security/nss/lib/freebl/ecl/ecp_224.c

Wed, 31 Dec 2014 06:09:35 +0100

author
Michael Schloh von Bennewitz <michael@schloh.com>
date
Wed, 31 Dec 2014 06:09:35 +0100
changeset 0
6474c204b198
permissions
-rw-r--r--

Cloned upstream origin tor-browser at tor-browser-31.3.0esr-4.5-1-build1
revision ID fc1c9ff7c1b2defdbc039f12214767608f46423f for hacking purpose.

     1 /* This Source Code Form is subject to the terms of the Mozilla Public
     2  * License, v. 2.0. If a copy of the MPL was not distributed with this
     3  * file, You can obtain one at http://mozilla.org/MPL/2.0/. */
     5 #include "ecp.h"
     6 #include "mpi.h"
     7 #include "mplogic.h"
     8 #include "mpi-priv.h"
    10 #define ECP224_DIGITS ECL_CURVE_DIGITS(224)
    12 /* Fast modular reduction for p224 = 2^224 - 2^96 + 1.  a can be r. Uses
    13  * algorithm 7 from Brown, Hankerson, Lopez, Menezes. Software
    14  * Implementation of the NIST Elliptic Curves over Prime Fields. */
    15 static mp_err
    16 ec_GFp_nistp224_mod(const mp_int *a, mp_int *r, const GFMethod *meth)
    17 {
    18 	mp_err res = MP_OKAY;
    19 	mp_size a_used = MP_USED(a);
    21 	int    r3b;
    22 	mp_digit carry;
    23 #ifdef ECL_THIRTY_TWO_BIT
    24         mp_digit a6a = 0, a6b = 0,
    25                 a5a = 0, a5b = 0, a4a = 0, a4b = 0, a3a = 0, a3b = 0;
    26         mp_digit r0a, r0b, r1a, r1b, r2a, r2b, r3a;
    27 #else
    28 	mp_digit a6 = 0, a5 = 0, a4 = 0, a3b = 0, a5a = 0;
    29         mp_digit a6b = 0, a6a_a5b = 0, a5b = 0, a5a_a4b = 0, a4a_a3b = 0;
    30         mp_digit r0, r1, r2, r3;
    31 #endif
    33 	/* reduction not needed if a is not larger than field size */
    34 	if (a_used < ECP224_DIGITS) {
    35 		if (a == r) return MP_OKAY;
    36 		return mp_copy(a, r);
    37 	}
    38 	/* for polynomials larger than twice the field size, use regular
    39 	 * reduction */
    40 	if (a_used > ECL_CURVE_DIGITS(224*2)) {
    41 		MP_CHECKOK(mp_mod(a, &meth->irr, r));
    42 	} else {
    43 #ifdef ECL_THIRTY_TWO_BIT
    44 		/* copy out upper words of a */
    45 		switch (a_used) {
    46 		case 14:
    47 			a6b = MP_DIGIT(a, 13);
    48 		case 13:
    49 			a6a = MP_DIGIT(a, 12);
    50 		case 12:
    51 			a5b = MP_DIGIT(a, 11);
    52 		case 11:
    53 			a5a = MP_DIGIT(a, 10);
    54 		case 10:
    55 			a4b = MP_DIGIT(a, 9);
    56 		case 9:
    57 			a4a = MP_DIGIT(a, 8);
    58 		case 8:
    59 			a3b = MP_DIGIT(a, 7);
    60 		}
    61 		r3a = MP_DIGIT(a, 6);
    62 		r2b= MP_DIGIT(a, 5);
    63 		r2a= MP_DIGIT(a, 4);
    64 		r1b = MP_DIGIT(a, 3);
    65 		r1a = MP_DIGIT(a, 2);
    66 		r0b = MP_DIGIT(a, 1);
    67 		r0a = MP_DIGIT(a, 0);
    70 		/* implement r = (a3a,a2,a1,a0)
