Wed, 31 Dec 2014 06:09:35 +0100
Cloned upstream origin tor-browser at tor-browser-31.3.0esr-4.5-1-build1
revision ID fc1c9ff7c1b2defdbc039f12214767608f46423f for hacking purpose.
1 /* This Source Code Form is subject to the terms of the Mozilla Public
2 * License, v. 2.0. If a copy of the MPL was not distributed with this
3 * file, You can obtain one at http://mozilla.org/MPL/2.0/. */
5 #include "ecp.h"
6 #include "mpi.h"
7 #include "mplogic.h"
8 #include "mpi-priv.h"
10 #define ECP224_DIGITS ECL_CURVE_DIGITS(224)
12 /* Fast modular reduction for p224 = 2^224 - 2^96 + 1. a can be r. Uses
13 * algorithm 7 from Brown, Hankerson, Lopez, Menezes. Software
14 * Implementation of the NIST Elliptic Curves over Prime Fields. */
15 static mp_err
16 ec_GFp_nistp224_mod(const mp_int *a, mp_int *r, const GFMethod *meth)
17 {
18 mp_err res = MP_OKAY;
19 mp_size a_used = MP_USED(a);
21 int r3b;
22 mp_digit carry;
23 #ifdef ECL_THIRTY_TWO_BIT
24 mp_digit a6a = 0, a6b = 0,
25 a5a = 0, a5b = 0, a4a = 0, a4b = 0, a3a = 0, a3b = 0;
26 mp_digit r0a, r0b, r1a, r1b, r2a, r2b, r3a;
27 #else
28 mp_digit a6 = 0, a5 = 0, a4 = 0, a3b = 0, a5a = 0;
29 mp_digit a6b = 0, a6a_a5b = 0, a5b = 0, a5a_a4b = 0, a4a_a3b = 0;
30 mp_digit r0, r1, r2, r3;
31 #endif
33 /* reduction not needed if a is not larger than field size */
34 if (a_used < ECP224_DIGITS) {
35 if (a == r) return MP_OKAY;
36 return mp_copy(a, r);
37 }
38 /* for polynomials larger than twice the field size, use regular
39 * reduction */
40 if (a_used > ECL_CURVE_DIGITS(224*2)) {
41 MP_CHECKOK(mp_mod(a, &meth->irr, r));
42 } else {
43 #ifdef ECL_THIRTY_TWO_BIT
44 /* copy out upper words of a */
45 switch (a_used) {
46 case 14:
47 a6b = MP_DIGIT(a, 13);
48 case 13:
49 a6a = MP_DIGIT(a, 12);
50 case 12:
51 a5b = MP_DIGIT(a, 11);
52 case 11:
53 a5a = MP_DIGIT(a, 10);
54 case 10:
55 a4b = MP_DIGIT(a, 9);
56 case 9:
57 a4a = MP_DIGIT(a, 8);
58 case 8:
59 a3b = MP_DIGIT(a, 7);
60 }
61 r3a = MP_DIGIT(a, 6);
62 r2b= MP_DIGIT(a, 5);
63 r2a= MP_DIGIT(a, 4);
64 r1b = MP_DIGIT(a, 3);
65 r1a = MP_DIGIT(a, 2);
66 r0b = MP_DIGIT(a, 1);
67 r0a = MP_DIGIT(a, 0);
70 /* implement r = (a3a,a2,a1,a0)
71 +(a5a, a4,a3b, 0)
72 +( 0, a6,a5b, 0)
73 -( 0 0, 0|a6b, a6a|a5b )
74 -( a6b, a6a|a5b, a5a|a4b, a4a|a3b ) */
75 MP_ADD_CARRY (r1b, a3b, r1b, 0, carry);
76 MP_ADD_CARRY (r2a, a4a, r2a, carry, carry);
77 MP_ADD_CARRY (r2b, a4b, r2b, carry, carry);
78 MP_ADD_CARRY (r3a, a5a, r3a, carry, carry);
79 r3b = carry;
80 MP_ADD_CARRY (r1b, a5b, r1b, 0, carry);
81 MP_ADD_CARRY (r2a, a6a, r2a, carry, carry);
