ipc/chromium/src/base/time_win.cc

Wed, 31 Dec 2014 06:09:35 +0100

author
Michael Schloh von Bennewitz <michael@schloh.com>
date
Wed, 31 Dec 2014 06:09:35 +0100
changeset 0
6474c204b198
permissions
-rw-r--r--

Cloned upstream origin tor-browser at tor-browser-31.3.0esr-4.5-1-build1
revision ID fc1c9ff7c1b2defdbc039f12214767608f46423f for hacking purpose.

michael@0 1 // Copyright (c) 2006-2008 The Chromium Authors. All rights reserved.
michael@0 2 // Use of this source code is governed by a BSD-style license that can be
michael@0 3 // found in the LICENSE file.
michael@0 4
michael@0 5
michael@0 6 // Windows Timer Primer
michael@0 7 //
michael@0 8 // A good article: http://www.ddj.com/windows/184416651
michael@0 9 // A good mozilla bug: http://bugzilla.mozilla.org/show_bug.cgi?id=363258
michael@0 10 //
michael@0 11 // The default windows timer, GetSystemTimeAsFileTime is not very precise.
michael@0 12 // It is only good to ~15.5ms.
michael@0 13 //
michael@0 14 // QueryPerformanceCounter is the logical choice for a high-precision timer.
michael@0 15 // However, it is known to be buggy on some hardware. Specifically, it can
michael@0 16 // sometimes "jump". On laptops, QPC can also be very expensive to call.
michael@0 17 // It's 3-4x slower than timeGetTime() on desktops, but can be 10x slower
michael@0 18 // on laptops. A unittest exists which will show the relative cost of various
michael@0 19 // timers on any system.
michael@0 20 //
michael@0 21 // The next logical choice is timeGetTime(). timeGetTime has a precision of
michael@0 22 // 1ms, but only if you call APIs (timeBeginPeriod()) which affect all other
michael@0 23 // applications on the system. By default, precision is only 15.5ms.
michael@0 24 // Unfortunately, we don't want to call timeBeginPeriod because we don't
michael@0 25 // want to affect other applications. Further, on mobile platforms, use of
michael@0 26 // faster multimedia timers can hurt battery life. See the intel
michael@0 27 // article about this here:
michael@0 28 // http://softwarecommunity.intel.com/articles/eng/1086.htm
michael@0 29 //
michael@0 30 // To work around all this, we're going to generally use timeGetTime(). We
michael@0 31 // will only increase the system-wide timer if we're not running on battery
michael@0 32 // power. Using timeBeginPeriod(1) is a requirement in order to make our
michael@0 33 // message loop waits have the same resolution that our time measurements
michael@0 34 // do. Otherwise, WaitForSingleObject(..., 1) will no less than 15ms when
michael@0 35 // there is nothing else to waken the Wait.
michael@0 36
michael@0 37 #include "base/time.h"
michael@0 38
michael@0 39 #pragma comment(lib, "winmm.lib")
michael@0 40 #include <windows.h>
michael@0 41 #include <mmsystem.h>
michael@0 42
michael@0 43 #include "base/basictypes.h"
michael@0 44 #include "base/lock.h"
michael@0 45 #include "base/logging.h"
michael@0 46 #include "base/cpu.h"
michael@0 47 #include "base/singleton.h"
michael@0 48 #include "base/system_monitor.h"
michael@0 49 #include "mozilla/Casting.h"
michael@0 50
michael@0 51 using base::Time;
michael@0 52 using base::TimeDelta;
michael@0 53 using base::TimeTicks;
michael@0 54 using mozilla::BitwiseCast;
michael@0 55
michael@0 56 namespace {
michael@0 57
michael@0 58 // From MSDN, FILETIME "Contains a 64-bit value representing the number of
michael@0 59 // 100-nanosecond intervals since January 1, 1601 (UTC)."
michael@0 60 int64_t FileTimeToMicroseconds(const FILETIME& ft) {
michael@0 61 // Need to BitwiseCast to fix alignment, then divide by 10 to convert
michael@0 62 // 100-nanoseconds to milliseconds. This only works on little-endian
michael@0 63 // machines.
