1.1 --- /dev/null Thu Jan 01 00:00:00 1970 +0000 1.2 +++ b/gfx/skia/trunk/src/opts/SkBitmapProcState_arm_neon.cpp Wed Dec 31 06:09:35 2014 +0100 1.3 @@ -0,0 +1,511 @@ 1.4 + 1.5 +/* 1.6 + * Copyright 2012 Google Inc. 1.7 + * 1.8 + * Use of this source code is governed by a BSD-style license that can be 1.9 + * found in the LICENSE file. 1.10 + */ 1.11 +#include "SkBitmapProcState.h" 1.12 +#include "SkBitmapProcState_filter.h" 1.13 +#include "SkColorPriv.h" 1.14 +#include "SkFilterProc.h" 1.15 +#include "SkPaint.h" 1.16 +#include "SkShader.h" // for tilemodes 1.17 +#include "SkUtilsArm.h" 1.18 + 1.19 +// Required to ensure the table is part of the final binary. 1.20 +extern const SkBitmapProcState::SampleProc32 gSkBitmapProcStateSample32_neon[]; 1.21 +extern const SkBitmapProcState::SampleProc16 gSkBitmapProcStateSample16_neon[]; 1.22 + 1.23 +#define NAME_WRAP(x) x ## _neon 1.24 +#include "SkBitmapProcState_filter_neon.h" 1.25 +#include "SkBitmapProcState_procs.h" 1.26 + 1.27 +const SkBitmapProcState::SampleProc32 gSkBitmapProcStateSample32_neon[] = { 1.28 + S32_opaque_D32_nofilter_DXDY_neon, 1.29 + S32_alpha_D32_nofilter_DXDY_neon, 1.30 + S32_opaque_D32_nofilter_DX_neon, 1.31 + S32_alpha_D32_nofilter_DX_neon, 1.32 + S32_opaque_D32_filter_DXDY_neon, 1.33 + S32_alpha_D32_filter_DXDY_neon, 1.34 + S32_opaque_D32_filter_DX_neon, 1.35 + S32_alpha_D32_filter_DX_neon, 1.36 + 1.37 + S16_opaque_D32_nofilter_DXDY_neon, 1.38 + S16_alpha_D32_nofilter_DXDY_neon, 1.39 + S16_opaque_D32_nofilter_DX_neon, 1.40 + S16_alpha_D32_nofilter_DX_neon, 1.41 + S16_opaque_D32_filter_DXDY_neon, 1.42 + S16_alpha_D32_filter_DXDY_neon, 1.43 + S16_opaque_D32_filter_DX_neon, 1.44 + S16_alpha_D32_filter_DX_neon, 1.45 + 1.46 + SI8_opaque_D32_nofilter_DXDY_neon, 1.47 + SI8_alpha_D32_nofilter_DXDY_neon, 1.48 + SI8_opaque_D32_nofilter_DX_neon, 1.49 + SI8_alpha_D32_nofilter_DX_neon, 1.50 + SI8_opaque_D32_filter_DXDY_neon, 1.51 + SI8_alpha_D32_filter_DXDY_neon, 1.52 + SI8_opaque_D32_filter_DX_neon, 1.53 + SI8_alpha_D32_filter_DX_neon, 1.54 + 1.55 + S4444_opaque_D32_nofilter_DXDY_neon, 1.56 + S4444_alpha_D32_nofilter_DXDY_neon, 1.57 + S4444_opaque_D32_nofilter_DX_neon, 1.58 + S4444_alpha_D32_nofilter_DX_neon, 1.59 + S4444_opaque_D32_filter_DXDY_neon, 1.60 + S4444_alpha_D32_filter_DXDY_neon, 1.61 + S4444_opaque_D32_filter_DX_neon, 1.62 + S4444_alpha_D32_filter_DX_neon, 1.63 + 1.64 + // A8 treats alpha/opauqe the same (equally efficient) 1.65 + SA8_alpha_D32_nofilter_DXDY_neon, 1.66 + SA8_alpha_D32_nofilter_DXDY_neon, 1.67 + SA8_alpha_D32_nofilter_DX_neon, 1.68 + SA8_alpha_D32_nofilter_DX_neon, 1.69 + SA8_alpha_D32_filter_DXDY_neon, 1.70 + SA8_alpha_D32_filter_DXDY_neon, 1.71 + SA8_alpha_D32_filter_DX_neon, 1.72 + SA8_alpha_D32_filter_DX_neon 1.73 +}; 1.74 + 1.75 +const