82 MP_ADD_CARRY (r2b, a6b, r2b, carry, carry);
83 MP_ADD_CARRY (r3a, 0, r3a, carry, carry);
84 r3b += carry;
85 MP_SUB_BORROW(r0a, a3b, r0a, 0, carry);
86 MP_SUB_BORROW(r0b, a4a, r0b, carry, carry);
87 MP_SUB_BORROW(r1a, a4b, r1a, carry, carry);
88 MP_SUB_BORROW(r1b, a5a, r1b, carry, carry);
89 MP_SUB_BORROW(r2a, a5b, r2a, carry, carry);
90 MP_SUB_BORROW(r2b, a6a, r2b, carry, carry);
91 MP_SUB_BORROW(r3a, a6b, r3a, carry, carry);
92 r3b -= carry;
93 MP_SUB_BORROW(r0a, a5b, r0a, 0, carry);
94 MP_SUB_BORROW(r0b, a6a, r0b, carry, carry);
95 MP_SUB_BORROW(r1a, a6b, r1a, carry, carry);
96 if (carry) {
97 MP_SUB_BORROW(r1b, 0, r1b, carry, carry);
98 MP_SUB_BORROW(r2a, 0, r2a, carry, carry);
99 MP_SUB_BORROW(r2b, 0, r2b, carry, carry);
100 MP_SUB_BORROW(r3a, 0, r3a, carry, carry);
101 r3b -= carry;
102 }
104 while (r3b > 0) {
105 int tmp;
106 MP_ADD_CARRY(r1b, r3b, r1b, 0, carry);
107 if (carry) {
108 MP_ADD_CARRY(r2a, 0, r2a, carry, carry);
109 MP_ADD_CARRY(r2b, 0, r2b, carry, carry);
110 MP_ADD_CARRY(r3a, 0, r3a, carry, carry);
111 }
112 tmp = carry;
113 MP_SUB_BORROW(r0a, r3b, r0a, 0, carry);
114 if (carry) {
115 MP_SUB_BORROW(r0b, 0, r0b, carry, carry);
116 MP_SUB_BORROW(r1a, 0, r1a, carry, carry);
117 MP_SUB_BORROW(r1b, 0, r1b, carry, carry);
118 MP_SUB_BORROW(r2a, 0, r2a, carry, carry);
119 MP_SUB_BORROW(r2b, 0, r2b, carry, carry);
120 MP_SUB_BORROW(r3a, 0, r3a, carry, carry);
121 tmp -= carry;
122 }
123 r3b = tmp;
124 }
126 while (r3b < 0) {
127 mp_digit maxInt = MP_DIGIT_MAX;
128 MP_ADD_CARRY (r0a, 1, r0a, 0, carry);
129 MP_ADD_CARRY (r0b, 0, r0b, carry, carry);
130 MP_ADD_CARRY (r1a, 0, r1a, carry, carry);
131 MP_ADD_CARRY (r1b, maxInt, r1b, carry, carry);
132 MP_ADD_CARRY (r2a, maxInt, r2a, carry, carry);
133 MP_ADD_CARRY (r2b, maxInt, r2b, carry, carry);
134 MP_ADD_CARRY (r3a, maxInt, r3a, carry, carry);
135 r3b += carry;
136 }
137 /* check for final reduction */
138 /* now the only way we are over is if the top 4 words are all ones */
139 if ((r3a == MP_DIGIT_MAX) && (r2b == MP_DIGIT_MAX)
140 && (r2a == MP_DIGIT_MAX) && (r1b == MP_DIGIT_MAX) &&
141 ((r1a != 0) || (r0b != 0) || (r0a != 0)) ) {
142 /* one last subraction */
143 MP_SUB_BORROW(r0a, 1, r0a, 0, carry);
144 MP_SUB_BORROW(r0b, 0, r0b, carry, carry);
145 MP_SUB_BORROW(r1a, 0, r1a, carry, carry);
146 r1b = r2a = r2b = r3a = 0;
147 }
150 if (a != r) {
151 MP_CHECKOK(s_mp_pad(r, 7));
152 }
153 /* set the lower words of r */
154 MP_SIGN(r) = MP_ZPOS;
155 MP_USED(r) = 7;
156 MP_DIGIT(r, 6) = r3a;
157 MP_DIGIT(r, 5) = r2b;
158 MP_DIGIT(r, 4) = r2a;