michael@0 64 return BitwiseCast<int64_t>(ft) / 10;
michael@0 65 }
michael@0 66
michael@0 67 void MicrosecondsToFileTime(int64_t us, FILETIME* ft) {
michael@0 68 DCHECK(us >= 0) << "Time is less than 0, negative values are not "
michael@0 69 "representable in FILETIME";
michael@0 70
michael@0 71 // Multiply by 10 to convert milliseconds to 100-nanoseconds. BitwiseCast will
michael@0 72 // handle alignment problems. This only works on little-endian machines.
michael@0 73 *ft = BitwiseCast<FILETIME>(us * 10);
michael@0 74 }
michael@0 75
michael@0 76 int64_t CurrentWallclockMicroseconds() {
michael@0 77 FILETIME ft;
michael@0 78 ::GetSystemTimeAsFileTime(&ft);
michael@0 79 return FileTimeToMicroseconds(ft);
michael@0 80 }
michael@0 81
michael@0 82 // Time between resampling the un-granular clock for this API. 60 seconds.
michael@0 83 const int kMaxMillisecondsToAvoidDrift = 60 * Time::kMillisecondsPerSecond;
michael@0 84
michael@0 85 int64_t initial_time = 0;
michael@0 86 TimeTicks initial_ticks;
michael@0 87
michael@0 88 void InitializeClock() {
michael@0 89 initial_ticks = TimeTicks::Now();
michael@0 90 initial_time = CurrentWallclockMicroseconds();
michael@0 91 }
michael@0 92
michael@0 93 } // namespace
michael@0 94
michael@0 95 // Time -----------------------------------------------------------------------
michael@0 96
michael@0 97 // The internal representation of Time uses FILETIME, whose epoch is 1601-01-01
michael@0 98 // 00:00:00 UTC. ((1970-1601)*365+89)*24*60*60*1000*1000, where 89 is the
michael@0 99 // number of leap year days between 1601 and 1970: (1970-1601)/4 excluding
michael@0 100 // 1700, 1800, and 1900.
michael@0 101 // static
michael@0 102 const int64_t Time::kTimeTToMicrosecondsOffset = GG_INT64_C(11644473600000000);
michael@0 103
michael@0 104 // static
michael@0 105 Time Time::Now() {
michael@0 106 if (initial_time == 0)
michael@0 107 InitializeClock();
michael@0 108
michael@0 109 // We implement time using the high-resolution timers so that we can get
michael@0 110 // timeouts which are smaller than 10-15ms. If we just used
michael@0 111 // CurrentWallclockMicroseconds(), we'd have the less-granular timer.
michael@0 112 //
michael@0 113 // To make this work, we initialize the clock (initial_time) and the
michael@0 114 // counter (initial_ctr). To compute the initial time, we can check
michael@0 115 // the number of ticks that have elapsed, and compute the delta.
michael@0 116 //
michael@0 117 // To avoid any drift, we periodically resync the counters to the system
michael@0 118 // clock.
michael@0 119 while(true) {
michael@0 120 TimeTicks ticks = TimeTicks::Now();
michael@0 121
michael@0 122 // Calculate the time elapsed since we started our timer
michael@0 123 TimeDelta elapsed = ticks - initial_ticks;
michael@0 124
michael@0 125 // Check if enough time has elapsed that we need to resync the clock.
michael@0 126 if (elapsed.InMilliseconds() > kMaxMillisecondsToAvoidDrift) {
michael@0 127 InitializeClock();
michael@0 128 continue;
michael@0 129 }
michael@0 130
michael@0 131 return Time(elapsed + initial_time);
michael@0 132 }
michael@0 133 }
michael@0 134
michael@0 135 // static
michael@0 136 Time Time::NowFromSystemTime() {
michael@0 137 // Force resync.