SkBitmapProcState::SampleProc16 gSkBitmapProcStateSample16_neon[] = { 1.76 + S32_D16_nofilter_DXDY_neon, 1.77 + S32_D16_nofilter_DX_neon, 1.78 + S32_D16_filter_DXDY_neon, 1.79 + S32_D16_filter_DX_neon, 1.80 + 1.81 + S16_D16_nofilter_DXDY_neon, 1.82 + S16_D16_nofilter_DX_neon, 1.83 + S16_D16_filter_DXDY_neon, 1.84 + S16_D16_filter_DX_neon, 1.85 + 1.86 + SI8_D16_nofilter_DXDY_neon, 1.87 + SI8_D16_nofilter_DX_neon, 1.88 + SI8_D16_filter_DXDY_neon, 1.89 + SI8_D16_filter_DX_neon, 1.90 + 1.91 + // Don't support 4444 -> 565 1.92 + NULL, NULL, NULL, NULL, 1.93 + // Don't support A8 -> 565 1.94 + NULL, NULL, NULL, NULL 1.95 +}; 1.96 + 1.97 +/////////////////////////////////////////////////////////////////////////////// 1.98 + 1.99 +#include <arm_neon.h> 1.100 +#include "SkConvolver.h" 1.101 + 1.102 +// Convolves horizontally along a single row. The row data is given in 1.103 +// |srcData| and continues for the numValues() of the filter. 1.104 +void convolveHorizontally_neon(const unsigned char* srcData, 1.105 + const SkConvolutionFilter1D& filter, 1.106 + unsigned char* outRow, 1.107 + bool hasAlpha) { 1.108 + // Loop over each pixel on this row in the output image. 1.109 + int numValues = filter.numValues(); 1.110 + for (int outX = 0; outX < numValues; outX++) { 1.111 + uint8x8_t coeff_mask0 = vcreate_u8(0x0100010001000100); 1.112 + uint8x8_t coeff_mask1 = vcreate_u8(0x0302030203020302); 1.113 + uint8x8_t coeff_mask2 = vcreate_u8(0x0504050405040504); 1.114 + uint8x8_t coeff_mask3 = vcreate_u8(0x0706070607060706); 1.115 + // Get the filter that determines the current output pixel. 1.116 + int filterOffset, filterLength; 1.117 + const SkConvolutionFilter1D::ConvolutionFixed* filterValues = 1.118 + filter.FilterForValue(outX, &filterOffset, &filterLength); 1.119 + 1.120 + // Compute the first pixel in this row that the filter affects. It will 1.121 + // touch |filterLength| pixels (4 bytes each) after this. 1.122 + const unsigned char* rowToFilter = &srcData[filterOffset * 4]; 1.123 + 1.124 + // Apply the filter to the row to get the destination pixel in |accum|. 1.125 + int32x4_t accum = vdupq_n_s32(0); 1.126 + for (int filterX = 0; filterX < filterLength >> 2; filterX++) { 1.127 + // Load 4 coefficients 1.128 + int16x4_t coeffs, coeff0, coeff1, coeff2, coeff3; 1.129 + coeffs = vld1_s16(filterValues); 1.130 + coeff0 = vreinterpret_s16_u8(vtbl1_u8(vreinterpret_u8_s16(coeffs), coeff_mask0)); 1.131 + coeff1 = vreinterpret_s16_u8(vtbl1_u8(vreinterpret_u8_s16(coeffs), coeff_mask1)); 1.132 + coeff2 = vreinterpret_s16_u8(vtbl1_u8(vreinterpret_u8_s16(coeffs), coeff_mask2)); 1.133 + coeff3 = vreinterpret_s16_u8(vtbl1_u8(vreinterpret_u8_s16(coeffs), coeff_mask3)); 1.134 + 1.135 + // Load pixels and calc 1.136 + uint8x16_t pixels = vld1q_u8(rowToFilter); 