|
1 // Copyright (c) 2006-2008 The Chromium Authors. All rights reserved. |
|
2 // Use of this source code is governed by a BSD-style license that can be |
|
3 // found in the LICENSE file. |
|
4 |
|
5 |
|
6 // Windows Timer Primer |
|
7 // |
|
8 // A good article: http://www.ddj.com/windows/184416651 |
|
9 // A good mozilla bug: http://bugzilla.mozilla.org/show_bug.cgi?id=363258 |
|
10 // |
|
11 // The default windows timer, GetSystemTimeAsFileTime is not very precise. |
|
12 // It is only good to ~15.5ms. |
|
13 // |
|
14 // QueryPerformanceCounter is the logical choice for a high-precision timer. |
|
15 // However, it is known to be buggy on some hardware. Specifically, it can |
|
16 // sometimes "jump". On laptops, QPC can also be very expensive to call. |
|
17 // It's 3-4x slower than timeGetTime() on desktops, but can be 10x slower |
|
18 // on laptops. A unittest exists which will show the relative cost of various |
|
19 // timers on any system. |
|
20 // |
|
21 // The next logical choice is timeGetTime(). timeGetTime has a precision of |
|
22 // 1ms, but only if you call APIs (timeBeginPeriod()) which affect all other |
|
23 // applications on the system. By default, precision is only 15.5ms. |
|
24 // Unfortunately, we don't want to call timeBeginPeriod because we don't |
|
25 // want to affect other applications. Further, on mobile platforms, use of |
|
26 // faster multimedia timers can hurt battery life. See the intel |
|
27 // article about this here: |
|
28 // http://softwarecommunity.intel.com/articles/eng/1086.htm |
|
29 // |
|
30 // To work around all this, we're going to generally use timeGetTime(). We |
|
31 // will only increase the system-wide timer if we're not running on battery |
|
32 // power. Using timeBeginPeriod(1) is a requirement in order to make our |
|
33 // message loop waits have the same resolution that our time measurements |
|
34 // do. Otherwise, WaitForSingleObject(..., 1) will no less than 15ms when |
|
35 // there is nothing else to waken the Wait. |
|
36 |
|
37 #include "base/time.h" |
|
38 |
|
39 #pragma comment(lib, "winmm.lib") |
|
40 #include <windows.h> |
|
41 #include <mmsystem.h> |
|
42 |
|
43 #include "base/basictypes.h" |
|
44 #include "base/lock.h" |
|
45 #include "base/logging.h" |
|
46 #include "base/cpu.h" |
|
47 #include "base/singleton.h" |
|
48 #include "base/system_monitor.h" |
|
49 #include "mozilla/Casting.h" |
|
50 |
|
51 using base::Time; |
|
52 using base::TimeDelta; |
|
53 using base::TimeTicks; |
|
54 using mozilla::BitwiseCast; |
|
55 |
|
56 namespace { |
|
57 |
|
58 // From MSDN, FILETIME "Contains a 64-bit value representing the number of |
|
59 // 100-nanosecond intervals since January 1, 1601 (UTC)." |
|
60 int64_t FileTimeToMicroseconds(const FILETIME& ft) { |
|
61 // Need to BitwiseCast to fix alignment, then divide by 10 to convert |
|
62 // 100-nanoseconds to milliseconds. This only works on little-endian |
|
63 // machines. |
|
64 return BitwiseCast<int64_t>(ft) / 10; |
|
65 } |
|
66 |
|
67 void MicrosecondsToFileTime(int64_t us, FILETIME* ft) { |
|
68 DCHECK(us >= 0) << "Time is less than 0, negative values are not " |
|
69 "representable in FILETIME"; |
|
70 |
|
71 // Multiply by 10 to convert milliseconds to 100-nanoseconds. BitwiseCast will |
|
72 // handle alignment problems. This only works on little-endian machines. |
|
73 *ft = BitwiseCast<FILETIME>(us * 10); |
|
74 } |
|
75 |
|
76 int64_t CurrentWallclockMicroseconds() { |
|
77 FILETIME ft; |
|
78 ::GetSystemTimeAsFileTime(&ft); |
|
79 return FileTimeToMicroseconds(ft); |
|
80 } |
|
81 |
|
82 // Time between resampling the un-granular clock for this API. 60 seconds. |
|
83 const int kMaxMillisecondsToAvoidDrift = 60 * Time::kMillisecondsPerSecond; |
|
84 |
|
