|
1 |
|
2 /* |
|
3 * Copyright 2012 Google Inc. |
|
4 * |
|
5 * Use of this source code is governed by a BSD-style license that can be |
|
6 * found in the LICENSE file. |
|
7 */ |
|
8 #include "SkBitmapProcState.h" |
|
9 #include "SkBitmapProcState_filter.h" |
|
10 #include "SkColorPriv.h" |
|
11 #include "SkFilterProc.h" |
|
12 #include "SkPaint.h" |
|
13 #include "SkShader.h" // for tilemodes |
|
14 #include "SkUtilsArm.h" |
|
15 |
|
16 // Required to ensure the table is part of the final binary. |
|
17 extern const SkBitmapProcState::SampleProc32 gSkBitmapProcStateSample32_neon[]; |
|
18 extern const SkBitmapProcState::SampleProc16 gSkBitmapProcStateSample16_neon[]; |
|
19 |
|
20 #define NAME_WRAP(x) x ## _neon |
|
21 #include "SkBitmapProcState_filter_neon.h" |
|
22 #include "SkBitmapProcState_procs.h" |
|
23 |
|
24 const SkBitmapProcState::SampleProc32 gSkBitmapProcStateSample32_neon[] = { |
|
25 S32_opaque_D32_nofilter_DXDY_neon, |
|
26 S32_alpha_D32_nofilter_DXDY_neon, |
|
27 S32_opaque_D32_nofilter_DX_neon, |
|
28 S32_alpha_D32_nofilter_DX_neon, |
|
29 S32_opaque_D32_filter_DXDY_neon, |
|
30 S32_alpha_D32_filter_DXDY_neon, |
|
31 S32_opaque_D32_filter_DX_neon, |
|
32 S32_alpha_D32_filter_DX_neon, |
|
33 |
|
34 S16_opaque_D32_nofilter_DXDY_neon, |
|
35 S16_alpha_D32_nofilter_DXDY_neon, |
|
36 S16_opaque_D32_nofilter_DX_neon, |
|
37 S16_alpha_D32_nofilter_DX_neon, |
|
38 S16_opaque_D32_filter_DXDY_neon, |
|
39 S16_alpha_D32_filter_DXDY_neon, |
|
40 S16_opaque_D32_filter_DX_neon, |
|
41 S16_alpha_D32_filter_DX_neon, |
|
42 |
|
43 SI8_opaque_D32_nofilter_DXDY_neon, |
|
44 SI8_alpha_D32_nofilter_DXDY_neon, |
|
45 SI8_opaque_D32_nofilter_DX_neon, |
|
46 SI8_alpha_D32_nofilter_DX_neon, |
|
47 SI8_opaque_D32_filter_DXDY_neon, |
|
48 SI8_alpha_D32_filter_DXDY_neon, |
|
49 SI8_opaque_D32_filter_DX_neon, |
|
50 SI8_alpha_D32_filter_DX_neon, |
|
51 |
|
52 S4444_opaque_D32_nofilter_DXDY_neon, |
|
53 S4444_alpha_D32_nofilter_DXDY_neon, |
|
54 S4444_opaque_D32_nofilter_DX_neon, |
|
55 S4444_alpha_D32_nofilter_DX_neon, |
|
56 S4444_opaque_D32_filter_DXDY_neon, |
|
57 S4444_alpha_D32_filter_DXDY_neon, |
|
58 S4444_opaque_D32_filter_DX_neon, |
|
59 S4444_alpha_D32_filter_DX_neon, |
|
60 |
|
61 // A8 treats alpha/opauqe the same (equally efficient) |
|
62 SA8_alpha_D32_nofilter_DXDY_neon, |
|
63 SA8_alpha_D32_nofilter_DXDY_neon, |
|
64 SA8_alpha_D32_nofilter_DX_neon, |
|
65 SA8_alpha_D32_nofilter_DX_neon, |
|
66 SA8_alpha_D32_filter_DXDY_neon, |
|
67 SA8_alpha_D32_filter_DXDY_neon, |
|
68 SA8_alpha_D32_filter_DX_neon, |
|
69 SA8_alpha_D32_filter_DX_neon |
|
70 }; |
|
71 |
|
72 const SkBitmapProcState::SampleProc16 gSkBitmapProcStateSample16_neon[] = { |
|
73 S32_D16_nofilter_DXDY_neon, |
|
74 S32_D16_nofilter_DX_neon, |
