|
1 /* This Source Code Form is subject to the terms of the Mozilla Public |
|
2 * License, v. 2.0. If a copy of the MPL was not distributed with this |
|
3 * file, You can obtain one at http://mozilla.org/MPL/2.0/. */ |
|
4 |
|
5 #include "ecp.h" |
|
6 #include "mpi.h" |
|
7 #include "mplogic.h" |
|
8 #include "mpi-priv.h" |
|
9 |
|
10 #define ECP224_DIGITS ECL_CURVE_DIGITS(224) |
|
11 |
|
12 /* Fast modular reduction for p224 = 2^224 - 2^96 + 1. a can be r. Uses |
|
13 * algorithm 7 from Brown, Hankerson, Lopez, Menezes. Software |
|
14 * Implementation of the NIST Elliptic Curves over Prime Fields. */ |
|
15 static mp_err |
|
16 ec_GFp_nistp224_mod(const mp_int *a, mp_int *r, const GFMethod *meth) |
|
17 { |
|
18 mp_err res = MP_OKAY; |
|
19 mp_size a_used = MP_USED(a); |
|
20 |
|
21 int r3b; |
|
22 mp_digit carry; |
|
23 #ifdef ECL_THIRTY_TWO_BIT |
|
24 mp_digit a6a = 0, a6b = 0, |
|
25 a5a = 0, a5b = 0, a4a = 0, a4b = 0, a3a = 0, a3b = 0; |
|
26 mp_digit r0a, r0b, r1a, r1b, r2a, r2b, r3a; |
|
27 #else |
|
28 mp_digit a6 = 0, a5 = 0, a4 = 0, a3b = 0, a5a = 0; |
|
29 mp_digit a6b = 0, a6a_a5b = 0, a5b = 0, a5a_a4b = 0, a4a_a3b = 0; |
|
30 mp_digit r0, r1, r2, r3; |
|
31 #endif |
|
32 |
|
33 /* reduction not needed if a is not larger than field size */ |
|
34 if (a_used < ECP224_DIGITS) { |
|
35 if (a == r) return MP_OKAY; |
|
36 return mp_copy(a, r); |
|
37 } |
|
38 /* for polynomials larger than twice the field size, use regular |
|
39 * reduction */ |
|
40 if (a_used > ECL_CURVE_DIGITS(224*2)) { |
|
41 MP_CHECKOK(mp_mod(a, &meth->irr, r)); |
|
42 } else { |
|
43 #ifdef ECL_THIRTY_TWO_BIT |
|
44 /* copy out upper words of a */ |
|
45 switch (a_used) { |
|
46 case 14: |
|
47 a6b = MP_DIGIT(a, 13); |
|
48 case 13: |
|
49 a6a = MP_DIGIT(a, 12); |
|
50 case 12: |
|
51 a5b = MP_DIGIT(a, 11); |
|
52 case 11: |
|
53 a5a = MP_DIGIT(a, 10); |
|
54 case 10: |
|
55 a4b = MP_DIGIT(a, 9); |
|
56 case 9: |
|
57 a4a = MP_DIGIT(a, 8); |
|
58 case 8: |
|
59 a3b = MP_DIGIT(a, 7); |
|
60 } |
|
61 r3a = MP_DIGIT(a, 6); |
|
62 r2b= MP_DIGIT(a, 5); |
|
63 r2a= MP_DIGIT(a, 4); |
|
64 r1b = MP_DIGIT(a, 3); |
|
65 r1a = MP_DIGIT(a, 2); |
|
66 r0b = MP_DIGIT(a, 1); |
|
67 r0a = MP_DIGIT(a, 0); |
|
68 |
|
69 |
|
70 /* implement r = (a3a,a2,a1,a0) |
|
71 +(a5a, a4,a3b, 0) |
|
72 +( 0, a6,a5b, 0) |
|
73 -( 0 0, 0|a6b, a6a|a5b ) |
|
74 -( a6b, a6a|a5b, a5a|a4b, a4a|a3b ) */ |
|
75 MP_ADD_CARRY (r1b, a3b, r1b, 0, carry); |
|
76 MP_ADD_CARRY (r2a, a4a, r2a, carry, carry); |
|
77 MP_ADD_CARRY (r2b, a4b, r2b, carry, carry); |
|
78 MP_ADD_CARRY (r3a, a5a, r3a, carry, carry); |
|
79 r3b = carry; |
|
80 MP_ADD_CARRY (r1b, a5b, r1b, 0, carry); |
|
81 MP_ADD_CARRY (r2a, a6a, r2a, carry, carry); |
|
82 MP_ADD_CARRY (r2b, a6b, r2b, carry, carry); |
|
83 MP_ADD_CARRY (r3a, 0, r3a, carry, carry); |
|
84 r3b += carry; |
|
85 MP_SUB_BORROW(r0a, a3b, r0a, 0, carry); |
