|
1 /* This Source Code Form is subject to the terms of the Mozilla Public |
|
2 * License, v. 2.0. If a copy of the MPL was not distributed with this |
|
3 * file, You can obtain one at http://mozilla.org/MPL/2.0/. */ |
|
4 |
|
5 #ifndef __ecp_h_ |
|
6 #define __ecp_h_ |
|
7 |
|
8 #include "ecl-priv.h" |
|
9 |
|
10 /* Checks if point P(px, py) is at infinity. Uses affine coordinates. */ |
|
11 mp_err ec_GFp_pt_is_inf_aff(const mp_int *px, const mp_int *py); |
|
12 |
|
13 /* Sets P(px, py) to be the point at infinity. Uses affine coordinates. */ |
|
14 mp_err ec_GFp_pt_set_inf_aff(mp_int *px, mp_int *py); |
|
15 |
|
16 /* Computes R = P + Q where R is (rx, ry), P is (px, py) and Q is (qx, |
|
17 * qy). Uses affine coordinates. */ |
|
18 mp_err ec_GFp_pt_add_aff(const mp_int *px, const mp_int *py, |
|
19 const mp_int *qx, const mp_int *qy, mp_int *rx, |
|
20 mp_int *ry, const ECGroup *group); |
|
21 |
|
22 /* Computes R = P - Q. Uses affine coordinates. */ |
|
23 mp_err ec_GFp_pt_sub_aff(const mp_int *px, const mp_int *py, |
|
24 const mp_int *qx, const mp_int *qy, mp_int *rx, |
|
25 mp_int *ry, const ECGroup *group); |
|
26 |
|
27 /* Computes R = 2P. Uses affine coordinates. */ |
|
28 mp_err ec_GFp_pt_dbl_aff(const mp_int *px, const mp_int *py, mp_int *rx, |
|
29 mp_int *ry, const ECGroup *group); |
|
30 |
|
31 /* Validates a point on a GFp curve. */ |
|
32 mp_err ec_GFp_validate_point(const mp_int *px, const mp_int *py, const ECGroup *group); |
|
33 |
|
34 #ifdef ECL_ENABLE_GFP_PT_MUL_AFF |
|
35 /* Computes R = nP where R is (rx, ry) and P is (px, py). The parameters |
|
36 * a, b and p are the elliptic curve coefficients and the prime that |
|
37 * determines the field GFp. Uses affine coordinates. */ |
|
38 mp_err ec_GFp_pt_mul_aff(const mp_int *n, const mp_int *px, |
|
39 const mp_int *py, mp_int *rx, mp_int *ry, |
|
40 const ECGroup *group); |
|
41 #endif |
|
42 |
|
43 /* Converts a point P(px, py) from affine coordinates to Jacobian |
|
44 * projective coordinates R(rx, ry, rz). */ |
|
45 mp_err ec_GFp_pt_aff2jac(const mp_int *px, const mp_int *py, mp_int *rx, |
|
46 mp_int *ry, mp_int *rz, const ECGroup *group); |
|
47 |
|
48 /* Converts a point P(px, py, pz) from Jacobian projective coordinates to |
|
49 * affine coordinates R(rx, ry). */ |
|
50 mp_err ec_GFp_pt_jac2aff(const mp_int *px, const mp_int *py, |
|
51 const mp_int *pz, mp_int *rx, mp_int *ry, |
|
52 const ECGroup *group); |
|
53 |
|
54 /* Checks if point P(px, py, pz) is at infinity. Uses Jacobian |
|
55 * coordinates. */ |
|
56 mp_err ec_GFp_pt_is_inf_jac(const mp_int *px, const mp_int *py, |
|
57 const mp_int *pz); |
|
58 |
|
59 /* Sets P(px, py, pz) to be the point at infinity. Uses Jacobian |
|
60 * coordinates. */ |
|
61 mp_err ec_GFp_pt_set_inf_jac(mp_int *px, mp_int *py, mp_int *pz); |
|
62 |
|
63 /* Computes R = P + Q where R is (rx, ry, rz), P is (px, py, pz) and Q is |
|
64 * (qx, qy, qz). Uses Jacobian coordinates. */ |
|
65 mp_err ec_GFp_pt_add_jac_aff(const mp_int *px, const mp_int *py, |
|
66 const mp_int *pz, const mp_int *qx, |
|
67 const mp_int *qy, mp_int *rx, mp_int *ry, |
|
68 mp_int *rz, const ECGroup *group); |
|
69 |
|
70 /* Computes R = 2P. Uses Jacobian coordinates. */ |
|
71 mp_err ec_GFp_pt_dbl_jac(const mp_int *px, const mp_int *py, |
|
72 const mp_int *pz, mp_int *rx, mp_int *ry, |
|
73 mp_int *rz, const ECGroup *group); |
|
74 |
|
75 #ifdef ECL_ENABLE_GFP_PT_MUL_JAC |
|
76 /* Computes R = nP where R is (rx, ry) and P is (px, py). The parameters |
|
77 * a, b and p are the elliptic curve coefficients and the prime that |
|
78 * determines the field GFp. Uses Jacobian coordinates. */ |
|
79 mp_err ec_GFp_pt_mul_jac(const mp_int *n, const mp_int *px, |
|
80 const mp_int *py, mp_int *rx, mp_int *ry, |
|
81 const ECGroup *group); |
|
82 #endif |
|
83 |
|
84 /* Computes R(x, y) = k1 * G + k2 * P(x, y), where G is the generator |
|
85 * (base point) of the group of points on the elliptic curve. Allows k1 = |
|
86 * NULL or { k2, P } = NULL. Implemented using mixed Jacobian-affine |
|
87 * coordinates. Input and output values are assumed to be NOT |
|
88 * field-encoded and are in affine form. */ |
|
89 mp_err |
|
90 ec_GFp_pts_mul_jac(const mp_int *k1, const mp_int *k2, const mp_int *px, |
|
91 const mp_int *py, mp_int *rx, mp_int *ry, |
|
92 const ECGroup *group); |
|
93 |
|
94 /* Computes R = nP where R is (rx, ry) and P is the base point. Elliptic |
|
95 * curve points P and R can be identical. Uses mixed Modified-Jacobian |
|
96 * co-ordinates for doubling and Chudnovsky Jacobian coordinates for |
|
97 * additions. Assumes input is already field-encoded using field_enc, and |
|
98 * returns output that is still field-encoded. Uses 5-bit window NAF |
|
99 * method (algorithm 11) for scalar-point multiplication from Brown, |
|
100 * Hankerson, Lopez, Menezes. Software Implementation of the NIST Elliptic |
|
101 * Curves Over Prime Fields. */ |
|
102 mp_err |
|
103 ec_GFp_pt_mul_jm_wNAF(const mp_int *n, const mp_int *px, const mp_int *py, |
|
104 mp_int *rx, mp_int *ry, const ECGroup *group); |
|
105 |
|
106 #endif /* __ecp_h_ */ |