|
75 S32_D16_filter_DXDY_neon, |
|
76 S32_D16_filter_DX_neon, |
|
77 |
|
78 S16_D16_nofilter_DXDY_neon, |
|
79 S16_D16_nofilter_DX_neon, |
|
80 S16_D16_filter_DXDY_neon, |
|
81 S16_D16_filter_DX_neon, |
|
82 |
|
83 SI8_D16_nofilter_DXDY_neon, |
|
84 SI8_D16_nofilter_DX_neon, |
|
85 SI8_D16_filter_DXDY_neon, |
|
86 SI8_D16_filter_DX_neon, |
|
87 |
|
88 // Don't support 4444 -> 565 |
|
89 NULL, NULL, NULL, NULL, |
|
90 // Don't support A8 -> 565 |
|
91 NULL, NULL, NULL, NULL |
|
92 }; |
|
93 |
|
94 /////////////////////////////////////////////////////////////////////////////// |
|
95 |
|
96 #include <arm_neon.h> |
|
97 #include "SkConvolver.h" |
|
98 |
|
99 // Convolves horizontally along a single row. The row data is given in |
|
100 // |srcData| and continues for the numValues() of the filter. |
|
101 void convolveHorizontally_neon(const unsigned char* srcData, |
|
102 const SkConvolutionFilter1D& filter, |
|
103 unsigned char* outRow, |
|
104 bool hasAlpha) { |
|
105 // Loop over each pixel on this row in the output image. |
|
106 int numValues = filter.numValues(); |
|
107 for (int outX = 0; outX < numValues; outX++) { |
|
108 uint8x8_t coeff_mask0 = vcreate_u8(0x0100010001000100); |
|
109 uint8x8_t coeff_mask1 = vcreate_u8(0x0302030203020302); |
|
110 uint8x8_t coeff_mask2 = vcreate_u8(0x0504050405040504); |
|
111 uint8x8_t coeff_mask3 = vcreate_u8(0x0706070607060706); |
|
112 // Get the filter that determines the current output pixel. |
|
113 int filterOffset, filterLength; |
|
114 const SkConvolutionFilter1D::ConvolutionFixed* filterValues = |
|
115 filter.FilterForValue(outX, &filterOffset, &filterLength); |
|
116 |
|
117 // Compute the first pixel in this row that the filter affects. It will |
|
118 // touch |filterLength| pixels (4 bytes each) after this. |
|
119 const unsigned char* rowToFilter = &srcData[filterOffset * 4]; |
|
120 |
|
121 // Apply the filter to the row to get the destination pixel in |accum|. |
|
122 int32x4_t accum = vdupq_n_s32(0); |
|
123 for (int filterX = 0; filterX < filterLength >> 2; filterX++) { |
|
124 // Load 4 coefficients |
|
125 int16x4_t coeffs, coeff0, coeff1, coeff2, coeff3; |
|
126 coeffs = vld1_s16(filterValues); |
|
127 coeff0 = vreinterpret_s16_u8(vtbl1_u8(vreinterpret_u8_s16(coeffs), coeff_mask0)); |
|
128 coeff1 = vreinterpret_s16_u8(vtbl1_u8(vreinterpret_u8_s16(coeffs), coeff_mask1)); |
|
129 coeff2 = vreinterpret_s16_u8(vtbl1_u8(vreinterpret_u8_s16(coeffs), coeff_mask2)); |
|
130 coeff3 = vreinterpret_s16_u8(vtbl1_u8(vreinterpret_u8_s16(coeffs), coeff_mask3)); |
|
131 |
|
132 // Load pixels and calc |
|
133 uint8x16_t pixels = vld1q_u8(rowToFilter); |
|
134 int16x8_t p01_16 = vreinterpretq_s16_u16(vmovl_u8(vget_low_u8(pixels))); |
|
