); |
|
1583 |
|
1584 umtx_unlock(&ccLock); |
|
1585 } |
|
1586 |
|
1587 CalendarCache::CalendarCache(int32_t size, UErrorCode &status) { |
|
1588 fTable = uhash_openSize(uhash_hashLong, uhash_compareLong, NULL, size, &status); |
|
1589 U_DEBUG_ASTRO_MSG(("%p: Opening.\n", fTable)); |
|
1590 } |
|
1591 |
|
1592 CalendarCache::~CalendarCache() { |
|
1593 if(fTable != NULL) { |
|
1594 U_DEBUG_ASTRO_MSG(("%p: Closing.\n", fTable)); |
|
1595 uhash_close(fTable); |
|
1596 } |
|
1597 } |
|
1598 |
|
1599 U_NAMESPACE_END |
|
1600 |
|
1601 #endif // !UCONFIG_NO_FORMATTING |