85 int64_t initial_time = 0; |
|
86 TimeTicks initial_ticks; |
|
87 |
|
88 void InitializeClock() { |
|
89 initial_ticks = TimeTicks::Now(); |
|
90 initial_time = CurrentWallclockMicroseconds(); |
|
91 } |
|
92 |
|
93 } // namespace |
|
94 |
|
95 // Time ----------------------------------------------------------------------- |
|
96 |
|
97 // The internal representation of Time uses FILETIME, whose epoch is 1601-01-01 |
|
98 // 00:00:00 UTC. ((1970-1601)*365+89)*24*60*60*1000*1000, where 89 is the |
|
99 // number of leap year days between 1601 and 1970: (1970-1601)/4 excluding |
|
100 // 1700, 1800, and 1900. |
|
101 // static |
|
102 const int64_t Time::kTimeTToMicrosecondsOffset = GG_INT64_C(11644473600000000); |
|
103 |
|
104 // static |
|
105 Time Time::Now() { |
|
106 if (initial_time == 0) |
|
107 InitializeClock(); |
|
108 |
|
109 // We implement time using the high-resolution timers so that we can get |
|
110 // timeouts which are smaller than 10-15ms. If we just used |
|
111 // CurrentWallclockMicroseconds(), we'd have the less-granular timer. |
|
112 // |
|
113 // To make this work, we initialize the clock (initial_time) and the |
|
114 // counter (initial_ctr). To compute the initial time, we can check |
|
115 // the number of ticks that have elapsed, and compute the delta. |
|
116 // |
|
117 // To avoid any drift, we periodically resync the counters to the system |
|
118 // clock. |
|
119 while(true) { |
|
120 TimeTicks ticks = TimeTicks::Now(); |
|
121 |
|
122 // Calculate the time elapsed since we started our timer |
|
123 TimeDelta elapsed = ticks - initial_ticks; |
|
124 |
|
125 // Check if enough time has elapsed that we need to resync the clock. |
|
126 if (elapsed.InMilliseconds() > kMaxMillisecondsToAvoidDrift) { |
|
127 InitializeClock(); |
|
128 continue; |
|
129 } |
|
130 |
|
131 return Time(elapsed + initial_time); |
|
132 } |
|
133 } |
|
134 |
|
135 // static |
|
136 Time Time::NowFromSystemTime() { |
|
137 // Force resync. |
|
138 InitializeClock(); |
|
139 return Time(initial_time); |
|
140 } |
|
141 |
|
142 // static |
|
143 Time Time::FromFileTime(FILETIME ft) { |
|
144 return Time(FileTimeToMicroseconds(ft)); |
|
145 } |
|
146 |
|
147 FILETIME Time::ToFileTime() const { |
|
148 FILETIME utc_ft; |
|
149 MicrosecondsToFileTime(us_, &utc_ft); |
|
150 return utc_ft; |
|
151 } |
|
152 |
|
153 // static |
|
154 Time Time::FromExploded(bool is_local, const Exploded& exploded) { |
|
155 // Create the system struct representing our exploded time. It will either be |
|
156 // in local time or UTC. |
|
157 SYSTEMTIME st; |
|
158 st.wYear = exploded.year; |
|
159 st.wMonth = exploded.month; |
|
160 st.wDayOfWeek = exploded.day_of_week; |
|
161 st.wDay = exploded.day_of_month; |
|
162 st.wHour = exploded.hour; |
|
163 st.wMinute = exploded.minute; |
|
164 st.wSecond = exploded.second; |
|
165 st.wMilliseconds = exploded.millisecond; |
|
166 |
|
167 // Convert to FILETIME. |
|
168 FILETIME ft; |
|
169 if (!SystemTimeToFileTime(&st, &ft)) { |
|
170 NOTREACHED() << "Unable to convert time"; |
|
171 return Time(0); |
|
172 } |
|
173 |
|
174 // Ensure that it's in UTC. |
|
175 if (is_local) { |
|
176 FILETIME utc_ft; |
|
177 LocalFileTimeToFileTime(&ft, &utc_ft); |
|
178 return Time(FileTimeToMicroseconds(utc_ft)); |
|
179 } |
|
180 return Time(FileTimeToMicroseconds(ft)); |
|
181 } |
|
182 |
|
183 void Time::Explode(bool is_local, Exploded* exploded) const { |
|
184 // FILETIME in UTC. |
|
185 FILETIME utc_ft; |
|
186 MicrosecondsToFileTime(us_, &utc_ft); |
|
187 |
|
188 // FILETIME in local time if necessary. |
|
189 BOOL success = TRUE; |
|
190 FILETIME ft; |
|
191 if (is_local) |
|
192 success = FileTimeToLocalFileTime(&utc_ft, &ft); |
|
193 else |
|
194 ft = utc_ft; |
|
195 |
