ipc/chromium/src/base/time_win.cc

Wed, 31 Dec 2014 06:09:35 +0100

author
Michael Schloh von Bennewitz <michael@schloh.com>
date
Wed, 31 Dec 2014 06:09:35 +0100
changeset 0
6474c204b198
permissions
-rw-r--r--

Cloned upstream origin tor-browser at tor-browser-31.3.0esr-4.5-1-build1
revision ID fc1c9ff7c1b2defdbc039f12214767608f46423f for hacking purpose.

     1 // Copyright (c) 2006-2008 The Chromium Authors. All rights reserved.
     2 // Use of this source code is governed by a BSD-style license that can be
     3 // found in the LICENSE file.
     6 // Windows Timer Primer
     7 //
     8 // A good article:  http://www.ddj.com/windows/184416651
     9 // A good mozilla bug:  http://bugzilla.mozilla.org/show_bug.cgi?id=363258
    10 //
    11 // The default windows timer, GetSystemTimeAsFileTime is not very precise.
    12 // It is only good to ~15.5ms.
    13 //
    14 // QueryPerformanceCounter is the logical choice for a high-precision timer.
    15 // However, it is known to be buggy on some hardware.  Specifically, it can
    16 // sometimes "jump".  On laptops, QPC can also be very expensive to call.
    17 // It's 3-4x slower than timeGetTime() on desktops, but can be 10x slower
    18 // on laptops.  A unittest exists which will show the relative cost of various
    19 // timers on any system.
    20 //
    21 // The next logical choice is timeGetTime().  timeGetTime has a precision of
    22 // 1ms, but only if you call APIs (timeBeginPeriod()) which affect all other
    23 // applications on the system.  By default, precision is only 15.5ms.
    24 // Unfortunately, we don't want to call timeBeginPeriod because we don't
    25 // want to affect other applications.  Further, on mobile platforms, use of
    26 // faster multimedia timers can hurt battery life.  See the intel
    27 // article about this here:
    28 // http://softwarecommunity.intel.com/articles/eng/1086.htm
    29 //
    30 // To work around all this, we're going to generally use timeGetTime().  We
    31 // will only increase the system-wide timer if we're not running on battery
    32 // power.  Using timeBeginPeriod(1) is a requirement in order to make our
    33 // message loop waits have the same resolution that our time measurements
    34 // do.  Otherwise, WaitForSingleObject(..., 1) will no less than 15ms when
    35 // there is nothing else to waken the Wait.
    37 #include "base/time.h"
    39 #pragma comment(lib, "winmm.lib")
    40 #include <windows.h>
    41 #include <mmsystem.h>
    43 #include "base/basictypes.h"
    44 #include "base/lock.h"
    45 #include "base/logging.h"
    46 #include "base/cpu.h"
    47 #include "base/singleton.h"
    48 #include "base/system_monitor.h"
    49 #include "mozilla/Casting.h"
    51 using base::Time;
    52 using base::TimeDelta;
    53 using base::TimeTicks;
    54 using mozilla::BitwiseCast;
    56 namespace {
    58 // From MSDN, FILETIME "Contains a 64-bit value representing the number of
    59 // 100-nanosecond intervals since January 1, 1601 (UTC)."
    60 int64_t FileTimeToMicroseconds(const FILETIME& ft) {
    61   // Need to BitwiseCast to fix alignment, then divide by 10 to convert
    62   // 100-nanoseconds to milliseconds. This only works on little-endian
    63   // machines.
    64   return BitwiseCast<int64_t>(ft) / 10;
    65 }
    67 void MicrosecondsToFileTime(int64_t us, FILETIME* ft) {
    68   DCHECK(us >= 0) << "Time is less than 0, negative values are not "
    69       "representable in FILETIME";
    71   // Multiply by 10 to convert milliseconds to 100-nanoseconds. BitwiseCast will
    72   // handle alignment problems. This only works on little-endian machines.