135 int16x8_t p23_16 = vreinterpretq_s16_u16(vmovl_u8(vget_high_u8(pixels))); |
|
136 |
|
137 int16x4_t p0_src = vget_low_s16(p01_16); |
|
138 int16x4_t p1_src = vget_high_s16(p01_16); |
|
139 int16x4_t p2_src = vget_low_s16(p23_16); |
|
140 int16x4_t p3_src = vget_high_s16(p23_16); |
|
141 |
|
142 int32x4_t p0 = vmull_s16(p0_src, coeff0); |
|
143 int32x4_t p1 = vmull_s16(p1_src, coeff1); |
|
144 int32x4_t p2 = vmull_s16(p2_src, coeff2); |
|
145 int32x4_t p3 = vmull_s16(p3_src, coeff3); |
|
146 |
|
147 accum += p0; |
|
148 accum += p1; |
|
149 accum += p2; |
|
150 accum += p3; |
|
151 |
|
152 // Advance the pointers |
|
153 rowToFilter += 16; |
|
154 filterValues += 4; |
|
155 } |
|
156 int r = filterLength & 3; |
|
157 if (r) { |
|
158 const uint16_t mask[4][4] = { |
|
159 {0, 0, 0, 0}, |
|
160 {0xFFFF, 0, 0, 0}, |
|
161 {0xFFFF, 0xFFFF, 0, 0}, |
|
162 {0xFFFF, 0xFFFF, 0xFFFF, 0} |
|
163 }; |
|
164 uint16x4_t coeffs; |
|
165 int16x4_t coeff0, coeff1, coeff2; |
|
166 coeffs = vld1_u16(reinterpret_cast<const uint16_t*>(filterValues)); |
|
167 coeffs &= vld1_u16(&mask[r][0]); |
|
168 coeff0 = vreinterpret_s16_u8(vtbl1_u8(vreinterpret_u8_u16(coeffs), coeff_mask0)); |
|
169 coeff1 = vreinterpret_s16_u8(vtbl1_u8(vreinterpret_u8_u16(coeffs), coeff_mask1)); |
|
170 coeff2 = vreinterpret_s16_u8(vtbl1_u8(vreinterpret_u8_u16(coeffs), coeff_mask2)); |
|
171 |
|
172 // Load pixels and calc |
|
173 uint8x16_t pixels = vld1q_u8(rowToFilter); |
|
174 int16x8_t p01_16 = vreinterpretq_s16_u16(vmovl_u8(vget_low_u8(pixels))); |
|
175 int16x8_t p23_16 = vreinterpretq_s16_u16(vmovl_u8(vget_high_u8(pixels))); |
|
176 int32x4_t p0 = vmull_s16(vget_low_s16(p01_16), coeff0); |
|
177 int32x4_t p1 = vmull_s16(vget_high_s16(p01_16), coeff1); |
|
178 int32x4_t p2 = vmull_s16(vget_low_s16(p23_16), coeff2); |
|
179 |
|
180 accum += p0; |
|
181 accum += p1; |
|
182 accum += p2; |
|
183 } |
|
184 |
|
185 // Bring this value back in range. All of the filter scaling factors |
|
186 // are in fixed point with kShiftBits bits of fractional part. |
|
187 accum = vshrq_n_s32(accum, SkConvolutionFilter1D::kShiftBits); |
|
188 |
|
189 // Pack and store the new pixel. |
|
190 int16x4_t accum16 = vqmovn_s32(accum); |
|
191 uint8x8_t accum8 = vqmovun_s16(vcombine_s16(accum16, accum16)); |
|
192 vst1_lane_u32(reinterpret_cast<uint32_t*>(outRow), vreinterpret_u32_u8(accum8), 0); |
|
193 outRow += 4; |
|
194 } |
|
195 } |
|
196 |
|
197 // Does vertical convolution to produce one output row. The filter values and |
|
198 // length are given in the first two parameters. These are applied to each |
|
199 // of the rows pointed to in the |sourceDataRows| array, with each row |
|
200 // being |pixelWidth| wide. |
|
201 // |
|
202 // The output must have room for |pixelWidth * 4| bytes. |