    71 			+(a5a, a4,a3b,  0)
    72 			+(  0, a6,a5b,  0)
    73 			-(  0	 0,    0|a6b, a6a|a5b )
    74 			-(  a6b, a6a|a5b, a5a|a4b, a4a|a3b ) */
    75 		MP_ADD_CARRY (r1b, a3b, r1b, 0,     carry);
    76 		MP_ADD_CARRY (r2a, a4a, r2a, carry, carry);
    77 		MP_ADD_CARRY (r2b, a4b, r2b, carry, carry);
    78 		MP_ADD_CARRY (r3a, a5a, r3a, carry, carry);
    79 		r3b = carry;
    80 		MP_ADD_CARRY (r1b, a5b, r1b, 0,     carry);
    81 		MP_ADD_CARRY (r2a, a6a, r2a, carry, carry);
    82 		MP_ADD_CARRY (r2b, a6b, r2b, carry, carry);
    83 		MP_ADD_CARRY (r3a,   0, r3a, carry, carry);
    84 		r3b += carry;
    85 		MP_SUB_BORROW(r0a, a3b, r0a, 0,     carry);
    86 		MP_SUB_BORROW(r0b, a4a, r0b, carry, carry);
    87 		MP_SUB_BORROW(r1a, a4b, r1a, carry, carry);
    88 		MP_SUB_BORROW(r1b, a5a, r1b, carry, carry);
    89 		MP_SUB_BORROW(r2a, a5b, r2a, carry, carry);
    90 		MP_SUB_BORROW(r2b, a6a, r2b, carry, carry);
    91 		MP_SUB_BORROW(r3a, a6b, r3a, carry, carry);
    92 		r3b -= carry;
    93 		MP_SUB_BORROW(r0a, a5b, r0a, 0,     carry);
    94 		MP_SUB_BORROW(r0b, a6a, r0b, carry, carry);
    95 		MP_SUB_BORROW(r1a, a6b, r1a, carry, carry);
    96 		if (carry) {
    97 			MP_SUB_BORROW(r1b, 0, r1b, carry, carry);
    98 			MP_SUB_BORROW(r2a, 0, r2a, carry, carry);
    99 			MP_SUB_BORROW(r2b, 0, r2b, carry, carry);
   100 			MP_SUB_BORROW(r3a, 0, r3a, carry, carry);
   101 			r3b -= carry;
   102 		}
   104 		while (r3b > 0) {
   105 			int tmp;
   106 			MP_ADD_CARRY(r1b, r3b, r1b, 0,     carry);
   107 			if (carry) {
   108 				MP_ADD_CARRY(r2a,  0, r2a, carry, carry);
   109 				MP_ADD_CARRY(r2b,  0, r2b, carry, carry);
   110 				MP_ADD_CARRY(r3a,  0, r3a, carry, carry);
   111 			}
   112 			tmp = carry;
   113 			MP_SUB_BORROW(r0a, r3b, r0a, 0,     carry);
   114 			if (carry) {
   115 				MP_SUB_BORROW(r0b, 0, r0b, carry, carry);
   116 				MP_SUB_BORROW(r1a, 0, r1a, carry, carry);
   117 				MP_SUB_BORROW(r1b, 0, r1b, carry, carry);
   118 				MP_SUB_BORROW(r2a, 0, r2a, carry, carry);
   119 				MP_SUB_BORROW(r2b, 0, r2b, carry, carry);
   120 				MP_SUB_BORROW(r3a, 0, r3a, carry, carry);
   121 				tmp -= carry;
   122 			}
   123 			r3b = tmp;
   124 		}
   126 		while (r3b < 0) {
   127 			mp_digit maxInt = MP_DIGIT_MAX;
   128                 	MP_ADD_CARRY (r0a, 1, r0a, 0,     carry);
   129                 	MP_ADD_CARRY (r0b, 0, r0b, carry, carry);
   130                 	MP_ADD_CARRY (r1a, 0, r1a, carry, carry);
   131                 	MP_ADD_CARRY (r1b, maxInt, r1b, carry, carry);
   132                 	MP_ADD_CARRY (r2a, maxInt, r2a, carry, carry);
   133                 	MP_ADD_CARRY (r2b, maxInt, r2b, carry, carry);
