security/nss/lib/freebl/ecl/ecp.h

changeset 0
6474c204b198
     1.1 --- /dev/null	Thu Jan 01 00:00:00 1970 +0000
     1.2 +++ b/security/nss/lib/freebl/ecl/ecp.h	Wed Dec 31 06:09:35 2014 +0100
     1.3 @@ -0,0 +1,106 @@
     1.4 +/* This Source Code Form is subject to the terms of the Mozilla Public
     1.5 + * License, v. 2.0. If a copy of the MPL was not distributed with this
     1.6 + * file, You can obtain one at http://mozilla.org/MPL/2.0/. */
     1.7 +
     1.8 +#ifndef __ecp_h_
     1.9 +#define __ecp_h_
    1.10 +
    1.11 +#include "ecl-priv.h"
    1.12 +
    1.13 +/* Checks if point P(px, py) is at infinity.  Uses affine coordinates. */
    1.14 +mp_err ec_GFp_pt_is_inf_aff(const mp_int *px, const mp_int *py);
    1.15 +
    1.16 +/* Sets P(px, py) to be the point at infinity.  Uses affine coordinates. */
    1.17 +mp_err ec_GFp_pt_set_inf_aff(mp_int *px, mp_int *py);
    1.18 +
    1.19 +/* Computes R = P + Q where R is (rx, ry), P is (px, py) and Q is (qx,
    1.20 + * qy). Uses affine coordinates. */
    1.21 +mp_err ec_GFp_pt_add_aff(const mp_int *px, const mp_int *py,
    1.22 +						 const mp_int *qx, const mp_int *qy, mp_int *rx,
    1.23 +						 mp_int *ry, const ECGroup *group);
    1.24 +
    1.25 +/* Computes R = P - Q.  Uses affine coordinates. */
    1.26 +mp_err ec_GFp_pt_sub_aff(const mp_int *px, const mp_int *py,
    1.27 +						 const mp_int *qx, const mp_int *qy, mp_int *rx,
    1.28 +						 mp_int *ry, const ECGroup *group);
    1.29 +
    1.30 +/* Computes R = 2P.  Uses affine coordinates. */
    1.31 +mp_err ec_GFp_pt_dbl_aff(const mp_int *px, const mp_int *py, mp_int *rx,
    1.32 +						 mp_int *ry, const ECGroup *group);
    1.33 +
    1.34 +/* Validates a point on a GFp curve. */
    1.35 +mp_err ec_GFp_validate_point(const mp_int *px, const mp_int *py, const ECGroup *group);
    1.36 +
    1.37 +#ifdef ECL_ENABLE_GFP_PT_MUL_AFF
    1.38 +/* Computes R = nP where R is (rx, ry) and P is (px, py). The parameters
    1.39 + * a, b and p are the elliptic curve coefficients and the prime that
    1.40 + * determines the field GFp.  Uses affine coordinates. */
    1.41 +mp_err ec_GFp_pt_mul_aff(const mp_int *n, const mp_int *px,
    1.42 +						 const mp_int *py, mp_int *rx, mp_int *ry,
    1.43 +						 const ECGroup *group);
    1.44 +#endif
    1.45 +
    1.46 +/* Converts a point P(px, py) from affine coordinates to Jacobian
    1.47 + * projective coordinates R(rx, ry, rz). */
    1.48 +mp_err ec_GFp_pt_aff2jac(const mp_int *px, const mp_int *py, mp_int *rx,
    1.49 +						 mp_int *ry, mp_int *rz, const ECGroup *group);
    1.50 +
    1.51 +/* Converts a point P(px, py, pz) from Jacobian projective coordinates to
    1.52 + * affine coordinates R(rx, ry). */
    1.53 +mp_err ec_GFp_pt_jac2aff(const mp_int *px, const mp_int *py,
    1.54 +						 const mp_int *pz, mp_int *rx, mp_int *ry,
    1.55 +						 const ECGroup *group);
    1.56 +