|
203 template<bool hasAlpha> |
|
204 void convolveVertically_neon(const SkConvolutionFilter1D::ConvolutionFixed* filterValues, |
|
205 int filterLength, |
|
206 unsigned char* const* sourceDataRows, |
|
207 int pixelWidth, |
|
208 unsigned char* outRow) { |
|
209 int width = pixelWidth & ~3; |
|
210 |
|
211 int32x4_t accum0, accum1, accum2, accum3; |
|
212 int16x4_t coeff16; |
|
213 |
|
214 // Output four pixels per iteration (16 bytes). |
|
215 for (int outX = 0; outX < width; outX += 4) { |
|
216 |
|
217 // Accumulated result for each pixel. 32 bits per RGBA channel. |
|
218 accum0 = accum1 = accum2 = accum3 = vdupq_n_s32(0); |
|
219 |
|
220 // Convolve with one filter coefficient per iteration. |
|
221 for (int filterY = 0; filterY < filterLength; filterY++) { |
|
222 |
|
223 // Duplicate the filter coefficient 4 times. |
|
224 // [16] cj cj cj cj |
|
225 coeff16 = vdup_n_s16(filterValues[filterY]); |
|
226 |
|
227 // Load four pixels (16 bytes) together. |
|
228 // [8] a3 b3 g3 r3 a2 b2 g2 r2 a1 b1 g1 r1 a0 b0 g0 r0 |
|
229 uint8x16_t src8 = vld1q_u8(&sourceDataRows[filterY][outX << 2]); |
|
230 |
|
231 int16x8_t src16_01 = vreinterpretq_s16_u16(vmovl_u8(vget_low_u8(src8))); |
|
232 int16x8_t src16_23 = vreinterpretq_s16_u16(vmovl_u8(vget_high_u8(src8))); |
|
233 int16x4_t src16_0 = vget_low_s16(src16_01); |
|
234 int16x4_t src16_1 = vget_high_s16(src16_01); |
|
235 int16x4_t src16_2 = vget_low_s16(src16_23); |
|
236 int16x4_t src16_3 = vget_high_s16(src16_23); |
|
237 |
|
238 accum0 += vmull_s16(src16_0, coeff16); |
|
239 accum1 += vmull_s16(src16_1, coeff16); |
|
240 accum2 += vmull_s16(src16_2, coeff16); |
|
241 accum3 += vmull_s16(src16_3, coeff16); |
|
242 } |
|
243 |
|
244 // Shift right for fixed point implementation. |
|
245 accum0 = vshrq_n_s32(accum0, SkConvolutionFilter1D::kShiftBits); |
|
246 accum1 = vshrq_n_s32(accum1, SkConvolutionFilter1D::kShiftBits); |
|
247 accum2 = vshrq_n_s32(accum2, SkConvolutionFilter1D::kShiftBits); |
|
248 accum3 = vshrq_n_s32(accum3, SkConvolutionFilter1D::kShiftBits); |
|
249 |
|
250 // Packing 32 bits |accum| to 16 bits per channel (signed saturation). |
|
251 // [16] a1 b1 g1 r1 a0 b0 g0 r0 |
|
252 int16x8_t accum16_0 = vcombine_s16(vqmovn_s32(accum0), vqmovn_s32(accum1)); |
|
253 // [16] a3 b3 g3 r3 a2 b2 g2 r2 |
|
254 int16x8_t accum16_1 = vcombine_s16(vqmovn_s32(accum2), vqmovn_s32(accum3)); |
|
255 |
|
256 // Packing 16 bits |accum| to 8 bits per channel (unsigned saturation). |
|
257 // [8] a3 b3 g3 r3 a2 b2 g2 r2 a1 b1 g1 r1 a0 b0 g0 r0 |
|
258 uint8x16_t accum8 = vcombine_u8(vqmovun_s16(accum16_0), vqmovun_s16(accum16_1)); |
|
259 |
|
260 if (hasAlpha) { |
|
261 // Compute the max(ri, gi, bi) for each pixel. |
|
262 // [8] xx a3 b3 g3 xx a2 b2 g2 xx a1 b1 g1 xx a0 b0 g0 |
