security/nss/lib/freebl/ecl/ecp_224.c

changeset 0
6474c204b198
     1.1 --- /dev/null	Thu Jan 01 00:00:00 1970 +0000
     1.2 +++ b/security/nss/lib/freebl/ecl/ecp_224.c	Wed Dec 31 06:09:35 2014 +0100
     1.3 @@ -0,0 +1,340 @@
     1.4 +/* This Source Code Form is subject to the terms of the Mozilla Public
     1.5 + * License, v. 2.0. If a copy of the MPL was not distributed with this
     1.6 + * file, You can obtain one at http://mozilla.org/MPL/2.0/. */
     1.7 +
     1.8 +#include "ecp.h"
     1.9 +#include "mpi.h"
    1.10 +#include "mplogic.h"
    1.11 +#include "mpi-priv.h"
    1.12 +
    1.13 +#define ECP224_DIGITS ECL_CURVE_DIGITS(224)
    1.14 +
    1.15 +/* Fast modular reduction for p224 = 2^224 - 2^96 + 1.  a can be r. Uses
    1.16 + * algorithm 7 from Brown, Hankerson, Lopez, Menezes. Software
    1.17 + * Implementation of the NIST Elliptic Curves over Prime Fields. */
    1.18 +static mp_err
    1.19 +ec_GFp_nistp224_mod(const mp_int *a, mp_int *r, const GFMethod *meth)
    1.20 +{
    1.21 +	mp_err res = MP_OKAY;
    1.22 +	mp_size a_used = MP_USED(a);
    1.23 +
    1.24 +	int    r3b;
    1.25 +	mp_digit carry;
    1.26 +#ifdef ECL_THIRTY_TWO_BIT
    1.27 +        mp_digit a6a = 0, a6b = 0,
    1.28 +                a5a = 0, a5b = 0, a4a = 0, a4b = 0, a3a = 0, a3b = 0;
    1.29 +        mp_digit r0a, r0b, r1a, r1b, r2a, r2b, r3a;
    1.30 +#else
    1.31 +	mp_digit a6 = 0, a5 = 0, a4 = 0, a3b = 0, a5a = 0;
    1.32 +        mp_digit a6b = 0, a6a_a5b = 0, a5b = 0, a5a_a4b = 0, a4a_a3b = 0;
    1.33 +        mp_digit r0, r1, r2, r3;
    1.34 +#endif
    1.35 +
    1.36 +	/* reduction not needed if a is not larger than field size */
    1.37 +	if (a_used < ECP224_DIGITS) {
    1.38 +		if (a == r) return MP_OKAY;
    1.39 +		return mp_copy(a, r);
    1.40 +	}
    1.41 +	/* for polynomials larger than twice the field size, use regular
    1.42 +	 * reduction */
    1.43 +	if (a_used > ECL_CURVE_DIGITS(224*2)) {
    1.44 +		MP_CHECKOK(mp_mod(a, &meth->irr, r));
    1.45 +	} else {
    1.46 +#ifdef ECL_THIRTY_TWO_BIT
    1.47 +		/* copy out upper words of a */
    1.48 +		switch (a_used) {
    1.49 +		case 14:
    1.50 +			a6b = MP_DIGIT(a, 13);
    1.51 +		case 13:
    1.52 +			a6a = MP_DIGIT(a, 12);
    1.53 +		case 12:
    1.54 +			a5b = MP_DIGIT(a, 11);
    1.55 +		case 11:
    1.56 +			a5a = MP_DIGIT(a, 10);
    1.57 +		case 10:
    1.58 +			a4b = MP_DIGIT(a, 9);
    1.59 +		case 9:
    1.60 +			a4a = MP_DIGIT(a, 8);
    1.61 +		case 8:
    1.62 +			a3b = MP_DIGIT(a, 7);
    1.63 +		}
    1.64 +		r3a = MP_DIGIT(a, 6);
    1.65 +		r2b= MP_DIGIT(a, 5);
    1.66 +		r2a= MP_DIGIT(a, 4);
    1.67 +		r1b = MP_DIGIT(a, 3);
    1.68 +		r1a = MP_DIGIT(a, 2);
    1.69 +		r0b = MP_DIGIT(a, 1);
    1.70 +		r0a = MP_DIGIT(a, 0);