   134                 	MP_ADD_CARRY (r3a, maxInt, r3a, carry, carry);
   135 			r3b += carry;
   136 		}
   137 		/* check for final reduction */
   138 		/* now the only way we are over is if the top 4 words are all ones */
   139 		if ((r3a == MP_DIGIT_MAX) && (r2b == MP_DIGIT_MAX)
   140 			&& (r2a == MP_DIGIT_MAX) && (r1b == MP_DIGIT_MAX) &&
   141 			 ((r1a != 0) || (r0b != 0) || (r0a != 0)) ) {
   142 			/* one last subraction */
   143 			MP_SUB_BORROW(r0a, 1, r0a, 0,     carry);
   144 			MP_SUB_BORROW(r0b, 0, r0b, carry, carry);
   145 			MP_SUB_BORROW(r1a, 0, r1a, carry, carry);
   146 			r1b = r2a = r2b = r3a = 0;
   147 		}
   150 		if (a != r) {
   151 			MP_CHECKOK(s_mp_pad(r, 7));
   152 		}
   153 		/* set the lower words of r */
   154 		MP_SIGN(r) = MP_ZPOS;
   155 		MP_USED(r) = 7;
   156 		MP_DIGIT(r, 6) = r3a;
   157 		MP_DIGIT(r, 5) = r2b;
   158 		MP_DIGIT(r, 4) = r2a;
   159 		MP_DIGIT(r, 3) = r1b;
   160 		MP_DIGIT(r, 2) = r1a;
   161 		MP_DIGIT(r, 1) = r0b;
   162 		MP_DIGIT(r, 0) = r0a;
   163 #else
   164 		/* copy out upper words of a */
   165 		switch (a_used) {
   166 		case 7:
   167 			a6 = MP_DIGIT(a, 6);
   168 			a6b = a6 >> 32;
   169 			a6a_a5b = a6 << 32;
   170 		case 6:
   171 			a5 = MP_DIGIT(a, 5);
   172 			a5b = a5 >> 32;
   173 			a6a_a5b |= a5b;
   174 			a5b = a5b << 32;
   175 			a5a_a4b = a5 << 32;
   176 			a5a = a5 & 0xffffffff;
   177 		case 5:
   178 			a4 = MP_DIGIT(a, 4);
   179 			a5a_a4b |= a4 >> 32;
   180 			a4a_a3b = a4 << 32;
   181 		case 4:
   182 			a3b = MP_DIGIT(a, 3) >> 32;
   183 			a4a_a3b |= a3b;
   184 			a3b = a3b << 32;
   185 		}
   187 		r3 = MP_DIGIT(a, 3) & 0xffffffff;
   188 		r2 = MP_DIGIT(a, 2);
   189 		r1 = MP_DIGIT(a, 1);
   190 		r0 = MP_DIGIT(a, 0);
   192 		/* implement r = (a3a,a2,a1,a0)
   193 			+(a5a, a4,a3b,  0)
   194 			+(  0, a6,a5b,  0)
   195 			-(  0	 0,    0|a6b, a6a|a5b )
   196 			-(  a6b, a6a|a5b, a5a|a4b, a4a|a3b ) */
   197 		MP_ADD_CARRY (r1, a3b, r1, 0,     carry);
   198 		MP_ADD_CARRY (r2, a4 , r2, carry, carry);
   199 		MP_ADD_CARRY (r3, a5a, r3, carry, carry);
   200 		MP_ADD_CARRY (r1, a5b, r1, 0,     carry);
   201 		MP_ADD_CARRY (r2, a6 , r2, carry, carry);
   202 		MP_ADD_CARRY (r3,   0, r3, carry, carry);
   204 		MP_SUB_BORROW(r0, a4a_a3b, r0, 0,     carry);
   205 		MP_SUB_BORROW(r1, a5a_a4b, r1, carry, carry);
   206 		MP_SUB_BORROW(r2, a6a_a5b, r2, carry, carry);
   207 		MP_SUB_BORROW(r3, a6b    , r3, carry, carry);
   208 		MP_SUB_BORROW(r0, a6a_a5b, r0, 0,     carry);
   209 		MP_SUB_BORROW(r1, a6b    , r1, carry, carry);
   210 		if (carry) {
   211 			MP_SUB_BORROW(r2, 0, r2, carry, carry);
   212 			MP_SUB_BORROW(r3, 0, r3, carry, carry);
   213 		}