    73   *ft = BitwiseCast<FILETIME>(us * 10);
    74 }
    76 int64_t CurrentWallclockMicroseconds() {
    77   FILETIME ft;
    78   ::GetSystemTimeAsFileTime(&ft);
    79   return FileTimeToMicroseconds(ft);
    80 }
    82 // Time between resampling the un-granular clock for this API.  60 seconds.
    83 const int kMaxMillisecondsToAvoidDrift = 60 * Time::kMillisecondsPerSecond;
    85 int64_t initial_time = 0;
    86 TimeTicks initial_ticks;
    88 void InitializeClock() {
    89   initial_ticks = TimeTicks::Now();
    90   initial_time = CurrentWallclockMicroseconds();
    91 }
    93 }  // namespace
    95 // Time -----------------------------------------------------------------------
    97 // The internal representation of Time uses FILETIME, whose epoch is 1601-01-01
    98 // 00:00:00 UTC.  ((1970-1601)*365+89)*24*60*60*1000*1000, where 89 is the
    99 // number of leap year days between 1601 and 1970: (1970-1601)/4 excluding
   100 // 1700, 1800, and 1900.
   101 // static
   102 const int64_t Time::kTimeTToMicrosecondsOffset = GG_INT64_C(11644473600000000);
   104 // static
   105 Time Time::Now() {
   106   if (initial_time == 0)
   107     InitializeClock();
   109   // We implement time using the high-resolution timers so that we can get
   110   // timeouts which are smaller than 10-15ms.  If we just used
   111   // CurrentWallclockMicroseconds(), we'd have the less-granular timer.
   112   //
   113   // To make this work, we initialize the clock (initial_time) and the
   114   // counter (initial_ctr).  To compute the initial time, we can check
   115   // the number of ticks that have elapsed, and compute the delta.
   116   //
   117   // To avoid any drift, we periodically resync the counters to the system
   118   // clock.
   119   while(true) {
   120     TimeTicks ticks = TimeTicks::Now();
   122     // Calculate the time elapsed since we started our timer
   123     TimeDelta elapsed = ticks - initial_ticks;
   125     // Check if enough time has elapsed that we need to resync the clock.
   126     if (elapsed.InMilliseconds() > kMaxMillisecondsToAvoidDrift) {
   127       InitializeClock();
   128       continue;
   129     }
   131     return Time(elapsed + initial_time);
   132   }
   133 }
   135 // static
   136 Time Time::NowFromSystemTime() {
   137   // Force resync.
   138   InitializeClock();
   139   return Time(initial_time);
   140 }
   142 // static
   143 Time Time::FromFileTime(FILETIME ft) {
   144   return Time(FileTimeToMicroseconds(ft));
   145 }
   147 FILETIME Time::ToFileTime() const {
   148   FILETIME utc_ft;
   149   MicrosecondsToFileTime(us_, &utc_ft);
   150   return utc_ft;
   151 }
   153 // static
   154 Time Time::FromExploded(bool is_local, const Exploded& exploded) {
   155   // Create the system struct representing our exploded time. It will either be
   156   // in local time or UTC.
   157   SYSTEMTIME st;
   158   st.wYear = exploded.year;
   159   st.wMonth = exploded.month;
   160   st.wDayOfWeek = exploded.day_of_week;
   161   st.wDay = exploded.day_of_month;
   162   st.wHour = exploded.hour;
   163   st.wMinute = exploded.minute;
   164   st.wSecond = exploded.second;
   165   st.wMilliseconds = exploded.millisecond;
   167   // Convert to FILETIME.
   168   FILETIME ft;
   169   if (!SystemTimeToFileTime(&st, &ft)) {
   170     NOTREACHED() << "Unable to convert time";
   171     return Time(0);
   172   }
   174   // Ensure that it's in UTC.
   175   if (is_local) {
   176     FILETIME utc_ft;
   177     LocalFileTimeToFileTime(&ft, &utc_ft);
   178     return Time(FileTimeToMicroseconds(utc_ft));
   179   }
   180   return Time(FileTimeToMicroseconds(ft));
   181 }
   183 void Time::Explode(bool is_local, Exploded* exploded) const {
   184   // FILETIME in UTC.