    1.71 +
    1.72 +
    1.73 +		/* implement r = (a3a,a2,a1,a0)
    1.74 +			+(a5a, a4,a3b,  0)
    1.75 +			+(  0, a6,a5b,  0)
    1.76 +			-(  0	 0,    0|a6b, a6a|a5b )
    1.77 +			-(  a6b, a6a|a5b, a5a|a4b, a4a|a3b ) */
    1.78 +		MP_ADD_CARRY (r1b, a3b, r1b, 0,     carry);
    1.79 +		MP_ADD_CARRY (r2a, a4a, r2a, carry, carry);
    1.80 +		MP_ADD_CARRY (r2b, a4b, r2b, carry, carry);
    1.81 +		MP_ADD_CARRY (r3a, a5a, r3a, carry, carry);
    1.82 +		r3b = carry;
    1.83 +		MP_ADD_CARRY (r1b, a5b, r1b, 0,     carry);
    1.84 +		MP_ADD_CARRY (r2a, a6a, r2a, carry, carry);
    1.85 +		MP_ADD_CARRY (r2b, a6b, r2b, carry, carry);
    1.86 +		MP_ADD_CARRY (r3a,   0, r3a, carry, carry);
    1.87 +		r3b += carry;
    1.88 +		MP_SUB_BORROW(r0a, a3b, r0a, 0,     carry);
    1.89 +		MP_SUB_BORROW(r0b, a4a, r0b, carry, carry);
    1.90 +		MP_SUB_BORROW(r1a, a4b, r1a, carry, carry);
    1.91 +		MP_SUB_BORROW(r1b, a5a, r1b, carry, carry);
    1.92 +		MP_SUB_BORROW(r2a, a5b, r2a, carry, carry);
    1.93 +		MP_SUB_BORROW(r2b, a6a, r2b, carry, carry);
    1.94 +		MP_SUB_BORROW(r3a, a6b, r3a, carry, carry);
    1.95 +		r3b -= carry;
    1.96 +		MP_SUB_BORROW(r0a, a5b, r0a, 0,     carry);
    1.97 +		MP_SUB_BORROW(r0b, a6a, r0b, carry, carry);
    1.98 +		MP_SUB_BORROW(r1a, a6b, r1a, carry, carry);
    1.99 +		if (carry) {
   1.100 +			MP_SUB_BORROW(r1b, 0, r1b, carry, carry);
   1.101 +			MP_SUB_BORROW(r2a, 0, r2a, carry, carry);
   1.102 +			MP_SUB_BORROW(r2b, 0, r2b, carry, carry);
   1.103 +			MP_SUB_BORROW(r3a, 0, r3a, carry, carry);
   1.104 +			r3b -= carry;
   1.105 +		}
   1.106 +
   1.107 +		while (r3b > 0) {
   1.108 +			int tmp;
   1.109 +			MP_ADD_CARRY(r1b, r3b, r1b, 0,     carry);
   1.110 +			if (carry) {
   1.111 +				MP_ADD_CARRY(r2a,  0, r2a, carry, carry);
   1.112 +				MP_ADD_CARRY(r2b,  0, r2b, carry, carry);
   1.113 +				MP_ADD_CARRY(r3a,  0, r3a, carry, carry);
   1.114 +			}
   1.115 +			tmp = carry;
   1.116 +			MP_SUB_BORROW(r0a, r3b, r0a, 0,     carry);
   1.117 +			if (carry) {
   1.118 +				MP_SUB_BORROW(r0b, 0, r0b, carry, carry);
   1.119 +				MP_SUB_BORROW(r1a, 0, r1a, carry, carry);
   1.120 +				MP_SUB_BORROW(r1b, 0, r1b, carry, carry);
   1.121 +				MP_SUB_BORROW(r2a, 0, r2a, carry, carry);
   1.122 +				MP_SUB_BORROW(r2b, 0, r2b, carry, carry);
   1.123 +				MP_SUB_BORROW(r3a, 0, r3a, carry, carry);
   1.124 +				tmp -= carry;
   1.125 +			}
   1.126 +			r3b = tmp;
   1.127 +		}
   1.128 +
   1.129 +		while (r3b < 0) {
   1.130 +			mp_digit maxInt = MP_DIGIT_MAX;
   1.131 +                	MP_ADD_CARRY (r0a, 1, r0a, 0,     carry);
   1.132 +                	MP_ADD_CARRY (r0b, 0, r0b, carry, carry);
   1.133 +                	MP_ADD_CARRY (r1a, 0, r1a, carry, carry);