1.137 + int16x8_t p01_16 = vreinterpretq_s16_u16(vmovl_u8(vget_low_u8(pixels))); 1.138 + int16x8_t p23_16 = vreinterpretq_s16_u16(vmovl_u8(vget_high_u8(pixels))); 1.139 + 1.140 + int16x4_t p0_src = vget_low_s16(p01_16); 1.141 + int16x4_t p1_src = vget_high_s16(p01_16); 1.142 + int16x4_t p2_src = vget_low_s16(p23_16); 1.143 + int16x4_t p3_src = vget_high_s16(p23_16); 1.144 + 1.145 + int32x4_t p0 = vmull_s16(p0_src, coeff0); 1.146 + int32x4_t p1 = vmull_s16(p1_src, coeff1); 1.147 + int32x4_t p2 = vmull_s16(p2_src, coeff2); 1.148 + int32x4_t p3 = vmull_s16(p3_src, coeff3); 1.149 + 1.150 + accum += p0; 1.151 + accum += p1; 1.152 + accum += p2; 1.153 + accum += p3; 1.154 + 1.155 + // Advance the pointers 1.156 + rowToFilter += 16; 1.157 + filterValues += 4; 1.158 + } 1.159 + int r = filterLength & 3; 1.160 + if (r) { 1.161 + const uint16_t mask[4][4] = { 1.162 + {0, 0, 0, 0}, 1.163 + {0xFFFF, 0, 0, 0}, 1.164 + {0xFFFF, 0xFFFF, 0, 0}, 1.165 + {0xFFFF, 0xFFFF, 0xFFFF, 0} 1.166 + }; 1.167 + uint16x4_t coeffs; 1.168 + int16x4_t coeff0, coeff1, coeff2; 1.169 + coeffs = vld1_u16(reinterpret_cast<const uint16_t*>(filterValues)); 1.170 + coeffs &= vld1_u16(&mask[r][0]); 1.171 + coeff0 = vreinterpret_s16_u8(vtbl1_u8(vreinterpret_u8_u16(coeffs), coeff_mask0)); 1.172 + coeff1 = vreinterpret_s16_u8(vtbl1_u8(vreinterpret_u8_u16(coeffs), coeff_mask1)); 1.173 + coeff2 = vreinterpret_s16_u8(vtbl1_u8(vreinterpret_u8_u16(coeffs), coeff_mask2)); 1.174 + 1.175 + // Load pixels and calc 1.176 + uint8x16_t pixels = vld1q_u8(rowToFilter); 1.177 + int16x8_t p01_16 = vreinterpretq_s16_u16(vmovl_u8(vget_low_u8(pixels))); 1.178 + int16x8_t p23_16 = vreinterpretq_s16_u16(vmovl_u8(vget_high_u8(pixels))); 1.179 + int32x4_t p0 = vmull_s16(vget_low_s16(p01_16), coeff0); 1.180 + int32x4_t p1 = vmull_s16(vget_high_s16(p01_16), coeff1); 1.181 + int32x4_t p2 = vmull_s16(vget_low_s16(p23_16), coeff2); 1.182 + 1.183 + accum += p0; 1.184 + accum += p1; 1.185 + accum += p2; 1.186 + } 1.187 + 1.188 + // Bring this value back in range. All of the filter scaling factors 1.189 + // are in fixed point with kShiftBits bits of fractional part. 1.190 + accum = vshrq_n_s32(accum, SkConvolutionFilter1D::kShiftBits); 1.191 + 1.192 + // Pack and store the new pixel. 1.193 + int16x4_t accum16 = vqmovn_s32(accum); 1.194 + uint8x8_t accum8 = vqmovun_s16(vcombine_s16(accum16, accum16)); 1.195 + vst1_lane_u32(reinterpret_cast<uint32_t*>(outRow), vreinterpret_u32_u8(accum8), 0); 1.196 + outRow += 4; 1.197 + } 1.198 +} 1.199 + 1.200 +// Does vertical convolution to produce one output row. The filter values and 1.201 +// length are given in the first two parameters. These are applied to each 1.202 +// of the rows pointed to in the |sourceDataRows| array, with each row 1.203 +// being |pixelWidth| wide. 1.204 +// 1.205 +// The output must have room for |pixelWidth * 4| bytes. 