    1.57 +/* Checks if point P(px, py, pz) is at infinity.  Uses Jacobian
    1.58 + * coordinates. */
    1.59 +mp_err ec_GFp_pt_is_inf_jac(const mp_int *px, const mp_int *py,
    1.60 +							const mp_int *pz);
    1.61 +
    1.62 +/* Sets P(px, py, pz) to be the point at infinity.  Uses Jacobian
    1.63 + * coordinates. */
    1.64 +mp_err ec_GFp_pt_set_inf_jac(mp_int *px, mp_int *py, mp_int *pz);
    1.65 +
    1.66 +/* Computes R = P + Q where R is (rx, ry, rz), P is (px, py, pz) and Q is
    1.67 + * (qx, qy, qz).  Uses Jacobian coordinates. */
    1.68 +mp_err ec_GFp_pt_add_jac_aff(const mp_int *px, const mp_int *py,
    1.69 +							 const mp_int *pz, const mp_int *qx,
    1.70 +							 const mp_int *qy, mp_int *rx, mp_int *ry,
    1.71 +							 mp_int *rz, const ECGroup *group);
    1.72 +
    1.73 +/* Computes R = 2P.  Uses Jacobian coordinates. */
    1.74 +mp_err ec_GFp_pt_dbl_jac(const mp_int *px, const mp_int *py,
    1.75 +						 const mp_int *pz, mp_int *rx, mp_int *ry,
    1.76 +						 mp_int *rz, const ECGroup *group);
    1.77 +
    1.78 +#ifdef ECL_ENABLE_GFP_PT_MUL_JAC
    1.79 +/* Computes R = nP where R is (rx, ry) and P is (px, py). The parameters
    1.80 + * a, b and p are the elliptic curve coefficients and the prime that
    1.81 + * determines the field GFp.  Uses Jacobian coordinates. */
    1.82 +mp_err ec_GFp_pt_mul_jac(const mp_int *n, const mp_int *px,
    1.83 +						 const mp_int *py, mp_int *rx, mp_int *ry,
    1.84 +						 const ECGroup *group);
    1.85 +#endif
    1.86 +
    1.87 +/* Computes R(x, y) = k1 * G + k2 * P(x, y), where G is the generator
    1.88 + * (base point) of the group of points on the elliptic curve. Allows k1 =
    1.89 + * NULL or { k2, P } = NULL.  Implemented using mixed Jacobian-affine
    1.90 + * coordinates. Input and output values are assumed to be NOT
    1.91 + * field-encoded and are in affine form. */
    1.92 +mp_err
    1.93 + ec_GFp_pts_mul_jac(const mp_int *k1, const mp_int *k2, const mp_int *px,
    1.94 +					const mp_int *py, mp_int *rx, mp_int *ry,
    1.95 +					const ECGroup *group);
    1.96 +
    1.97 +/* Computes R = nP where R is (rx, ry) and P is the base point. Elliptic
    1.98 + * curve points P and R can be identical. Uses mixed Modified-Jacobian
    1.99 + * co-ordinates for doubling and Chudnovsky Jacobian coordinates for
   1.100 + * additions. Assumes input is already field-encoded using field_enc, and
   1.101 + * returns output that is still field-encoded. Uses 5-bit window NAF
   1.102 + * method (algorithm 11) for scalar-point multiplication from Brown,
   1.103 + * Hankerson, Lopez, Menezes. Software Implementation of the NIST Elliptic 
   1.104 + * Curves Over Prime Fields. */
   1.105 +mp_err
   1.106 + ec_GFp_pt_mul_jm_wNAF(const mp_int *n, const mp_int *px, const mp_int *py,
   1.107 +					   mp_int *rx, mp_int *ry, const ECGroup *group);
   1.108 +
   1.109 +#endif							/* __ecp_h_ */

mercurial