   1.134 +                	MP_ADD_CARRY (r1b, maxInt, r1b, carry, carry);
   1.135 +                	MP_ADD_CARRY (r2a, maxInt, r2a, carry, carry);
   1.136 +                	MP_ADD_CARRY (r2b, maxInt, r2b, carry, carry);
   1.137 +                	MP_ADD_CARRY (r3a, maxInt, r3a, carry, carry);
   1.138 +			r3b += carry;
   1.139 +		}
   1.140 +		/* check for final reduction */
   1.141 +		/* now the only way we are over is if the top 4 words are all ones */
   1.142 +		if ((r3a == MP_DIGIT_MAX) && (r2b == MP_DIGIT_MAX)
   1.143 +			&& (r2a == MP_DIGIT_MAX) && (r1b == MP_DIGIT_MAX) &&
   1.144 +			 ((r1a != 0) || (r0b != 0) || (r0a != 0)) ) {
   1.145 +			/* one last subraction */
   1.146 +			MP_SUB_BORROW(r0a, 1, r0a, 0,     carry);
   1.147 +			MP_SUB_BORROW(r0b, 0, r0b, carry, carry);
   1.148 +			MP_SUB_BORROW(r1a, 0, r1a, carry, carry);
   1.149 +			r1b = r2a = r2b = r3a = 0;
   1.150 +		}
   1.151 +
   1.152 +
   1.153 +		if (a != r) {
   1.154 +			MP_CHECKOK(s_mp_pad(r, 7));
   1.155 +		}
   1.156 +		/* set the lower words of r */
   1.157 +		MP_SIGN(r) = MP_ZPOS;
   1.158 +		MP_USED(r) = 7;
   1.159 +		MP_DIGIT(r, 6) = r3a;
   1.160 +		MP_DIGIT(r, 5) = r2b;
   1.161 +		MP_DIGIT(r, 4) = r2a;
   1.162 +		MP_DIGIT(r, 3) = r1b;
   1.163 +		MP_DIGIT(r, 2) = r1a;
   1.164 +		MP_DIGIT(r, 1) = r0b;
   1.165 +		MP_DIGIT(r, 0) = r0a;
   1.166 +#else
   1.167 +		/* copy out upper words of a */
   1.168 +		switch (a_used) {
   1.169 +		case 7:
   1.170 +			a6 = MP_DIGIT(a, 6);
   1.171 +			a6b = a6 >> 32;
   1.172 +			a6a_a5b = a6 << 32;
   1.173 +		case 6:
   1.174 +			a5 = MP_DIGIT(a, 5);
   1.175 +			a5b = a5 >> 32;
   1.176 +			a6a_a5b |= a5b;
   1.177 +			a5b = a5b << 32;
   1.178 +			a5a_a4b = a5 << 32;
   1.179 +			a5a = a5 & 0xffffffff;
   1.180 +		case 5:
   1.181 +			a4 = MP_DIGIT(a, 4);
   1.182 +			a5a_a4b |= a4 >> 32;
   1.183 +			a4a_a3b = a4 << 32;
   1.184 +		case 4:
   1.185 +			a3b = MP_DIGIT(a, 3) >> 32;
   1.186 +			a4a_a3b |= a3b;
   1.187 +			a3b = a3b << 32;
   1.188 +		}
   1.189 +
   1.190 +		r3 = MP_DIGIT(a, 3) & 0xffffffff;
   1.191 +		r2 = MP_DIGIT(a, 2);
   1.192 +		r1 = MP_DIGIT(a, 1);
   1.193 +		r0 = MP_DIGIT(a, 0);
   1.194 +
   1.195 +		/* implement r = (a3a,a2,a1,a0)
   1.196 +			+(a5a, a4,a3b,  0)
   1.197 +			+(  0, a6,a5b,  0)
   1.198 +			-(  0	 0,    0|a6b, a6a|a5b )
   1.199 +			-(  a6b, a6a|a5b, a5a|a4b, a4a|a3b ) */
   1.200 +		MP_ADD_CARRY (r1, a3b, r1, 0,     carry);
   1.201 +		MP_ADD_CARRY (r2, a4 , r2, carry, carry);
   1.202 +		MP_ADD_CARRY (r3, a5a, r3, carry, carry);
   1.203 +		MP_ADD_CARRY (r1, a5b, r1, 0,     carry);
   1.204 +		MP_ADD_CARRY (r2, a6 , r2, carry, carry);
   1.205 +		MP_ADD_CARRY (r3,   0, r3, carry, carry);
   1.206 +
   1.207 +		MP_SUB_BORROW(r0, a4a_a3b, r0, 0,     carry);