|
196 // FILETIME in SYSTEMTIME (exploded). |
|
197 SYSTEMTIME st; |
|
198 if (!success || !FileTimeToSystemTime(&ft, &st)) { |
|
199 NOTREACHED() << "Unable to convert time, don't know why"; |
|
200 ZeroMemory(exploded, sizeof(*exploded)); |
|
201 return; |
|
202 } |
|
203 |
|
204 exploded->year = st.wYear; |
|
205 exploded->month = st.wMonth; |
|
206 exploded->day_of_week = st.wDayOfWeek; |
|
207 exploded->day_of_month = st.wDay; |
|
208 exploded->hour = st.wHour; |
|
209 exploded->minute = st.wMinute; |
|
210 exploded->second = st.wSecond; |
|
211 exploded->millisecond = st.wMilliseconds; |
|
212 } |
|
213 |
|
214 // TimeTicks ------------------------------------------------------------------ |
|
215 namespace { |
|
216 |
|
217 // We define a wrapper to adapt between the __stdcall and __cdecl call of the |
|
218 // mock function, and to avoid a static constructor. Assigning an import to a |
|
219 // function pointer directly would require setup code to fetch from the IAT. |
|
220 DWORD timeGetTimeWrapper() { |
|
221 return timeGetTime(); |
|
222 } |
|
223 |
|
224 |
|
225 DWORD (*tick_function)(void) = &timeGetTimeWrapper; |
|
226 |
|
227 // We use timeGetTime() to implement TimeTicks::Now(). This can be problematic |
|
228 // because it returns the number of milliseconds since Windows has started, |
|
229 // which will roll over the 32-bit value every ~49 days. We try to track |
|
230 // rollover ourselves, which works if TimeTicks::Now() is called at least every |
|
231 // 49 days. |
|
232 class NowSingleton { |
|
233 public: |
|
234 NowSingleton() |
|
235 : rollover_(TimeDelta::FromMilliseconds(0)), |
|
236 last_seen_(0) { |
|
237 } |
|
238 |
|
239 TimeDelta Now() { |
|
240 AutoLock locked(lock_); |
|
241 // We should hold the lock while calling tick_function to make sure that |
|
242 // we keep our last_seen_ stay correctly in sync. |
|
243 DWORD now = tick_function(); |
|
244 if (now < last_seen_) |
|
245 rollover_ += TimeDelta::FromMilliseconds(GG_LONGLONG(0x100000000)); // ~49.7 days. |
|
246 last_seen_ = now; |
|
247 return TimeDelta::FromMilliseconds(now) + rollover_; |
|
248 } |
|
249 |
|
250 private: |
|
251 Lock lock_; // To protected last_seen_ and rollover_. |
|
252 TimeDelta rollover_; // Accumulation of time lost due to rollover. |
|
253 DWORD last_seen_; // The last timeGetTime value we saw, to detect rollover. |
|
254 |
|
255 DISALLOW_COPY_AND_ASSIGN(NowSingleton); |
|
256 }; |
|
257 |
|
258 // Overview of time counters: |
|
259 // (1) CPU cycle counter. (Retrieved via RDTSC) |
|
260 // The CPU counter provides the highest resolution time stamp and is the least |
|
261 // expensive to retrieve. However, the CPU counter is unreliable and should not |
|
262 // be used in production. Its biggest issue is that it is per processor and it |
|
263 // is not synchronized between processors. Also, on some computers, the counters |
|
264 // will change frequency due to thermal and power changes, and stop in some |
|
265 // states. |
|
266 // |
|
267 // (2) QueryPerformanceCounter (QPC). The QPC counter provides a high- |
|
268 // resolution (100 nanoseconds) time stamp but is comparatively more expensive |
|
269 // to retrieve. What QueryPerformanceCounter actually does is up to the HAL. |
|
270 // (with some help from ACPI). |
|
271 // According to http://blogs.msdn.com/oldnewthing/archive/2005/09/02/459952.aspx |
|
272 // in the worst case, it gets the counter from the rollover interrupt on the |
|
273 // programmable interrupt timer. In best cases, the HAL may conclude that the |
|
274 // RDTSC counter runs at a constant frequency, then it uses that instead. On |
|
275 // multiprocessor machines, it will try to verify the values returned from |
|
