security/nss/lib/freebl/ecl/ecp.h

Wed, 31 Dec 2014 06:09:35 +0100

author
Michael Schloh von Bennewitz <michael@schloh.com>
date
Wed, 31 Dec 2014 06:09:35 +0100
changeset 0
6474c204b198
permissions
-rw-r--r--

Cloned upstream origin tor-browser at tor-browser-31.3.0esr-4.5-1-build1
revision ID fc1c9ff7c1b2defdbc039f12214767608f46423f for hacking purpose.

     1 /* This Source Code Form is subject to the terms of the Mozilla Public
     2  * License, v. 2.0. If a copy of the MPL was not distributed with this
     3  * file, You can obtain one at http://mozilla.org/MPL/2.0/. */
     5 #ifndef __ecp_h_
     6 #define __ecp_h_
     8 #include "ecl-priv.h"
    10 /* Checks if point P(px, py) is at infinity.  Uses affine coordinates. */
    11 mp_err ec_GFp_pt_is_inf_aff(const mp_int *px, const mp_int *py);
    13 /* Sets P(px, py) to be the point at infinity.  Uses affine coordinates. */
    14 mp_err ec_GFp_pt_set_inf_aff(mp_int *px, mp_int *py);
    16 /* Computes R = P + Q where R is (rx, ry), P is (px, py) and Q is (qx,
    17  * qy). Uses affine coordinates. */
    18 mp_err ec_GFp_pt_add_aff(const mp_int *px, const mp_int *py,
    19 						 const mp_int *qx, const mp_int *qy, mp_int *rx,
    20 						 mp_int *ry, const ECGroup *group);
    22 /* Computes R = P - Q.  Uses affine coordinates. */
    23 mp_err ec_GFp_pt_sub_aff(const mp_int *px, const mp_int *py,
    24 						 const mp_int *qx, const mp_int *qy, mp_int *rx,
    25 						 mp_int *ry, const ECGroup *group);
    27 /* Computes R = 2P.  Uses affine coordinates. */
    28 mp_err ec_GFp_pt_dbl_aff(const mp_int *px, const mp_int *py, mp_int *rx,
    29 						 mp_int *ry, const ECGroup *group);
    31 /* Validates a point on a GFp curve. */
    32 mp_err ec_GFp_validate_point(const mp_int *px, const mp_int *py, const ECGroup *group);
    34 #ifdef ECL_ENABLE_GFP_PT_MUL_AFF
    35 /* Computes R = nP where R is (rx, ry) and P is (px, py). The parameters
    36  * a, b and p are the elliptic curve coefficients and the prime that
    37  * determines the field GFp.  Uses affine coordinates. */
    38 mp_err ec_GFp_pt_mul_aff(const mp_int *n, const mp_int *px,
    39 						 const mp_int *py, mp_int *rx, mp_int *ry,
    40 						 const ECGroup *group);
    41 #endif
    43 /* Converts a point P(px, py) from affine coordinates to Jacobian
    44  * projective coordinates R(rx, ry, rz). */
    45 mp_err ec_GFp_pt_aff2jac(const mp_int *px, const mp_int *py, mp_int *rx,
    46 						 mp_int *ry, mp_int *rz, const ECGroup *group);
    48 /* Converts a point P(px, py, pz) from Jacobian projective coordinates to
    49  * affine coordinates R(rx, ry). */
    50 mp_err ec_GFp_pt_jac2aff(const mp_int *px, const mp_int *py,
    51 						 const mp_int *pz, mp_int *rx, mp_int *ry,
    52 						 const ECGroup *group);
    54 /* Checks if point P(px, py, pz) is at infinity.  Uses Jacobian
    55  * coordinates. */
    56 mp_err ec_GFp_pt_is_inf_jac(const mp_int *px, const mp_int *py,
    57 							const mp_int *pz);
    59 /* Sets P(px, py, pz) to be the point at infinity.  Uses Jacobian
    60  * coordinates. */
    61 mp_err ec_GFp_pt_set_inf_jac(mp_int *px, mp_int *py, mp_int *pz);
    63 /* Computes R = P + Q where R is (rx, ry, rz), P is (px, py, pz) and Q is
    64  * (qx, qy, qz).  Uses Jacobian coordinates. */
    65 mp_err ec_GFp_pt_add_jac_aff(const mp_int *px, const mp_int *py,
    66 							 const mp_int *pz, const mp_int *qx,
    67 							 const mp_int *qy, mp_int *rx, mp_int *ry,
    68 							 mp_int *rz, const ECGroup *group);
    70 /* Computes R = 2P.  Uses Jacobian coordinates. */
    71 mp_err ec_GFp_pt_dbl_jac(const mp_int *px, const mp_int *py,
    72 						 const mp_int *pz, mp_int *rx, mp_int *ry,
    73 						 mp_int *rz, const ECGroup *group);
    75 #ifdef ECL_ENABLE_GFP_PT_MUL_JAC
    76 /* Computes R = nP where R is (rx, ry) and P is (px, py). The parameters
    77  * a, b and p are the elliptic curve coefficients and the prime that
    78  * determines the field GFp.  Uses Jacobian coordinates. */
    79 mp_err ec_GFp_pt_mul_jac(const mp_int *n, const mp_int *px,
    80 						 const mp_int *py, mp_int *rx, mp_int *ry,
    81 						 const ECGroup *group);
    82 #endif
    84 /* Computes R(x, y) = k1 * G + k2 * P(x, y), where G is the generator
    85  * (base point) of the group of points on the elliptic curve. Allows k1 =
    86  * NULL or { k2, P } = NULL.  Implemented using mixed Jacobian-affine
    87  * coordinates. Input and output values are assumed to be NOT
    88  * field-encoded and are in affine form. */
    89 mp_err
    90  ec_GFp_pts_mul_jac(const mp_int *k1, const mp_int *k2, const mp_int *px,
    91 					const mp_int *py, mp_int *rx, mp_int *ry,
    92 					const ECGroup *group);
    94 /* Computes R = nP where R is (rx, ry) and P is the base point. Elliptic
    95  * curve points P and R can be identical. Uses mixed Modified-Jacobian
    96  * co-ordinates for doubling and Chudnovsky Jacobian coordinates for
    97  * additions. Assumes input is already field-encoded using field_enc, and
    98  * returns output that is still field-encoded. Uses 5-bit window NAF
    99  * method (algorithm 11) for scalar-point multiplication from Brown,
   100  * Hankerson, Lopez, Menezes. Software Implementation of the NIST Elliptic 
   101  * Curves Over Prime Fields. */
   102 mp_err
   103  ec_GFp_pt_mul_jm_wNAF(const mp_int *n, const mp_int *px, const mp_int *py,
   104 					   mp_int *rx, mp_int *ry, const ECGroup *group);
   106 #endif							/* __ecp_h_ */

mercurial