   1.208 +		MP_SUB_BORROW(r1, a5a_a4b, r1, carry, carry);
   1.209 +		MP_SUB_BORROW(r2, a6a_a5b, r2, carry, carry);
   1.210 +		MP_SUB_BORROW(r3, a6b    , r3, carry, carry);
   1.211 +		MP_SUB_BORROW(r0, a6a_a5b, r0, 0,     carry);
   1.212 +		MP_SUB_BORROW(r1, a6b    , r1, carry, carry);
   1.213 +		if (carry) {
   1.214 +			MP_SUB_BORROW(r2, 0, r2, carry, carry);
   1.215 +			MP_SUB_BORROW(r3, 0, r3, carry, carry);
   1.216 +		}
   1.217 +
   1.218 +
   1.219 +		/* if the value is negative, r3 has a 2's complement 
   1.220 +		 * high value */
   1.221 +		r3b = (int)(r3 >>32);
   1.222 +		while (r3b > 0) {
   1.223 +			r3 &= 0xffffffff;
   1.224 +			MP_ADD_CARRY(r1,((mp_digit)r3b) << 32, r1, 0, carry);
   1.225 +			if (carry) {
   1.226 +				MP_ADD_CARRY(r2,  0, r2, carry, carry);
   1.227 +				MP_ADD_CARRY(r3,  0, r3, carry, carry);
   1.228 +			}
   1.229 +			MP_SUB_BORROW(r0, r3b, r0, 0, carry);
   1.230 +			if (carry) {
   1.231 +				MP_SUB_BORROW(r1, 0, r1, carry, carry);
   1.232 +				MP_SUB_BORROW(r2, 0, r2, carry, carry);
   1.233 +				MP_SUB_BORROW(r3, 0, r3, carry, carry);
   1.234 +			}
   1.235 +			r3b = (int)(r3 >>32);
   1.236 +		}
   1.237 +
   1.238 +		while (r3b < 0) {
   1.239 +                	MP_ADD_CARRY (r0, 1, r0, 0,     carry);
   1.240 +                	MP_ADD_CARRY (r1, MP_DIGIT_MAX <<32, r1, carry, carry);
   1.241 +                	MP_ADD_CARRY (r2, MP_DIGIT_MAX, r2, carry, carry);
   1.242 +                	MP_ADD_CARRY (r3, MP_DIGIT_MAX >> 32, r3, carry, carry);
   1.243 +			r3b = (int)(r3 >>32);
   1.244 +		}
   1.245 +		/* check for final reduction */
   1.246 +		/* now the only way we are over is if the top 4 words are 
   1.247 +		 * all ones. Subtract the curve. (curve is 2^224 - 2^96 +1)
   1.248 +		 */
   1.249 +		if ((r3 == (MP_DIGIT_MAX >> 32)) && (r2 == MP_DIGIT_MAX)
   1.250 +			&& ((r1 & MP_DIGIT_MAX << 32)== MP_DIGIT_MAX << 32) &&
   1.251 +			 ((r1 != MP_DIGIT_MAX << 32 ) || (r0 != 0)) ) {
   1.252 +			/* one last subraction */
   1.253 +			MP_SUB_BORROW(r0, 1, r0, 0,     carry);
   1.254 +			MP_SUB_BORROW(r1, MP_DIGIT_MAX << 32, r1, carry, carry);
   1.255 +			r2 = r3 = 0;
   1.256 +		}
   1.257 +
   1.258 +
   1.259 +		if (a != r) {
   1.260 +			MP_CHECKOK(s_mp_pad(r, 4));
   1.261 +		}
   1.262 +		/* set the lower words of r */
   1.263 +		MP_SIGN(r) = MP_ZPOS;
   1.264 +		MP_USED(r) = 4;
   1.265 +		MP_DIGIT(r, 3) = r3;
   1.266 +		MP_DIGIT(r, 2) = r2;
   1.267 +		MP_DIGIT(r, 1) = r1;
   1.268 +		MP_DIGIT(r, 0) = r0;
   1.269 +#endif
   1.270 +	}
   1.271 +	s_mp_clamp(r);
   1.272 +
   1.273 +  CLEANUP:
   1.274 +	return res;
   1.275 +}
   1.276 +
   1.277 +/* Compute the square of polynomial a, reduce modulo p224. Store the
   1.278 + * result in r.  r could be a.  Uses optimized modular reduction for p224. 