   185   FILETIME utc_ft;
   186   MicrosecondsToFileTime(us_, &utc_ft);
   188   // FILETIME in local time if necessary.
   189   BOOL success = TRUE;
   190   FILETIME ft;
   191   if (is_local)
   192     success = FileTimeToLocalFileTime(&utc_ft, &ft);
   193   else
   194     ft = utc_ft;
   196   // FILETIME in SYSTEMTIME (exploded).
   197   SYSTEMTIME st;
   198   if (!success || !FileTimeToSystemTime(&ft, &st)) {
   199     NOTREACHED() << "Unable to convert time, don't know why";
   200     ZeroMemory(exploded, sizeof(*exploded));
   201     return;
   202   }
   204   exploded->year = st.wYear;
   205   exploded->month = st.wMonth;
   206   exploded->day_of_week = st.wDayOfWeek;
   207   exploded->day_of_month = st.wDay;
   208   exploded->hour = st.wHour;
   209   exploded->minute = st.wMinute;
   210   exploded->second = st.wSecond;
   211   exploded->millisecond = st.wMilliseconds;
   212 }
   214 // TimeTicks ------------------------------------------------------------------
   215 namespace {
   217 // We define a wrapper to adapt between the __stdcall and __cdecl call of the
   218 // mock function, and to avoid a static constructor.  Assigning an import to a
   219 // function pointer directly would require setup code to fetch from the IAT.
   220 DWORD timeGetTimeWrapper() {
   221   return timeGetTime();
   222 }
   225 DWORD (*tick_function)(void) = &timeGetTimeWrapper;
   227 // We use timeGetTime() to implement TimeTicks::Now().  This can be problematic
   228 // because it returns the number of milliseconds since Windows has started,
   229 // which will roll over the 32-bit value every ~49 days.  We try to track
   230 // rollover ourselves, which works if TimeTicks::Now() is called at least every
   231 // 49 days.
   232 class NowSingleton {
   233  public:
   234   NowSingleton()
   235     : rollover_(TimeDelta::FromMilliseconds(0)),
   236       last_seen_(0) {
   237   }
   239   TimeDelta Now() {
   240     AutoLock locked(lock_);
   241     // We should hold the lock while calling tick_function to make sure that
   242     // we keep our last_seen_ stay correctly in sync.
   243     DWORD now = tick_function();
   244     if (now < last_seen_)
   245       rollover_ += TimeDelta::FromMilliseconds(GG_LONGLONG(0x100000000));  // ~49.7 days.
   246     last_seen_ = now;
   247     return TimeDelta::FromMilliseconds(now) + rollover_;
   248   }
   250  private:
   251   Lock lock_;  // To protected last_seen_ and rollover_.
   252   TimeDelta rollover_;  // Accumulation of time lost due to rollover.
   253   DWORD last_seen_;  // The last timeGetTime value we saw, to detect rollover.
   255   DISALLOW_COPY_AND_ASSIGN(NowSingleton);
   256 };
   258 // Overview of time counters:
   259 // (1) CPU cycle counter. (Retrieved via RDTSC)
   260 // The CPU counter provides the highest resolution time stamp and is the least
   261 // expensive to retrieve. However, the CPU counter is unreliable and should not
   262 // be used in production. Its biggest issue is that it is per processor and it
   263 // is not synchronized between processors. Also, on some computers, the counters
   264 // will change frequency due to thermal and power changes, and stop in some
   265 // states.
   266 //
   267 // (2) QueryPerformanceCounter (QPC). The QPC counter provides a high-
   268 // resolution (100 nanoseconds) time stamp but is comparatively more expensive
   269 // to retrieve. What QueryPerformanceCounter actually does is up to the HAL.
   270 // (with some help from ACPI).
   271 // According to http://blogs.msdn.com/oldnewthing/archive/2005/09/02/459952.aspx
   272 // in the worst case, it gets the counter from the rollover interrupt on the
   273 // programmable interrupt timer. In best cases, the HAL may conclude that the
   274 // RDTSC counter runs at a constant frequency, then it uses that instead. On
   275 // multiprocessor machines, it will try to verify the values returned from
   276 // RDTSC on each processor are consistent with each other, and apply a handful
   277 // of workarounds for known buggy hardware. In other words, QPC is supposed to
   278 // give consistent result on a multiprocessor computer, but it is unreliable in
   279 // reality due to bugs in BIOS or HAL on some, especially old computers.