|
263 uint8x16_t a = vreinterpretq_u8_u32(vshrq_n_u32(vreinterpretq_u32_u8(accum8), 8)); |
|
264 // [8] xx xx xx max3 xx xx xx max2 xx xx xx max1 xx xx xx max0 |
|
265 uint8x16_t b = vmaxq_u8(a, accum8); // Max of r and g |
|
266 // [8] xx xx a3 b3 xx xx a2 b2 xx xx a1 b1 xx xx a0 b0 |
|
267 a = vreinterpretq_u8_u32(vshrq_n_u32(vreinterpretq_u32_u8(accum8), 16)); |
|
268 // [8] xx xx xx max3 xx xx xx max2 xx xx xx max1 xx xx xx max0 |
|
269 b = vmaxq_u8(a, b); // Max of r and g and b. |
|
270 // [8] max3 00 00 00 max2 00 00 00 max1 00 00 00 max0 00 00 00 |
|
271 b = vreinterpretq_u8_u32(vshlq_n_u32(vreinterpretq_u32_u8(b), 24)); |
|
272 |
|
273 // Make sure the value of alpha channel is always larger than maximum |
|
274 // value of color channels. |
|
275 accum8 = vmaxq_u8(b, accum8); |
|
276 } else { |
|
277 // Set value of alpha channels to 0xFF. |
|
278 accum8 = vreinterpretq_u8_u32(vreinterpretq_u32_u8(accum8) | vdupq_n_u32(0xFF000000)); |
|
279 } |
|
280 |
|
281 // Store the convolution result (16 bytes) and advance the pixel pointers. |
|
282 vst1q_u8(outRow, accum8); |
|
283 outRow += 16; |
|
284 } |
|
285 |
|
286 // Process the leftovers when the width of the output is not divisible |
|
287 // by 4, that is at most 3 pixels. |
|
288 int r = pixelWidth & 3; |
|
289 if (r) { |
|
290 |
|
291 accum0 = accum1 = accum2 = vdupq_n_s32(0); |
|
292 |
|
293 for (int filterY = 0; filterY < filterLength; ++filterY) { |
|
294 coeff16 = vdup_n_s16(filterValues[filterY]); |
|
295 |
|
296 // [8] a3 b3 g3 r3 a2 b2 g2 r2 a1 b1 g1 r1 a0 b0 g0 r0 |
|
297 uint8x16_t src8 = vld1q_u8(&sourceDataRows[filterY][width << 2]); |
|
298 |
|
299 int16x8_t src16_01 = vreinterpretq_s16_u16(vmovl_u8(vget_low_u8(src8))); |
|
300 int16x8_t src16_23 = vreinterpretq_s16_u16(vmovl_u8(vget_high_u8(src8))); |
|
301 int16x4_t src16_0 = vget_low_s16(src16_01); |
|
302 int16x4_t src16_1 = vget_high_s16(src16_01); |
|
303 int16x4_t src16_2 = vget_low_s16(src16_23); |
|
304 |
|
305 accum0 += vmull_s16(src16_0, coeff16); |
|
306 accum1 += vmull_s16(src16_1, coeff16); |
|
307 accum2 += vmull_s16(src16_2, coeff16); |
|
308 } |
|
309 |
|
310 accum0 = vshrq_n_s32(accum0, SkConvolutionFilter1D::kShiftBits); |
|
311 accum1 = vshrq_n_s32(accum1, SkConvolutionFilter1D::kShiftBits); |
|
312 accum2 = vshrq_n_s32(accum2, SkConvolutionFilter1D::kShiftBits); |
|
313 |
|
314 int16x8_t accum16_0 = vcombine_s16(vqmovn_s32(accum0), vqmovn_s32(accum1)); |
|
315 int16x8_t accum16_1 = vcombine_s16(vqmovn_s32(accum2), vqmovn_s32(accum2)); |
|
316 |
|
317 uint8x16_t accum8 = vcombine_u8(vqmovun_s16(accum16_0), vqmovun_s16(accum16_1)); |
|
318 |
|
319 if (hasAlpha) { |
|
320 // Compute the max(ri, gi, bi) for each pixel. |
|