michael@0 138 InitializeClock();
michael@0 139 return Time(initial_time);
michael@0 140 }
michael@0 141
michael@0 142 // static
michael@0 143 Time Time::FromFileTime(FILETIME ft) {
michael@0 144 return Time(FileTimeToMicroseconds(ft));
michael@0 145 }
michael@0 146
michael@0 147 FILETIME Time::ToFileTime() const {
michael@0 148 FILETIME utc_ft;
michael@0 149 MicrosecondsToFileTime(us_, &utc_ft);
michael@0 150 return utc_ft;
michael@0 151 }
michael@0 152
michael@0 153 // static
michael@0 154 Time Time::FromExploded(bool is_local, const Exploded& exploded) {
michael@0 155 // Create the system struct representing our exploded time. It will either be
michael@0 156 // in local time or UTC.
michael@0 157 SYSTEMTIME st;
michael@0 158 st.wYear = exploded.year;
michael@0 159 st.wMonth = exploded.month;
michael@0 160 st.wDayOfWeek = exploded.day_of_week;
michael@0 161 st.wDay = exploded.day_of_month;
michael@0 162 st.wHour = exploded.hour;
michael@0 163 st.wMinute = exploded.minute;
michael@0 164 st.wSecond = exploded.second;
michael@0 165 st.wMilliseconds = exploded.millisecond;
michael@0 166
michael@0 167 // Convert to FILETIME.
michael@0 168 FILETIME ft;
michael@0 169 if (!SystemTimeToFileTime(&st, &ft)) {
michael@0 170 NOTREACHED() << "Unable to convert time";
michael@0 171 return Time(0);
michael@0 172 }
michael@0 173
michael@0 174 // Ensure that it's in UTC.
michael@0 175 if (is_local) {
michael@0 176 FILETIME utc_ft;
michael@0 177 LocalFileTimeToFileTime(&ft, &utc_ft);
michael@0 178 return Time(FileTimeToMicroseconds(utc_ft));
michael@0 179 }
michael@0 180 return Time(FileTimeToMicroseconds(ft));
michael@0 181 }
michael@0 182
michael@0 183 void Time::Explode(bool is_local, Exploded* exploded) const {
michael@0 184 // FILETIME in UTC.
michael@0 185 FILETIME utc_ft;
michael@0 186 MicrosecondsToFileTime(us_, &utc_ft);
michael@0 187
michael@0 188 // FILETIME in local time if necessary.
michael@0 189 BOOL success = TRUE;
michael@0 190 FILETIME ft;
michael@0 191 if (is_local)
michael@0 192 success = FileTimeToLocalFileTime(&utc_ft, &ft);
michael@0 193 else
michael@0 194 ft = utc_ft;
michael@0 195
michael@0 196 // FILETIME in SYSTEMTIME (exploded).
michael@0 197 SYSTEMTIME st;
michael@0 198 if (!success || !FileTimeToSystemTime(&ft, &st)) {
michael@0 199 NOTREACHED() << "Unable to convert time, don't know why";
michael@0 200 ZeroMemory(exploded, sizeof(*exploded));
michael@0 201 return;
michael@0 202 }
michael@0 203
michael@0 204 exploded->year = st.wYear;
michael@0 205 exploded->month = st.wMonth;
michael@0 206 exploded->day_of_week = st.wDayOfWeek;
michael@0 207 exploded->day_of_month = st.wDay;
michael@0 208 exploded->hour = st.wHour;
michael@0 209 exploded->minute = st.wMinute;
michael@0 210 exploded->second = st.wSecond;
michael@0 211 exploded->millisecond = st.wMilliseconds;
michael@0 212 }
michael@0 213
michael@0 214 // TimeTicks ------------------------------------------------------------------
michael@0 215 namespace {
michael@0 216
michael@0 217 // We define a wrapper to adapt between the __stdcall and __cdecl call of the
michael@0 218 // mock function, and to avoid a static constructor. Assigning an import to a
michael@0 219 // function pointer directly would require setup code to fetch from the IAT.
michael@0 220 DWORD timeGetTimeWrapper() {
michael@0 221 return timeGetTime();
michael@0 222 }
michael@0 223
michael@0 224
michael@0 225 DWORD (*tick_function)(void) = &timeGetTimeWrapper;
michael@0 226
michael@0 227 // We use timeGetTime() to implement TimeTicks::Now(). This can be problematic
michael@0 228 // because it returns the number of milliseconds since Windows has started,
michael@0 229 // which will roll over the 32-bit value every ~49 days. We try to track
michael@0 230 // rollover ourselves, which works if TimeTicks::Now() is called at least every
michael@0 231 // 49 days.