159 MP_DIGIT(r, 3) = r1b;
160 MP_DIGIT(r, 2) = r1a;
161 MP_DIGIT(r, 1) = r0b;
162 MP_DIGIT(r, 0) = r0a;
163 #else
164 /* copy out upper words of a */
165 switch (a_used) {
166 case 7:
167 a6 = MP_DIGIT(a, 6);
168 a6b = a6 >> 32;
169 a6a_a5b = a6 << 32;
170 case 6:
171 a5 = MP_DIGIT(a, 5);
172 a5b = a5 >> 32;
173 a6a_a5b |= a5b;
174 a5b = a5b << 32;
175 a5a_a4b = a5 << 32;
176 a5a = a5 & 0xffffffff;
177 case 5:
178 a4 = MP_DIGIT(a, 4);
179 a5a_a4b |= a4 >> 32;
180 a4a_a3b = a4 << 32;
181 case 4:
182 a3b = MP_DIGIT(a, 3) >> 32;
183 a4a_a3b |= a3b;
184 a3b = a3b << 32;
185 }
187 r3 = MP_DIGIT(a, 3) & 0xffffffff;
188 r2 = MP_DIGIT(a, 2);
189 r1 = MP_DIGIT(a, 1);
190 r0 = MP_DIGIT(a, 0);
192 /* implement r = (a3a,a2,a1,a0)
193 +(a5a, a4,a3b, 0)
194 +( 0, a6,a5b, 0)
195 -( 0 0, 0|a6b, a6a|a5b )
196 -( a6b, a6a|a5b, a5a|a4b, a4a|a3b ) */
197 MP_ADD_CARRY (r1, a3b, r1, 0, carry);
198 MP_ADD_CARRY (r2, a4 , r2, carry, carry);
199 MP_ADD_CARRY (r3, a5a, r3, carry, carry);
200 MP_ADD_CARRY (r1, a5b, r1, 0, carry);
201 MP_ADD_CARRY (r2, a6 , r2, carry, carry);
202 MP_ADD_CARRY (r3, 0, r3, carry, carry);
204 MP_SUB_BORROW(r0, a4a_a3b, r0, 0, carry);
205 MP_SUB_BORROW(r1, a5a_a4b, r1, carry, carry);
206 MP_SUB_BORROW(r2, a6a_a5b, r2, carry, carry);
207 MP_SUB_BORROW(r3, a6b , r3, carry, carry);
208 MP_SUB_BORROW(r0, a6a_a5b, r0, 0, carry);
209 MP_SUB_BORROW(r1, a6b , r1, carry, carry);
210 if (carry) {
211 MP_SUB_BORROW(r2, 0, r2, carry, carry);
212 MP_SUB_BORROW(r3, 0, r3, carry, carry);
213 }
216 /* if the value is negative, r3 has a 2's complement
217 * high value */
218 r3b = (int)(r3 >>32);
219 while (r3b > 0) {
220 r3 &= 0xffffffff;
221 MP_ADD_CARRY(r1,((mp_digit)r3b) << 32, r1, 0, carry);
222 if (carry) {
223 MP_ADD_CARRY(r2, 0, r2, carry, carry);
224 MP_ADD_CARRY(r3, 0, r3, carry, carry);
225 }
226 MP_SUB_BORROW(r0, r3b, r0, 0, carry);
227 if (carry) {
228 MP_SUB_BORROW(r1, 0, r1, carry, carry);
229 MP_SUB_BORROW(r2, 0, r2, carry, carry);
230 MP_SUB_BORROW(r3, 0, r3, carry, carry);
231 }
232 r3b = (int)(r3 >>32);
233 }
235 while (r3b < 0) {
236 MP_ADD_CARRY (r0, 1, r0, 0, carry);
237 MP_ADD_CARRY (r1, MP_DIGIT_MAX <<32, r1, carry, carry);
238 MP_ADD_CARRY (r2, MP_DIGIT_MAX, r2, carry, carry);
239 MP_ADD_CARRY (r3, MP_DIGIT_MAX >> 32, r3, carry, carry);
240 r3b = (int)(r3 >>32);
241 }
242 /* check for final reduction */
243 /* now the only way we are over is if the top 4 words are
244 * all ones. Subtract the curve. (curve is 2^224 - 2^96 +1)
245 */
246 if ((r3 == (MP_DIGIT_MAX >> 32)) && (r2 == MP_DIGIT_MAX)