321 // [8] xx a3 b3 g3 xx a2 b2 g2 xx a1 b1 g1 xx a0 b0 g0 |
|
322 uint8x16_t a = vreinterpretq_u8_u32(vshrq_n_u32(vreinterpretq_u32_u8(accum8), 8)); |
|
323 // [8] xx xx xx max3 xx xx xx max2 xx xx xx max1 xx xx xx max0 |
|
324 uint8x16_t b = vmaxq_u8(a, accum8); // Max of r and g |
|
325 // [8] xx xx a3 b3 xx xx a2 b2 xx xx a1 b1 xx xx a0 b0 |
|
326 a = vreinterpretq_u8_u32(vshrq_n_u32(vreinterpretq_u32_u8(accum8), 16)); |
|
327 // [8] xx xx xx max3 xx xx xx max2 xx xx xx max1 xx xx xx max0 |
|
328 b = vmaxq_u8(a, b); // Max of r and g and b. |
|
329 // [8] max3 00 00 00 max2 00 00 00 max1 00 00 00 max0 00 00 00 |
|
330 b = vreinterpretq_u8_u32(vshlq_n_u32(vreinterpretq_u32_u8(b), 24)); |
|
331 |
|
332 // Make sure the value of alpha channel is always larger than maximum |
|
333 // value of color channels. |
|
334 accum8 = vmaxq_u8(b, accum8); |
|
335 } else { |
|
336 // Set value of alpha channels to 0xFF. |
|
337 accum8 = vreinterpretq_u8_u32(vreinterpretq_u32_u8(accum8) | vdupq_n_u32(0xFF000000)); |
|
338 } |
|
339 |
|
340 switch(r) { |
|
341 case 1: |
|
342 vst1q_lane_u32(reinterpret_cast<uint32_t*>(outRow), vreinterpretq_u32_u8(accum8), 0); |
|
343 break; |
|
344 case 2: |
|
345 vst1_u32(reinterpret_cast<uint32_t*>(outRow), |
|
346 vreinterpret_u32_u8(vget_low_u8(accum8))); |
|
347 break; |
|
348 case 3: |
|
349 vst1_u32(reinterpret_cast<uint32_t*>(outRow), |
|
350 vreinterpret_u32_u8(vget_low_u8(accum8))); |
|
351 vst1q_lane_u32(reinterpret_cast<uint32_t*>(outRow+8), vreinterpretq_u32_u8(accum8), 2); |
|
352 break; |
|
353 } |
|
354 } |
|
355 } |
|
356 |
|
357 void convolveVertically_neon(const SkConvolutionFilter1D::ConvolutionFixed* filterValues, |
|
358 int filterLength, |
|
359 unsigned char* const* sourceDataRows, |
|
360 int pixelWidth, |
|
361 unsigned char* outRow, |
|
362 bool sourceHasAlpha) { |
|
363 if (sourceHasAlpha) { |
|
364 convolveVertically_neon<true>(filterValues, filterLength, |
|
365 sourceDataRows, pixelWidth, |
|
366 outRow); |
|
367 } else { |
|
368 convolveVertically_neon<false>(filterValues, filterLength, |
|
369 sourceDataRows, pixelWidth, |
|
370 outRow); |
|
371 } |
|
372 } |
|
373 |
|
374 // Convolves horizontally along four rows. The row data is given in |
|
375 // |src_data| and continues for the num_values() of the filter. |
|
376 // The algorithm is almost same as |ConvolveHorizontally_SSE2|. Please |
|
377 // refer to that function for detailed comments. |
|
378 void convolve4RowsHorizontally_neon(const unsigned char* srcData[4], |
|
379 const SkConvolutionFilter1D& filter, |
|
380 unsigned char* outRow[4]) { |
|
381 |
|
382 uint8x8_t coeff_mask0 = vcreate_u8(0x0100010001000100); |
|
383 uint8x8_t coeff_mask1 = vcreate_u8(0x0302030203020302); |
|
384 uint8x8_t coeff_mask2 = vcreate_u8(0x0504050405040504); |