|
86 MP_SUB_BORROW(r0b, a4a, r0b, carry, carry); |
|
87 MP_SUB_BORROW(r1a, a4b, r1a, carry, carry); |
|
88 MP_SUB_BORROW(r1b, a5a, r1b, carry, carry); |
|
89 MP_SUB_BORROW(r2a, a5b, r2a, carry, carry); |
|
90 MP_SUB_BORROW(r2b, a6a, r2b, carry, carry); |
|
91 MP_SUB_BORROW(r3a, a6b, r3a, carry, carry); |
|
92 r3b -= carry; |
|
93 MP_SUB_BORROW(r0a, a5b, r0a, 0, carry); |
|
94 MP_SUB_BORROW(r0b, a6a, r0b, carry, carry); |
|
95 MP_SUB_BORROW(r1a, a6b, r1a, carry, carry); |
|
96 if (carry) { |
|
97 MP_SUB_BORROW(r1b, 0, r1b, carry, carry); |
|
98 MP_SUB_BORROW(r2a, 0, r2a, carry, carry); |
|
99 MP_SUB_BORROW(r2b, 0, r2b, carry, carry); |
|
100 MP_SUB_BORROW(r3a, 0, r3a, carry, carry); |
|
101 r3b -= carry; |
|
102 } |
|
103 |
|
104 while (r3b > 0) { |
|
105 int tmp; |
|
106 MP_ADD_CARRY(r1b, r3b, r1b, 0, carry); |
|
107 if (carry) { |
|
108 MP_ADD_CARRY(r2a, 0, r2a, carry, carry); |
|
109 MP_ADD_CARRY(r2b, 0, r2b, carry, carry); |
|
110 MP_ADD_CARRY(r3a, 0, r3a, carry, carry); |
|
111 } |
|
112 tmp = carry; |
|
113 MP_SUB_BORROW(r0a, r3b, r0a, 0, carry); |
|
114 if (carry) { |
|
115 MP_SUB_BORROW(r0b, 0, r0b, carry, carry); |
|
116 MP_SUB_BORROW(r1a, 0, r1a, carry, carry); |
|
117 MP_SUB_BORROW(r1b, 0, r1b, carry, carry); |
|
118 MP_SUB_BORROW(r2a, 0, r2a, carry, carry); |
|
119 MP_SUB_BORROW(r2b, 0, r2b, carry, carry); |
|
120 MP_SUB_BORROW(r3a, 0, r3a, carry, carry); |
|
121 tmp -= carry; |
|
122 } |
|
123 r3b = tmp; |
|
124 } |
|
125 |
|
126 while (r3b < 0) { |
|
127 mp_digit maxInt = MP_DIGIT_MAX; |
|
128 MP_ADD_CARRY (r0a, 1, r0a, 0, carry); |
|
129 MP_ADD_CARRY (r0b, 0, r0b, carry, carry); |
|
130 MP_ADD_CARRY (r1a, 0, r1a, carry, carry); |
|
131 MP_ADD_CARRY (r1b, maxInt, r1b, carry, carry); |
|
132 MP_ADD_CARRY (r2a, maxInt, r2a, carry, carry); |
|
133 MP_ADD_CARRY (r2b, maxInt, r2b, carry, carry); |
|
134 MP_ADD_CARRY (r3a, maxInt, r3a, carry, carry); |
|
135 r3b += carry; |
|
136 } |
|
137 /* check for final reduction */ |
|
138 /* now the only way we are over is if the top 4 words are all ones */ |
|
139 if ((r3a == MP_DIGIT_MAX) && (r2b == MP_DIGIT_MAX) |
|
140 && (r2a == MP_DIGIT_MAX) && (r1b == MP_DIGIT_MAX) && |
|
141 ((r1a != 0) || (r0b != 0) || (r0a != 0)) ) { |
|
142 /* one last subraction */ |
|
143 MP_SUB_BORROW(r0a, 1, r0a, 0, carry); |
|
144 MP_SUB_BORROW(r0b, 0, r0b, carry, carry); |
|
145 MP_SUB_BORROW(r1a, 0, r1a, carry, carry); |
|
146 r1b = r2a = r2b = r3a = 0; |
|
147 } |
|
148 |
|
149 |
|
150 if (a != r) { |
|
151 MP_CHECKOK(s_mp_pad(r, 7)); |
|
152 } |
|
153 /* set the lower words of r */ |
|
154 MP_SIGN(r) = MP_ZPOS; |
|
155 MP_USED(r) = 7; |
|
156 MP_DIGIT(r, 6) = r3a; |
|
157 MP_DIGIT(r, 5) = r2b; |
|
158 MP_DIGIT(r, 4) = r2a; |
|
159 MP_DIGIT(r, 3) = r1b; |
|
160 MP_DIGIT(r, 2) = r1a; |
|
161 MP_DIGIT(r, 1) = r0b; |
|
162 MP_DIGIT(r, 0) = r0a; |
|
163 #else |
|
164 /* copy out upper words of a */ |