276 // RDTSC on each processor are consistent with each other, and apply a handful |
|
277 // of workarounds for known buggy hardware. In other words, QPC is supposed to |
|
278 // give consistent result on a multiprocessor computer, but it is unreliable in |
|
279 // reality due to bugs in BIOS or HAL on some, especially old computers. |
|
280 // With recent updates on HAL and newer BIOS, QPC is getting more reliable but |
|
281 // it should be used with caution. |
|
282 // |
|
283 // (3) System time. The system time provides a low-resolution (typically 10ms |
|
284 // to 55 milliseconds) time stamp but is comparatively less expensive to |
|
285 // retrieve and more reliable. |
|
286 class HighResNowSingleton { |
|
287 public: |
|
288 HighResNowSingleton() |
|
289 : ticks_per_microsecond_(0.0), |
|
290 skew_(0) { |
|
291 InitializeClock(); |
|
292 |
|
293 // On Athlon X2 CPUs (e.g. model 15) QueryPerformanceCounter is |
|
294 // unreliable. Fallback to low-res clock. |
|
295 base::CPU cpu; |
|
296 if (cpu.vendor_name() == "AuthenticAMD" && cpu.family() == 15) |
|
297 DisableHighResClock(); |
|
298 } |
|
299 |
|
300 bool IsUsingHighResClock() { |
|
301 return ticks_per_microsecond_ != 0.0; |
|
302 } |
|
303 |
|
304 void DisableHighResClock() { |
|
305 ticks_per_microsecond_ = 0.0; |
|
306 } |
|
307 |
|
308 TimeDelta Now() { |
|
309 // Our maximum tolerance for QPC drifting. |
|
310 const int kMaxTimeDrift = 50 * Time::kMicrosecondsPerMillisecond; |
|
311 |
|
312 if (IsUsingHighResClock()) { |
|
313 int64_t now = UnreliableNow(); |
|
314 |
|
315 // Verify that QPC does not seem to drift. |
|
316 DCHECK(now - ReliableNow() - skew_ < kMaxTimeDrift); |
|
317 |
|
318 return TimeDelta::FromMicroseconds(now); |
|
319 } |
|
320 |
|
321 // Just fallback to the slower clock. |
|
322 return Singleton<NowSingleton>::get()->Now(); |
|
323 } |
|
324 |
|
325 private: |
|
326 // Synchronize the QPC clock with GetSystemTimeAsFileTime. |
|
327 void InitializeClock() { |
|
328 LARGE_INTEGER ticks_per_sec = {0}; |
|
329 if (!QueryPerformanceFrequency(&ticks_per_sec)) |
|
330 return; // Broken, we don't guarantee this function works. |
|
331 ticks_per_microsecond_ = static_cast<float>(ticks_per_sec.QuadPart) / |
|
332 static_cast<float>(Time::kMicrosecondsPerSecond); |
|
333 |
|
334 skew_ = UnreliableNow() - ReliableNow(); |
|
335 } |
|
336 |
|
337 // Get the number of microseconds since boot in a reliable fashion |
|
338 int64_t UnreliableNow() { |
|
339 LARGE_INTEGER now; |
|
340 QueryPerformanceCounter(&now); |
|
341 return static_cast<int64_t>(now.QuadPart / ticks_per_microsecond_); |
|
342 } |
|
343 |
|
344 // Get the number of microseconds since boot in a reliable fashion |
|
345 int64_t ReliableNow() { |
|
346 return Singleton<NowSingleton>::get()->Now().InMicroseconds(); |
|
347 } |
|
348 |
|
349 // Cached clock frequency -> microseconds. This assumes that the clock |
|
350 // frequency is faster than one microsecond (which is 1MHz, should be OK). |
|
351 float ticks_per_microsecond_; // 0 indicates QPF failed and we're broken. |
|
352 int64_t skew_; // Skew between lo-res and hi-res clocks (for debugging). |
|
353 |
|
354 DISALLOW_COPY_AND_ASSIGN(HighResNowSingleton); |
|
355 }; |
|
356 |
|
357 } // namespace |
|
358 |
|
359 // static |
|
360 TimeTicks::TickFunctionType TimeTicks::SetMockTickFunction( |
|
361 TickFunctionType ticker) { |
|
362 TickFunctionType old = tick_function; |
|
363 tick_function = ticker; |
|
364 return old; |
|
365 } |
|
366 |
|
367 // static |
|
368 TimeTicks TimeTicks::Now() { |
|
369 return TimeTicks() + Singleton<NowSingleton>::get()->Now(); |
|
370 } |
|
371 |
|
372 // static |
|
373 TimeTicks TimeTicks::HighResNow() { |
|
374 return TimeTicks() + Singleton<HighResNowSingleton>::get()->Now(); |
|
375 } |