|
385 uint8x8_t coeff_mask3 = vcreate_u8(0x0706070607060706); |
|
386 int num_values = filter.numValues(); |
|
387 |
|
388 int filterOffset, filterLength; |
|
389 // |mask| will be used to decimate all extra filter coefficients that are |
|
390 // loaded by SIMD when |filter_length| is not divisible by 4. |
|
391 // mask[0] is not used in following algorithm. |
|
392 const uint16_t mask[4][4] = { |
|
393 {0, 0, 0, 0}, |
|
394 {0xFFFF, 0, 0, 0}, |
|
395 {0xFFFF, 0xFFFF, 0, 0}, |
|
396 {0xFFFF, 0xFFFF, 0xFFFF, 0} |
|
397 }; |
|
398 |
|
399 // Output one pixel each iteration, calculating all channels (RGBA) together. |
|
400 for (int outX = 0; outX < num_values; outX++) { |
|
401 |
|
402 const SkConvolutionFilter1D::ConvolutionFixed* filterValues = |
|
403 filter.FilterForValue(outX, &filterOffset, &filterLength); |
|
404 |
|
405 // four pixels in a column per iteration. |
|
406 int32x4_t accum0 = vdupq_n_s32(0); |
|
407 int32x4_t accum1 = vdupq_n_s32(0); |
|
408 int32x4_t accum2 = vdupq_n_s32(0); |
|
409 int32x4_t accum3 = vdupq_n_s32(0); |
|
410 |
|
411 int start = (filterOffset<<2); |
|
412 |
|
413 // We will load and accumulate with four coefficients per iteration. |
|
414 for (int filter_x = 0; filter_x < (filterLength >> 2); filter_x++) { |
|
415 int16x4_t coeffs, coeff0, coeff1, coeff2, coeff3; |
|
416 |
|
417 coeffs = vld1_s16(filterValues); |
|
418 coeff0 = vreinterpret_s16_u8(vtbl1_u8(vreinterpret_u8_s16(coeffs), coeff_mask0)); |
|
419 coeff1 = vreinterpret_s16_u8(vtbl1_u8(vreinterpret_u8_s16(coeffs), coeff_mask1)); |
|
420 coeff2 = vreinterpret_s16_u8(vtbl1_u8(vreinterpret_u8_s16(coeffs), coeff_mask2)); |
|
421 coeff3 = vreinterpret_s16_u8(vtbl1_u8(vreinterpret_u8_s16(coeffs), coeff_mask3)); |
|
422 |
|
423 uint8x16_t pixels; |
|
424 int16x8_t p01_16, p23_16; |
|
425 int32x4_t p0, p1, p2, p3; |
|
426 |
|
427 |
|
428 #define ITERATION(src, accum) \ |
|
429 pixels = vld1q_u8(src); \ |
|
430 p01_16 = vreinterpretq_s16_u16(vmovl_u8(vget_low_u8(pixels))); \ |
|
431 p23_16 = vreinterpretq_s16_u16(vmovl_u8(vget_high_u8(pixels))); \ |
|
432 p0 = vmull_s16(vget_low_s16(p01_16), coeff0); \ |
|
433 p1 = vmull_s16(vget_high_s16(p01_16), coeff1); \ |
|
434 p2 = vmull_s16(vget_low_s16(p23_16), coeff2); \ |
|
435 p3 = vmull_s16(vget_high_s16(p23_16), coeff3); \ |
|
436 accum += p0; \ |
|
437 accum += p1; \ |
|
438 accum += p2; \ |
|
439 accum += p3 |
|
440 |
|
441 ITERATION(srcData[0] + start, accum0); |
|
442 ITERATION(srcData[1] + start, accum1); |
|
443 ITERATION(srcData[2] + start, accum2); |
|
444 ITERATION(srcData[3] + start, accum3); |
|
445 |
|
446 start += 16; |
|
447 filterValues += 4; |
|
448 } |
|
449 |
|
450 int r = filterLength & 3; |
|
451 if (r) { |
|