1.206 +template<bool hasAlpha> 1.207 +void convolveVertically_neon(const SkConvolutionFilter1D::ConvolutionFixed* filterValues, 1.208 + int filterLength, 1.209 + unsigned char* const* sourceDataRows, 1.210 + int pixelWidth, 1.211 + unsigned char* outRow) { 1.212 + int width = pixelWidth & ~3; 1.213 + 1.214 + int32x4_t accum0, accum1, accum2, accum3; 1.215 + int16x4_t coeff16; 1.216 + 1.217 + // Output four pixels per iteration (16 bytes). 1.218 + for (int outX = 0; outX < width; outX += 4) { 1.219 + 1.220 + // Accumulated result for each pixel. 32 bits per RGBA channel. 1.221 + accum0 = accum1 = accum2 = accum3 = vdupq_n_s32(0); 1.222 + 1.223 + // Convolve with one filter coefficient per iteration. 1.224 + for (int filterY = 0; filterY < filterLength; filterY++) { 1.225 + 1.226 + // Duplicate the filter coefficient 4 times. 1.227 + // [16] cj cj cj cj 1.228 + coeff16 = vdup_n_s16(filterValues[filterY]); 1.229 + 1.230 + // Load four pixels (16 bytes) together. 1.231 + // [8] a3 b3 g3 r3 a2 b2 g2 r2 a1 b1 g1 r1 a0 b0 g0 r0 1.232 + uint8x16_t src8 = vld1q_u8(&sourceDataRows[filterY][outX << 2]); 1.233 + 1.234 + int16x8_t src16_01 = vreinterpretq_s16_u16(vmovl_u8(vget_low_u8(src8))); 1.235 + int16x8_t src16_23 = vreinterpretq_s16_u16(vmovl_u8(vget_high_u8(src8))); 1.236 + int16x4_t src16_0 = vget_low_s16(src16_01); 1.237 + int16x4_t src16_1 = vget_high_s16(src16_01); 1.238 + int16x4_t src16_2 = vget_low_s16(src16_23); 1.239 + int16x4_t src16_3 = vget_high_s16(src16_23); 1.240 + 1.241 + accum0 += vmull_s16(src16_0, coeff16); 1.242 + accum1 += vmull_s16(src16_1, coeff16); 1.243 + accum2 += vmull_s16(src16_2, coeff16); 1.244 + accum3 += vmull_s16(src16_3, coeff16); 1.245 + } 1.246 + 1.247 + // Shift right for fixed point implementation. 1.248 + accum0 = vshrq_n_s32(accum0, SkConvolutionFilter1D::kShiftBits); 1.249 + accum1 = vshrq_n_s32(accum1, SkConvolutionFilter1D::kShiftBits); 1.250 + accum2 = vshrq_n_s32(accum2, SkConvolutionFilter1D::kShiftBits); 1.251 + accum3 = vshrq_n_s32(accum3, SkConvolutionFilter1D::kShiftBits); 1.252 + 1.253 + // Packing 32 bits |accum| to 16 bits per channel (signed saturation). 1.254 + // [16] a1 b1 g1 r1 a0 b0 g0 r0 1.255 + int16x8_t accum16_0 = vcombine_s16(vqmovn_s32(accum0), vqmovn_s32(accum1)); 1.256 + // [16] a3 b3 g3 r3 a2 b2 g2 r2 1.257 + int16x8_t accum16_1 = vcombine_s16(vqmovn_s32(accum2), vqmovn_s32(accum3)); 1.258 + 1.259 + // Packing 16 bits |accum| to 8 bits per channel (unsigned saturation). 1.260 + // [8] a3 b3 g3 r3 a2 b2 g2 r2 a1 b1 g1 r1 a0 b0 g0 r0 1.261 + uint8x16_t accum8 = vcombine_u8(vqmovun_s16(accum16_0), vqmovun_s16(accum16_1)); 1.262 + 1.263 + if (hasAlpha) { 1.264 + // Compute the max(ri, gi, bi) for each pixel. 