michael@0 232 class NowSingleton {
michael@0 233 public:
michael@0 234 NowSingleton()
michael@0 235 : rollover_(TimeDelta::FromMilliseconds(0)),
michael@0 236 last_seen_(0) {
michael@0 237 }
michael@0 238
michael@0 239 TimeDelta Now() {
michael@0 240 AutoLock locked(lock_);
michael@0 241 // We should hold the lock while calling tick_function to make sure that
michael@0 242 // we keep our last_seen_ stay correctly in sync.
michael@0 243 DWORD now = tick_function();
michael@0 244 if (now < last_seen_)
michael@0 245 rollover_ += TimeDelta::FromMilliseconds(GG_LONGLONG(0x100000000)); // ~49.7 days.
michael@0 246 last_seen_ = now;
michael@0 247 return TimeDelta::FromMilliseconds(now) + rollover_;
michael@0 248 }
michael@0 249
michael@0 250 private:
michael@0 251 Lock lock_; // To protected last_seen_ and rollover_.
michael@0 252 TimeDelta rollover_; // Accumulation of time lost due to rollover.
michael@0 253 DWORD last_seen_; // The last timeGetTime value we saw, to detect rollover.
michael@0 254
michael@0 255 DISALLOW_COPY_AND_ASSIGN(NowSingleton);
michael@0 256 };
michael@0 257
michael@0 258 // Overview of time counters:
michael@0 259 // (1) CPU cycle counter. (Retrieved via RDTSC)
michael@0 260 // The CPU counter provides the highest resolution time stamp and is the least
michael@0 261 // expensive to retrieve. However, the CPU counter is unreliable and should not
michael@0 262 // be used in production. Its biggest issue is that it is per processor and it
michael@0 263 // is not synchronized between processors. Also, on some computers, the counters
michael@0 264 // will change frequency due to thermal and power changes, and stop in some
michael@0 265 // states.
michael@0 266 //
michael@0 267 // (2) QueryPerformanceCounter (QPC). The QPC counter provides a high-
michael@0 268 // resolution (100 nanoseconds) time stamp but is comparatively more expensive
michael@0 269 // to retrieve. What QueryPerformanceCounter actually does is up to the HAL.
michael@0 270 // (with some help from ACPI).
michael@0 271 // According to http://blogs.msdn.com/oldnewthing/archive/2005/09/02/459952.aspx
michael@0 272 // in the worst case, it gets the counter from the rollover interrupt on the
michael@0 273 // programmable interrupt timer. In best cases, the HAL may conclude that the
michael@0 274 // RDTSC counter runs at a constant frequency, then it uses that instead. On
michael@0 275 // multiprocessor machines, it will try to verify the values returned from
michael@0 276 // RDTSC on each processor are consistent with each other, and apply a handful
michael@0 277 // of workarounds for known buggy hardware. In other words, QPC is supposed to
michael@0 278 // give consistent result on a multiprocessor computer, but it is unreliable in
michael@0 279 // reality due to bugs in BIOS or HAL on some, especially old computers.
michael@0 280 // With recent updates on HAL and newer BIOS, QPC is getting more reliable but
michael@0 281 // it should be used with caution.
michael@0 282 //
michael@0 283 // (3) System time. The system time provides a low-resolution (typically 10ms
michael@0 284 // to 55 milliseconds) time stamp but is comparatively less expensive to
michael@0 285 // retrieve and more reliable.
michael@0 286 class HighResNowSingleton {
michael@0 287 public:
michael@0 288 HighResNowSingleton()
michael@0 289 : ticks_per_microsecond_(0.0),
michael@0 290 skew_(0) {
michael@0 291 InitializeClock();
michael@0 292
michael@0 293 // On Athlon X2 CPUs (e.g. model 15) QueryPerformanceCounter is
michael@0 294 // unreliable. Fallback to low-res clock.