452 int16x4_t coeffs, coeff0, coeff1, coeff2, coeff3; |
|
453 coeffs = vld1_s16(filterValues); |
|
454 coeffs &= vreinterpret_s16_u16(vld1_u16(&mask[r][0])); |
|
455 coeff0 = vreinterpret_s16_u8(vtbl1_u8(vreinterpret_u8_s16(coeffs), coeff_mask0)); |
|
456 coeff1 = vreinterpret_s16_u8(vtbl1_u8(vreinterpret_u8_s16(coeffs), coeff_mask1)); |
|
457 coeff2 = vreinterpret_s16_u8(vtbl1_u8(vreinterpret_u8_s16(coeffs), coeff_mask2)); |
|
458 coeff3 = vreinterpret_s16_u8(vtbl1_u8(vreinterpret_u8_s16(coeffs), coeff_mask3)); |
|
459 |
|
460 uint8x16_t pixels; |
|
461 int16x8_t p01_16, p23_16; |
|
462 int32x4_t p0, p1, p2, p3; |
|
463 |
|
464 ITERATION(srcData[0] + start, accum0); |
|
465 ITERATION(srcData[1] + start, accum1); |
|
466 ITERATION(srcData[2] + start, accum2); |
|
467 ITERATION(srcData[3] + start, accum3); |
|
468 } |
|
469 |
|
470 int16x4_t accum16; |
|
471 uint8x8_t res0, res1, res2, res3; |
|
472 |
|
473 #define PACK_RESULT(accum, res) \ |
|
474 accum = vshrq_n_s32(accum, SkConvolutionFilter1D::kShiftBits); \ |
|
475 accum16 = vqmovn_s32(accum); \ |
|
476 res = vqmovun_s16(vcombine_s16(accum16, accum16)); |
|
477 |
|
478 PACK_RESULT(accum0, res0); |
|
479 PACK_RESULT(accum1, res1); |
|
480 PACK_RESULT(accum2, res2); |
|
481 PACK_RESULT(accum3, res3); |
|
482 |
|
483 vst1_lane_u32(reinterpret_cast<uint32_t*>(outRow[0]), vreinterpret_u32_u8(res0), 0); |
|
484 vst1_lane_u32(reinterpret_cast<uint32_t*>(outRow[1]), vreinterpret_u32_u8(res1), 0); |
|
485 vst1_lane_u32(reinterpret_cast<uint32_t*>(outRow[2]), vreinterpret_u32_u8(res2), 0); |
|
486 vst1_lane_u32(reinterpret_cast<uint32_t*>(outRow[3]), vreinterpret_u32_u8(res3), 0); |
|
487 outRow[0] += 4; |
|
488 outRow[1] += 4; |
|
489 outRow[2] += 4; |
|
490 outRow[3] += 4; |
|
491 } |
|
492 } |
|
493 |
|
494 void applySIMDPadding_neon(SkConvolutionFilter1D *filter) { |
|
495 // Padding |paddingCount| of more dummy coefficients after the coefficients |
|
496 // of last filter to prevent SIMD instructions which load 8 or 16 bytes |
|
497 // together to access invalid memory areas. We are not trying to align the |
|
498 // coefficients right now due to the opaqueness of <vector> implementation. |
|
499 // This has to be done after all |AddFilter| calls. |
|
500 for (int i = 0; i < 8; ++i) { |
|
501 filter->addFilterValue(static_cast<SkConvolutionFilter1D::ConvolutionFixed>(0)); |
|
502 } |
|
503 } |
|
504 |
|
505 void platformConvolutionProcs_arm_neon(SkConvolutionProcs* procs) { |
|
506 procs->fExtraHorizontalReads = 3; |
|
507 procs->fConvolveVertically = &convolveVertically_neon; |
|
508 procs->fConvolve4RowsHorizontally = &convolve4RowsHorizontally_neon; |
|
509 procs->fConvolveHorizontally = &convolveHorizontally_neon; |
|
510 procs->fApplySIMDPadding = &applySIMDPadding_neon; |
|
511 } |