   1.279 + */
   1.280 +static mp_err
   1.281 +ec_GFp_nistp224_sqr(const mp_int *a, mp_int *r, const GFMethod *meth)
   1.282 +{
   1.283 +	mp_err res = MP_OKAY;
   1.284 +
   1.285 +	MP_CHECKOK(mp_sqr(a, r));
   1.286 +	MP_CHECKOK(ec_GFp_nistp224_mod(r, r, meth));
   1.287 +  CLEANUP:
   1.288 +	return res;
   1.289 +}
   1.290 +
   1.291 +/* Compute the product of two polynomials a and b, reduce modulo p224.
   1.292 + * Store the result in r.  r could be a or b; a could be b.  Uses
   1.293 + * optimized modular reduction for p224. */
   1.294 +static mp_err
   1.295 +ec_GFp_nistp224_mul(const mp_int *a, const mp_int *b, mp_int *r,
   1.296 +					const GFMethod *meth)
   1.297 +{
   1.298 +	mp_err res = MP_OKAY;
   1.299 +
   1.300 +	MP_CHECKOK(mp_mul(a, b, r));
   1.301 +	MP_CHECKOK(ec_GFp_nistp224_mod(r, r, meth));
   1.302 +  CLEANUP:
   1.303 +	return res;
   1.304 +}
   1.305 +
   1.306 +/* Divides two field elements. If a is NULL, then returns the inverse of
   1.307 + * b. */
   1.308 +static mp_err
   1.309 +ec_GFp_nistp224_div(const mp_int *a, const mp_int *b, mp_int *r,
   1.310 +		   const GFMethod *meth)
   1.311 +{
   1.312 +	mp_err res = MP_OKAY;
   1.313 +	mp_int t;
   1.314 +
   1.315 +	/* If a is NULL, then return the inverse of b, otherwise return a/b. */
   1.316 +	if (a == NULL) {
   1.317 +		return  mp_invmod(b, &meth->irr, r);
   1.318 +	} else {
   1.319 +		/* MPI doesn't support divmod, so we implement it using invmod and 
   1.320 +		 * mulmod. */
   1.321 +		MP_CHECKOK(mp_init(&t));
   1.322 +		MP_CHECKOK(mp_invmod(b, &meth->irr, &t));
   1.323 +		MP_CHECKOK(mp_mul(a, &t, r));
   1.324 +		MP_CHECKOK(ec_GFp_nistp224_mod(r, r, meth));
   1.325 +	  CLEANUP:
   1.326 +		mp_clear(&t);
   1.327 +		return res;
   1.328 +	}
   1.329 +}
   1.330 +
   1.331 +/* Wire in fast field arithmetic and precomputation of base point for
   1.332 + * named curves. */
   1.333 +mp_err
   1.334 +ec_group_set_gfp224(ECGroup *group, ECCurveName name)
   1.335 +{
   1.336 +	if (name == ECCurve_NIST_P224) {
   1.337 +		group->meth->field_mod = &ec_GFp_nistp224_mod;
   1.338 +		group->meth->field_mul = &ec_GFp_nistp224_mul;
   1.339 +		group->meth->field_sqr = &ec_GFp_nistp224_sqr;
   1.340 +		group->meth->field_div = &ec_GFp_nistp224_div;
   1.341 +	}
   1.342 +	return MP_OKAY;
   1.343 +}

mercurial