|
165 switch (a_used) { |
|
166 case 7: |
|
167 a6 = MP_DIGIT(a, 6); |
|
168 a6b = a6 >> 32; |
|
169 a6a_a5b = a6 << 32; |
|
170 case 6: |
|
171 a5 = MP_DIGIT(a, 5); |
|
172 a5b = a5 >> 32; |
|
173 a6a_a5b |= a5b; |
|
174 a5b = a5b << 32; |
|
175 a5a_a4b = a5 << 32; |
|
176 a5a = a5 & 0xffffffff; |
|
177 case 5: |
|
178 a4 = MP_DIGIT(a, 4); |
|
179 a5a_a4b |= a4 >> 32; |
|
180 a4a_a3b = a4 << 32; |
|
181 case 4: |
|
182 a3b = MP_DIGIT(a, 3) >> 32; |
|
183 a4a_a3b |= a3b; |
|
184 a3b = a3b << 32; |
|
185 } |
|
186 |
|
187 r3 = MP_DIGIT(a, 3) & 0xffffffff; |
|
188 r2 = MP_DIGIT(a, 2); |
|
189 r1 = MP_DIGIT(a, 1); |
|
190 r0 = MP_DIGIT(a, 0); |
|
191 |
|
192 /* implement r = (a3a,a2,a1,a0) |
|
193 +(a5a, a4,a3b, 0) |
|
194 +( 0, a6,a5b, 0) |
|
195 -( 0 0, 0|a6b, a6a|a5b ) |
|
196 -( a6b, a6a|a5b, a5a|a4b, a4a|a3b ) */ |
|
197 MP_ADD_CARRY (r1, a3b, r1, 0, carry); |
|
198 MP_ADD_CARRY (r2, a4 , r2, carry, carry); |
|
199 MP_ADD_CARRY (r3, a5a, r3, carry, carry); |
|
200 MP_ADD_CARRY (r1, a5b, r1, 0, carry); |
|
201 MP_ADD_CARRY (r2, a6 , r2, carry, carry); |
|
202 MP_ADD_CARRY (r3, 0, r3, carry, carry); |
|
203 |
|
204 MP_SUB_BORROW(r0, a4a_a3b, r0, 0, carry); |
|
205 MP_SUB_BORROW(r1, a5a_a4b, r1, carry, carry); |
|
206 MP_SUB_BORROW(r2, a6a_a5b, r2, carry, carry); |
|
207 MP_SUB_BORROW(r3, a6b , r3, carry, carry); |
|
208 MP_SUB_BORROW(r0, a6a_a5b, r0, 0, carry); |
|
209 MP_SUB_BORROW(r1, a6b , r1, carry, carry); |
|
210 if (carry) { |
|
211 MP_SUB_BORROW(r2, 0, r2, carry, carry); |
|
212 MP_SUB_BORROW(r3, 0, r3, carry, carry); |
|
213 } |
|
214 |
|
215 |
|
216 /* if the value is negative, r3 has a 2's complement |
|
217 * high value */ |
|
218 r3b = (int)(r3 >>32); |
|
219 while (r3b > 0) { |
|
220 r3 &= 0xffffffff; |
|
221 MP_ADD_CARRY(r1,((mp_digit)r3b) << 32, r1, 0, carry); |
|
222 if (carry) { |
|
223 MP_ADD_CARRY(r2, 0, r2, carry, carry); |
|
224 MP_ADD_CARRY(r3, 0, r3, carry, carry); |
|
225 } |
|
226 MP_SUB_BORROW(r0, r3b, r0, 0, carry); |
|
227 if (carry) { |
|
228 MP_SUB_BORROW(r1, 0, r1, carry, carry); |
|
229 MP_SUB_BORROW(r2, 0, r2, carry, carry); |
|
230 MP_SUB_BORROW(r3, 0, r3, carry, carry); |
|
231 } |
|
232 r3b = (int)(r3 >>32); |
|
233 } |
|
234 |
|
235 while (r3b < 0) { |
|
236 MP_ADD_CARRY (r0, 1, r0, 0, carry); |
|
237 MP_ADD_CARRY (r1, MP_DIGIT_MAX <<32, r1, carry, carry); |
|
238 MP_ADD_CARRY (r2, MP_DIGIT_MAX, r2, carry, carry); |
|
239 MP_ADD_CARRY (r3, MP_DIGIT_MAX >> 32, r3, carry, carry); |
|
240 r3b = (int)(r3 >>32); |
|
241 } |
|
242 /* check for final reduction */ |
|
243 /* now the only way we are over is if the top 4 words are |
|
244 * all ones. Subtract the curve. (curve is 2^224 - 2^96 +1) |
|
245 */ |
|
246 if ((r3 == (MP_DIGIT_MAX >> 32)) && (r2 == MP_DIGIT_MAX) |
|
247 && ((r1 & MP_DIGIT_MAX << 32)== MP_DIGIT_MAX << 32) && |
|
248 ((r1 != MP_DIGIT_MAX << 32 ) || (r0 != 0)) ) { |