   280 // With recent updates on HAL and newer BIOS, QPC is getting more reliable but
   281 // it should be used with caution.
   282 //
   283 // (3) System time. The system time provides a low-resolution (typically 10ms
   284 // to 55 milliseconds) time stamp but is comparatively less expensive to
   285 // retrieve and more reliable.
   286 class HighResNowSingleton {
   287  public:
   288   HighResNowSingleton()
   289     : ticks_per_microsecond_(0.0),
   290       skew_(0) {
   291     InitializeClock();
   293     // On Athlon X2 CPUs (e.g. model 15) QueryPerformanceCounter is
   294     // unreliable.  Fallback to low-res clock.
   295     base::CPU cpu;
   296     if (cpu.vendor_name() == "AuthenticAMD" && cpu.family() == 15)
   297       DisableHighResClock();
   298   }
   300   bool IsUsingHighResClock() {
   301     return ticks_per_microsecond_ != 0.0;
   302   }
   304   void DisableHighResClock() {
   305     ticks_per_microsecond_ = 0.0;
   306   }
   308   TimeDelta Now() {
   309     // Our maximum tolerance for QPC drifting.
   310     const int kMaxTimeDrift = 50 * Time::kMicrosecondsPerMillisecond;
   312     if (IsUsingHighResClock()) {
   313       int64_t now = UnreliableNow();
   315       // Verify that QPC does not seem to drift.
   316       DCHECK(now - ReliableNow() - skew_ < kMaxTimeDrift);
   318       return TimeDelta::FromMicroseconds(now);
   319     }
   321     // Just fallback to the slower clock.
   322     return Singleton<NowSingleton>::get()->Now();
   323   }
   325  private:
   326   // Synchronize the QPC clock with GetSystemTimeAsFileTime.
   327   void InitializeClock() {
   328     LARGE_INTEGER ticks_per_sec = {0};
   329     if (!QueryPerformanceFrequency(&ticks_per_sec))
   330       return;  // Broken, we don't guarantee this function works.
   331     ticks_per_microsecond_ = static_cast<float>(ticks_per_sec.QuadPart) /
   332       static_cast<float>(Time::kMicrosecondsPerSecond);
   334     skew_ = UnreliableNow() - ReliableNow();
   335   }
   337   // Get the number of microseconds since boot in a reliable fashion
   338   int64_t UnreliableNow() {
   339     LARGE_INTEGER now;
   340     QueryPerformanceCounter(&now);
   341     return static_cast<int64_t>(now.QuadPart / ticks_per_microsecond_);
   342   }
   344   // Get the number of microseconds since boot in a reliable fashion
   345   int64_t ReliableNow() {
   346     return Singleton<NowSingleton>::get()->Now().InMicroseconds();
   347   }
   349   // Cached clock frequency -> microseconds. This assumes that the clock
   350   // frequency is faster than one microsecond (which is 1MHz, should be OK).
   351   float ticks_per_microsecond_;  // 0 indicates QPF failed and we're broken.
   352   int64_t skew_;  // Skew between lo-res and hi-res clocks (for debugging).
   354   DISALLOW_COPY_AND_ASSIGN(HighResNowSingleton);
   355 };
   357 }  // namespace
   359 // static
   360 TimeTicks::TickFunctionType TimeTicks::SetMockTickFunction(
   361     TickFunctionType ticker) {
   362   TickFunctionType old = tick_function;
   363   tick_function = ticker;
   364   return old;
   365 }
   367 // static
   368 TimeTicks TimeTicks::Now() {
   369   return TimeTicks() + Singleton<NowSingleton>::get()->Now();
   370 }
   372 // static
   373 TimeTicks TimeTicks::HighResNow() {
   374   return TimeTicks() + Singleton<HighResNowSingleton>::get()->Now();
   375 }

mercurial