1.265 + // [8] xx a3 b3 g3 xx a2 b2 g2 xx a1 b1 g1 xx a0 b0 g0 1.266 + uint8x16_t a = vreinterpretq_u8_u32(vshrq_n_u32(vreinterpretq_u32_u8(accum8), 8)); 1.267 + // [8] xx xx xx max3 xx xx xx max2 xx xx xx max1 xx xx xx max0 1.268 + uint8x16_t b = vmaxq_u8(a, accum8); // Max of r and g 1.269 + // [8] xx xx a3 b3 xx xx a2 b2 xx xx a1 b1 xx xx a0 b0 1.270 + a = vreinterpretq_u8_u32(vshrq_n_u32(vreinterpretq_u32_u8(accum8), 16)); 1.271 + // [8] xx xx xx max3 xx xx xx max2 xx xx xx max1 xx xx xx max0 1.272 + b = vmaxq_u8(a, b); // Max of r and g and b. 1.273 + // [8] max3 00 00 00 max2 00 00 00 max1 00 00 00 max0 00 00 00 1.274 + b = vreinterpretq_u8_u32(vshlq_n_u32(vreinterpretq_u32_u8(b), 24)); 1.275 + 1.276 + // Make sure the value of alpha channel is always larger than maximum 1.277 + // value of color channels. 1.278 + accum8 = vmaxq_u8(b, accum8); 1.279 + } else { 1.280 + // Set value of alpha channels to 0xFF. 1.281 + accum8 = vreinterpretq_u8_u32(vreinterpretq_u32_u8(accum8) | vdupq_n_u32(0xFF000000)); 1.282 + } 1.283 + 1.284 + // Store the convolution result (16 bytes) and advance the pixel pointers. 1.285 + vst1q_u8(outRow, accum8); 1.286 + outRow += 16; 1.287 + } 1.288 + 1.289 + // Process the leftovers when the width of the output is not divisible 1.290 + // by 4, that is at most 3 pixels. 1.291 + int r = pixelWidth & 3; 1.292 + if (r) { 1.293 + 1.294 + accum0 = accum1 = accum2 = vdupq_n_s32(0); 1.295 + 1.296 + for (int filterY = 0; filterY < filterLength; ++filterY) { 1.297 + coeff16 = vdup_n_s16(filterValues[filterY]); 1.298 + 1.299 + // [8] a3 b3 g3 r3 a2 b2 g2 r2 a1 b1 g1 r1 a0 b0 g0 r0 1.300 + uint8x16_t src8 = vld1q_u8(&sourceDataRows[filterY][width << 2]); 1.301 + 1.302 + int16x8_t src16_01 = vreinterpretq_s16_u16(vmovl_u8(vget_low_u8(src8))); 1.303 + int16x8_t src16_23 = vreinterpretq_s16_u16(vmovl_u8(vget_high_u8(src8))); 1.304 + int16x4_t src16_0 = vget_low_s16(src16_01); 1.305 + int16x4_t src16_1 = vget_high_s16(src16_01); 1.306 + int16x4_t src16_2 = vget_low_s16(src16_23); 1.307 + 1.308 + accum0 += vmull_s16(src16_0, coeff16); 1.309 + accum1 += vmull_s16(src16_1, coeff16); 1.310 + accum2 += vmull_s16(src16_2, coeff16); 1.311 + } 1.312 + 1.313 + accum0 = vshrq_n_s32(accum0, SkConvolutionFilter1D::kShiftBits); 1.314 + accum1 = vshrq_n_s32(accum1, SkConvolutionFilter1D::kShiftBits); 1.315 + accum2 = vshrq_n_s32(accum2, SkConvolutionFilter1D::kShiftBits); 1.316 + 1.317 + int16x8_t accum16_0 = vcombine_s16(vqmovn_s32(accum0), vqmovn_s32(accum1)); 1.318 + int16x8_t accum16_1 = vcombine_s16(vqmovn_s32(accum2), vqmovn_s32(accum2)); 1.319 + 1.320 + uint8x16_t accum8 = vcombine_u8(vqmovun_s16(accum16_0), vqmovun_s16(accum16_1)); 1.321 + 1.322 + if (hasAlpha) { 1.323 + // Compute the max(ri, gi, bi) for each pixel. 