michael@0 295 base::CPU cpu;
michael@0 296 if (cpu.vendor_name() == "AuthenticAMD" && cpu.family() == 15)
michael@0 297 DisableHighResClock();
michael@0 298 }
michael@0 299
michael@0 300 bool IsUsingHighResClock() {
michael@0 301 return ticks_per_microsecond_ != 0.0;
michael@0 302 }
michael@0 303
michael@0 304 void DisableHighResClock() {
michael@0 305 ticks_per_microsecond_ = 0.0;
michael@0 306 }
michael@0 307
michael@0 308 TimeDelta Now() {
michael@0 309 // Our maximum tolerance for QPC drifting.
michael@0 310 const int kMaxTimeDrift = 50 * Time::kMicrosecondsPerMillisecond;
michael@0 311
michael@0 312 if (IsUsingHighResClock()) {
michael@0 313 int64_t now = UnreliableNow();
michael@0 314
michael@0 315 // Verify that QPC does not seem to drift.
michael@0 316 DCHECK(now - ReliableNow() - skew_ < kMaxTimeDrift);
michael@0 317
michael@0 318 return TimeDelta::FromMicroseconds(now);
michael@0 319 }
michael@0 320
michael@0 321 // Just fallback to the slower clock.
michael@0 322 return Singleton<NowSingleton>::get()->Now();
michael@0 323 }
michael@0 324
michael@0 325 private:
michael@0 326 // Synchronize the QPC clock with GetSystemTimeAsFileTime.
michael@0 327 void InitializeClock() {
michael@0 328 LARGE_INTEGER ticks_per_sec = {0};
michael@0 329 if (!QueryPerformanceFrequency(&ticks_per_sec))
michael@0 330 return; // Broken, we don't guarantee this function works.
michael@0 331 ticks_per_microsecond_ = static_cast<float>(ticks_per_sec.QuadPart) /
michael@0 332 static_cast<float>(Time::kMicrosecondsPerSecond);
michael@0 333
michael@0 334 skew_ = UnreliableNow() - ReliableNow();
michael@0 335 }
michael@0 336
michael@0 337 // Get the number of microseconds since boot in a reliable fashion
michael@0 338 int64_t UnreliableNow() {
michael@0 339 LARGE_INTEGER now;
michael@0 340 QueryPerformanceCounter(&now);
michael@0 341 return static_cast<int64_t>(now.QuadPart / ticks_per_microsecond_);
michael@0 342 }
michael@0 343
michael@0 344 // Get the number of microseconds since boot in a reliable fashion
michael@0 345 int64_t ReliableNow() {
michael@0 346 return Singleton<NowSingleton>::get()->Now().InMicroseconds();
michael@0 347 }
michael@0 348
michael@0 349 // Cached clock frequency -> microseconds. This assumes that the clock
michael@0 350 // frequency is faster than one microsecond (which is 1MHz, should be OK).
michael@0 351 float ticks_per_microsecond_; // 0 indicates QPF failed and we're broken.
michael@0 352 int64_t skew_; // Skew between lo-res and hi-res clocks (for debugging).
michael@0 353
michael@0 354 DISALLOW_COPY_AND_ASSIGN(HighResNowSingleton);
michael@0 355 };
michael@0 356
michael@0 357 } // namespace
michael@0 358
michael@0 359 // static
michael@0 360 TimeTicks::TickFunctionType TimeTicks::SetMockTickFunction(
michael@0 361 TickFunctionType ticker) {
michael@0 362 TickFunctionType old = tick_function;
michael@0 363 tick_function = ticker;
michael@0 364 return old;
michael@0 365 }
michael@0 366
michael@0 367 // static
michael@0 368 TimeTicks TimeTicks::Now() {
michael@0 369 return TimeTicks() + Singleton<NowSingleton>::get()->Now();
michael@0 370 }
michael@0 371
michael@0 372 // static
michael@0 373 TimeTicks TimeTicks::HighResNow() {
michael@0 374 return TimeTicks() + Singleton<HighResNowSingleton>::get()->Now();
michael@0 375 }

mercurial