|
249 /* one last subraction */ |
|
250 MP_SUB_BORROW(r0, 1, r0, 0, carry); |
|
251 MP_SUB_BORROW(r1, MP_DIGIT_MAX << 32, r1, carry, carry); |
|
252 r2 = r3 = 0; |
|
253 } |
|
254 |
|
255 |
|
256 if (a != r) { |
|
257 MP_CHECKOK(s_mp_pad(r, 4)); |
|
258 } |
|
259 /* set the lower words of r */ |
|
260 MP_SIGN(r) = MP_ZPOS; |
|
261 MP_USED(r) = 4; |
|
262 MP_DIGIT(r, 3) = r3; |
|
263 MP_DIGIT(r, 2) = r2; |
|
264 MP_DIGIT(r, 1) = r1; |
|
265 MP_DIGIT(r, 0) = r0; |
|
266 #endif |
|
267 } |
|
268 s_mp_clamp(r); |
|
269 |
|
270 CLEANUP: |
|
271 return res; |
|
272 } |
|
273 |
|
274 /* Compute the square of polynomial a, reduce modulo p224. Store the |
|
275 * result in r. r could be a. Uses optimized modular reduction for p224. |
|
276 */ |
|
277 static mp_err |
|
278 ec_GFp_nistp224_sqr(const mp_int *a, mp_int *r, const GFMethod *meth) |
|
279 { |
|
280 mp_err res = MP_OKAY; |
|
281 |
|
282 MP_CHECKOK(mp_sqr(a, r)); |
|
283 MP_CHECKOK(ec_GFp_nistp224_mod(r, r, meth)); |
|
284 CLEANUP: |
|
285 return res; |
|
286 } |
|
287 |
|
288 /* Compute the product of two polynomials a and b, reduce modulo p224. |
|
289 * Store the result in r. r could be a or b; a could be b. Uses |
|
290 * optimized modular reduction for p224. */ |
|
291 static mp_err |
|
292 ec_GFp_nistp224_mul(const mp_int *a, const mp_int *b, mp_int *r, |
|
293 const GFMethod *meth) |
|
294 { |
|
295 mp_err res = MP_OKAY; |
|
296 |
|
297 MP_CHECKOK(mp_mul(a, b, r)); |
|
298 MP_CHECKOK(ec_GFp_nistp224_mod(r, r, meth)); |
|
299 CLEANUP: |
|
300 return res; |
|
301 } |
|
302 |
|
303 /* Divides two field elements. If a is NULL, then returns the inverse of |
|
304 * b. */ |
|
305 static mp_err |
|
306 ec_GFp_nistp224_div(const mp_int *a, const mp_int *b, mp_int *r, |
|
307 const GFMethod *meth) |
|
308 { |
|
309 mp_err res = MP_OKAY; |
|
310 mp_int t; |
|
311 |
|
312 /* If a is NULL, then return the inverse of b, otherwise return a/b. */ |
|
313 if (a == NULL) { |
|
314 return mp_invmod(b, &meth->irr, r); |
|
315 } else { |
|
316 /* MPI doesn't support divmod, so we implement it using invmod and |
|
317 * mulmod. */ |
|
318 MP_CHECKOK(mp_init(&t)); |
|
319 MP_CHECKOK(mp_invmod(b, &meth->irr, &t)); |
|
320 MP_CHECKOK(mp_mul(a, &t, r)); |
|
321 MP_CHECKOK(ec_GFp_nistp224_mod(r, r, meth)); |
|
322 CLEANUP: |
|
323 mp_clear(&t); |
|
324 return res; |
|
325 } |
|
326 } |
|
327 |
|
328 /* Wire in fast field arithmetic and precomputation of base point for |
|
329 * named curves. */ |
|
330 mp_err |
|
331 ec_group_set_gfp224(ECGroup *group, ECCurveName name) |
|
332 { |
|
333 if (name == ECCurve_NIST_P224) { |
|
334 group->meth->field_mod = &ec_GFp_nistp224_mod; |
|
335 group->meth->field_mul = &ec_GFp_nistp224_mul; |
|
336 group->meth->field_sqr = &ec_GFp_nistp224_sqr; |
|
337 group->meth->field_div = &ec_GFp_nistp224_div; |
|
338 } |
|
339 return MP_OKAY; |
|
340 } |