1.324 + // [8] xx a3 b3 g3 xx a2 b2 g2 xx a1 b1 g1 xx a0 b0 g0 1.325 + uint8x16_t a = vreinterpretq_u8_u32(vshrq_n_u32(vreinterpretq_u32_u8(accum8), 8)); 1.326 + // [8] xx xx xx max3 xx xx xx max2 xx xx xx max1 xx xx xx max0 1.327 + uint8x16_t b = vmaxq_u8(a, accum8); // Max of r and g 1.328 + // [8] xx xx a3 b3 xx xx a2 b2 xx xx a1 b1 xx xx a0 b0 1.329 + a = vreinterpretq_u8_u32(vshrq_n_u32(vreinterpretq_u32_u8(accum8), 16)); 1.330 + // [8] xx xx xx max3 xx xx xx max2 xx xx xx max1 xx xx xx max0 1.331 + b = vmaxq_u8(a, b); // Max of r and g and b. 1.332 + // [8] max3 00 00 00 max2 00 00 00 max1 00 00 00 max0 00 00 00 1.333 + b = vreinterpretq_u8_u32(vshlq_n_u32(vreinterpretq_u32_u8(b), 24)); 1.334 + 1.335 + // Make sure the value of alpha channel is always larger than maximum 1.336 + // value of color channels. 1.337 + accum8 = vmaxq_u8(b, accum8); 1.338 + } else { 1.339 + // Set value of alpha channels to 0xFF. 1.340 + accum8 = vreinterpretq_u8_u32(vreinterpretq_u32_u8(accum8) | vdupq_n_u32(0xFF000000)); 1.341 + } 1.342 + 1.343 + switch(r) { 1.344 + case 1: 1.345 + vst1q_lane_u32(reinterpret_cast<uint32_t*>(outRow), vreinterpretq_u32_u8(accum8), 0); 1.346 + break; 1.347 + case 2: 1.348 + vst1_u32(reinterpret_cast<uint32_t*>(outRow), 1.349 + vreinterpret_u32_u8(vget_low_u8(accum8))); 1.350 + break; 1.351 + case 3: 1.352 + vst1_u32(reinterpret_cast<uint32_t*>(outRow), 1.353 + vreinterpret_u32_u8(vget_low_u8(accum8))); 1.354 + vst1q_lane_u32(reinterpret_cast<uint32_t*>(outRow+8), vreinterpretq_u32_u8(accum8), 2); 1.355 + break; 1.356 + } 1.357 + } 1.358 +} 1.359 + 1.360 +void convolveVertically_neon(const SkConvolutionFilter1D::ConvolutionFixed* filterValues, 1.361 + int filterLength, 1.362 + unsigned char* const* sourceDataRows, 1.363 + int pixelWidth, 1.364 + unsigned char* outRow, 1.365 + bool sourceHasAlpha) { 1.366 + if (sourceHasAlpha) { 1.367 + convolveVertically_neon<true>(filterValues, filterLength, 1.368 + sourceDataRows, pixelWidth, 1.369 + outRow); 1.370 + } else { 1.371 + convolveVertically_neon<false>(filterValues, filterLength, 1.372 + sourceDataRows, pixelWidth, 1.373 + outRow); 1.374 + } 1.375 +} 1.376 + 1.377 +// Convolves horizontally along four rows. The row data is given in 1.378 +// |src_data| and continues for the num_values() of the filter. 1.379 +// The algorithm is almost same as |ConvolveHorizontally_SSE2|. Please 1.380 +// refer to that function for detailed comments. 