247 && ((r1 & MP_DIGIT_MAX << 32)== MP_DIGIT_MAX << 32) &&
248 ((r1 != MP_DIGIT_MAX << 32 ) || (r0 != 0)) ) {
249 /* one last subraction */
250 MP_SUB_BORROW(r0, 1, r0, 0, carry);
251 MP_SUB_BORROW(r1, MP_DIGIT_MAX << 32, r1, carry, carry);
252 r2 = r3 = 0;
253 }
256 if (a != r) {
257 MP_CHECKOK(s_mp_pad(r, 4));
258 }
259 /* set the lower words of r */
260 MP_SIGN(r) = MP_ZPOS;
261 MP_USED(r) = 4;
262 MP_DIGIT(r, 3) = r3;
263 MP_DIGIT(r, 2) = r2;
264 MP_DIGIT(r, 1) = r1;
265 MP_DIGIT(r, 0) = r0;
266 #endif
267 }
268 s_mp_clamp(r);
270 CLEANUP:
271 return res;
272 }
274 /* Compute the square of polynomial a, reduce modulo p224. Store the
275 * result in r. r could be a. Uses optimized modular reduction for p224.
276 */
277 static mp_err
278 ec_GFp_nistp224_sqr(const mp_int *a, mp_int *r, const GFMethod *meth)
279 {
280 mp_err res = MP_OKAY;
282 MP_CHECKOK(mp_sqr(a, r));
283 MP_CHECKOK(ec_GFp_nistp224_mod(r, r, meth));
284 CLEANUP:
285 return res;
286 }
288 /* Compute the product of two polynomials a and b, reduce modulo p224.
289 * Store the result in r. r could be a or b; a could be b. Uses
290 * optimized modular reduction for p224. */
291 static mp_err
292 ec_GFp_nistp224_mul(const mp_int *a, const mp_int *b, mp_int *r,
293 const GFMethod *meth)
294 {
295 mp_err res = MP_OKAY;
297 MP_CHECKOK(mp_mul(a, b, r));
298 MP_CHECKOK(ec_GFp_nistp224_mod(r, r, meth));
299 CLEANUP:
300 return res;
301 }
303 /* Divides two field elements. If a is NULL, then returns the inverse of
304 * b. */
305 static mp_err
306 ec_GFp_nistp224_div(const mp_int *a, const mp_int *b, mp_int *r,
307 const GFMethod *meth)
308 {
309 mp_err res = MP_OKAY;
310 mp_int t;
312 /* If a is NULL, then return the inverse of b, otherwise return a/b. */
313 if (a == NULL) {
314 return mp_invmod(b, &meth->irr, r);
315 } else {
316 /* MPI doesn't support divmod, so we implement it using invmod and
317 * mulmod. */
318 MP_CHECKOK(mp_init(&t));
319 MP_CHECKOK(mp_invmod(b, &meth->irr, &t));
320 MP_CHECKOK(mp_mul(a, &t, r));
321 MP_CHECKOK(ec_GFp_nistp224_mod(r, r, meth));
322 CLEANUP:
323 mp_clear(&t);
324 return res;
325 }
326 }
328 /* Wire in fast field arithmetic and precomputation of base point for
329 * named curves. */
330 mp_err
331 ec_group_set_gfp224(ECGroup *group, ECCurveName name)
332 {
333 if (name == ECCurve_NIST_P224) {
334 group->meth->field_mod = &ec_GFp_nistp224_mod;
335 group->meth->field_mul = &ec_GFp_nistp224_mul;
336 group->meth->field_sqr = &ec_GFp_nistp224_sqr;
337 group->meth->field_div = &ec_GFp_nistp224_div;
338 }
339 return MP_OKAY;
340 }