1.381 +void convolve4RowsHorizontally_neon(const unsigned char* srcData[4], 1.382 + const SkConvolutionFilter1D& filter, 1.383 + unsigned char* outRow[4]) { 1.384 + 1.385 + uint8x8_t coeff_mask0 = vcreate_u8(0x0100010001000100); 1.386 + uint8x8_t coeff_mask1 = vcreate_u8(0x0302030203020302); 1.387 + uint8x8_t coeff_mask2 = vcreate_u8(0x0504050405040504); 1.388 + uint8x8_t coeff_mask3 = vcreate_u8(0x0706070607060706); 1.389 + int num_values = filter.numValues(); 1.390 + 1.391 + int filterOffset, filterLength; 1.392 + // |mask| will be used to decimate all extra filter coefficients that are 1.393 + // loaded by SIMD when |filter_length| is not divisible by 4. 1.394 + // mask[0] is not used in following algorithm. 1.395 + const uint16_t mask[4][4] = { 1.396 + {0, 0, 0, 0}, 1.397 + {0xFFFF, 0, 0, 0}, 1.398 + {0xFFFF, 0xFFFF, 0, 0}, 1.399 + {0xFFFF, 0xFFFF, 0xFFFF, 0} 1.400 + }; 1.401 + 1.402 + // Output one pixel each iteration, calculating all channels (RGBA) together. 1.403 + for (int outX = 0; outX < num_values; outX++) { 1.404 + 1.405 + const SkConvolutionFilter1D::ConvolutionFixed* filterValues = 1.406 + filter.FilterForValue(outX, &filterOffset, &filterLength); 1.407 + 1.408 + // four pixels in a column per iteration. 1.409 + int32x4_t accum0 = vdupq_n_s32(0); 1.410 + int32x4_t accum1 = vdupq_n_s32(0); 1.411 + int32x4_t accum2 = vdupq_n_s32(0); 1.412 + int32x4_t accum3 = vdupq_n_s32(0); 1.413 + 1.414 + int start = (filterOffset<<2); 1.415 + 1.416 + // We will load and accumulate with four coefficients per iteration. 1.417 + for (int filter_x = 0; filter_x < (filterLength >> 2); filter_x++) { 1.418 + int16x4_t coeffs, coeff0, coeff1, coeff2, coeff3; 1.419 + 1.420 + coeffs = vld1_s16(filterValues); 1.421 + coeff0 = vreinterpret_s16_u8(vtbl1_u8(vreinterpret_u8_s16(coeffs), coeff_mask0)); 1.422 + coeff1 = vreinterpret_s16_u8(vtbl1_u8(vreinterpret_u8_s16(coeffs), coeff_mask1)); 1.423 + coeff2 = vreinterpret_s16_u8(vtbl1_u8(vreinterpret_u8_s16(coeffs), coeff_mask2)); 1.424 + coeff3 = vreinterpret_s16_u8(vtbl1_u8(vreinterpret_u8_s16(coeffs), coeff_mask3)); 1.425 + 1.426 + uint8x16_t pixels; 1.427 + int16x8_t p01_16, p23_16; 1.428 + int32x4_t p0, p1, p2, p3; 1.429 + 1.430 + 1.431 +#define ITERATION(src, accum) \ 1.432 + pixels = vld1q_u8(src); \ 1.433 + p01_16 = vreinterpretq_s16_u16(vmovl_u8(vget_low_u8(pixels))); \ 1.434 + p23_16 = vreinterpretq_s16_u16(vmovl_u8(vget_high_u8(pixels))); \ 1.435 + p0 = vmull_s16(vget_low_s16(p01_16), coeff0); \ 1.436 + p1 = vmull_s16(vget_high_s16(p01_16), coeff1); \ 1.437 + p2 = vmull_s16(vget_low_s16(p23_16), coeff2); \ 1.438 + p3 = vmull_s16(vget_high_s16(p23_16), coeff3); \ 1.439 + accum += p0; \ 1.440 + accum += p1; \ 1.441 + accum += p2; \ 1.442 + accum += p3 1.443 + 1.444 + ITERATION(srcData[0] + start, accum0); 1.445 + ITERATION(srcData[1] + start, accum1); 1.446 + ITERATION(srcData[2] + start, accum2); 1.447 + ITERATION(srcData[3] + start, accum3); 1.448 + 1.449 + start += 16; 1.450 + filterValues += 4; 1.451 + } 1.452 + 1.453 + int r = filterLength & 3; 1.454 + if (r) { 1.455 + int16x4_t coeffs, coeff0, coeff1, coeff2, coeff3; 1.456 + coeffs = vld1_s16(filterValues); 1.457 + coeffs &= vreinterpret_s16_u16(vld1_u16(&mask[r][0])); 1.458 + coeff0 = vreinterpret_s16_u8(vtbl1_u8(vreinterpret_u8_s16(coeffs), coeff_mask0)); 1.459 + coeff1 = vreinterpret_s16_u8(vtbl1_u8(vreinterpret_u8_s16(coeffs), coeff_mask1)); 1.460 + coeff2 = vreinterpret_s16_u8(vtbl1_u8(vreinterpret_u8_s16(coeffs), coeff_mask2)); 1.461 + coeff3 = vreinterpret_s16_u8(vtbl1_u8(vreinterpret_u8_s16(coeffs), coeff_mask3)); 1.462 + 1.463 + uint8x16_t pixels; 1.464 + int16x8_t p01_16, p23_16; 1.465 + int32x4_t p0, p1, p2, p3; 1.466 + 1.467 + ITERATION(srcData[0] + start, accum0); 1.468 + ITERATION(srcData[1] + start, accum1); 1.469 + ITERATION(srcData[2] + start, accum2); 1.470 + ITERATION(srcData[3] + start, accum3); 1.471 + } 1.472 + 1.473 + int16x4_t accum16; 1.474 + uint8x8_t res0, res1, res2, res3; 1.475 + 1.476 +#define PACK_RESULT(accum, res) \ 1.477 + accum = vshrq_n_s32(accum, SkConvolutionFilter1D::kShiftBits); \ 1.478 + accum16 = vqmovn_s32(accum); \ 1.479 + res = vqmovun_s16(vcombine_s16(accum16, accum16)); 1.480 + 1.481 + PACK_RESULT(accum0, res0); 1.482 + PACK_RESULT(accum1, res1); 1.483 + PACK_RESULT(accum2, res2); 1.484 + PACK_RESULT(accum3, res3); 1.485 + 1.486 + vst1_lane_u32(reinterpret_cast<uint32_t*>(outRow[0]), vreinterpret_u32_u8(res0), 0); 1.487 + vst1_lane_u32(reinterpret_cast<uint32_t*>(outRow[1]), vreinterpret_u32_u8(res1), 0); 1.488 + vst1_lane_u32(reinterpret_cast<uint32_t*>(outRow[2]), vreinterpret_u32_u8(res2), 0); 1.489 + vst1_lane_u32(reinterpret_cast<uint32_t*>(outRow[3]), vreinterpret_u32_u8(res3), 0); 1.490 + outRow[0] += 4; 1.491 + outRow[1] += 4; 1.492 + outRow[2] += 4; 1.493 + outRow[3] += 4; 1.494 + } 1.495 +} 1.496 + 1.497 +void applySIMDPadding_neon(SkConvolutionFilter1D *filter) { 1.498 + // Padding |paddingCount| of more dummy coefficients after the coefficients 1.499 + // of last filter to prevent SIMD instructions which load 8 or 16 bytes 1.500 + // together to access invalid memory areas. We are not trying to align the 1.501 + // coefficients right now due to the opaqueness of <vector> implementation. 1.502 + // This has to be done after all |AddFilter| calls. 1.503 + for (int i = 0; i < 8; ++i) { 1.504 + filter->addFilterValue(static_cast<SkConvolutionFilter1D::ConvolutionFixed>(0)); 1.505 + } 1.506 +} 1.507 + 1.508 +void platformConvolutionProcs_arm_neon(SkConvolutionProcs* procs) { 1.509 + procs->fExtraHorizontalReads = 3; 1.510 + procs->fConvolveVertically = &convolveVertically_neon; 1.511 + procs->fConvolve4RowsHorizontally = &convolve4RowsHorizontally_neon; 1.512 + procs->fConvolveHorizontally = &convolveHorizontally_neon; 1.513 + procs->fApplySIMDPadding = &applySIMDPadding_neon; 1.514 +}