   216 		/* if the value is negative, r3 has a 2's complement 
   217 		 * high value */
   218 		r3b = (int)(r3 >>32);
   219 		while (r3b > 0) {
   220 			r3 &= 0xffffffff;
   221 			MP_ADD_CARRY(r1,((mp_digit)r3b) << 32, r1, 0, carry);
   222 			if (carry) {
   223 				MP_ADD_CARRY(r2,  0, r2, carry, carry);
   224 				MP_ADD_CARRY(r3,  0, r3, carry, carry);
   225 			}
   226 			MP_SUB_BORROW(r0, r3b, r0, 0, carry);
   227 			if (carry) {
   228 				MP_SUB_BORROW(r1, 0, r1, carry, carry);
   229 				MP_SUB_BORROW(r2, 0, r2, carry, carry);
   230 				MP_SUB_BORROW(r3, 0, r3, carry, carry);
   231 			}
   232 			r3b = (int)(r3 >>32);
   233 		}
   235 		while (r3b < 0) {
   236                 	MP_ADD_CARRY (r0, 1, r0, 0,     carry);
   237                 	MP_ADD_CARRY (r1, MP_DIGIT_MAX <<32, r1, carry, carry);
   238                 	MP_ADD_CARRY (r2, MP_DIGIT_MAX, r2, carry, carry);
   239                 	MP_ADD_CARRY (r3, MP_DIGIT_MAX >> 32, r3, carry, carry);
   240 			r3b = (int)(r3 >>32);
   241 		}
   242 		/* check for final reduction */
   243 		/* now the only way we are over is if the top 4 words are 
   244 		 * all ones. Subtract the curve. (curve is 2^224 - 2^96 +1)
   245 		 */
   246 		if ((r3 == (MP_DIGIT_MAX >> 32)) && (r2 == MP_DIGIT_MAX)
   247 			&& ((r1 & MP_DIGIT_MAX << 32)== MP_DIGIT_MAX << 32) &&
   248 			 ((r1 != MP_DIGIT_MAX << 32 ) || (r0 != 0)) ) {
   249 			/* one last subraction */
   250 			MP_SUB_BORROW(r0, 1, r0, 0,     carry);
   251 			MP_SUB_BORROW(r1, MP_DIGIT_MAX << 32, r1, carry, carry);
   252 			r2 = r3 = 0;
   253 		}
   256 		if (a != r) {
   257 			MP_CHECKOK(s_mp_pad(r, 4));
   258 		}
   259 		/* set the lower words of r */
   260 		MP_SIGN(r) = MP_ZPOS;
   261 		MP_USED(r) = 4;
   262 		MP_DIGIT(r, 3) = r3;
   263 		MP_DIGIT(r, 2) = r2;
   264 		MP_DIGIT(r, 1) = r1;
   265 		MP_DIGIT(r, 0) = r0;
   266 #endif
   267 	}
   268 	s_mp_clamp(r);
   270   CLEANUP:
   271 	return res;
   272 }
   274 /* Compute the square of polynomial a, reduce modulo p224. Store the
   275  * result in r.  r could be a.  Uses optimized modular reduction for p224. 
   276  */
   277 static mp_err
   278 ec_GFp_nistp224_sqr(const mp_int *a, mp_int *r, const GFMethod *meth)
   279 {
   280 	mp_err res = MP_OKAY;
   282 	MP_CHECKOK(mp_sqr(a, r));
   283 	MP_CHECKOK(ec_GFp_nistp224_mod(r, r, meth));
   284   CLEANUP:
   285 	return res;
   286 }
   288 /* Compute the product of two polynomials a and b, reduce modulo p224.
   289  * Store the result in r.  r could be a or b; a could be b.  Uses
   290  * optimized modular reduction for p224. */
   291 static mp_err
   292 ec_GFp_nistp224_mul(const mp_int *a, const mp_int *b, mp_int *r,
   293 					const GFMethod *meth)
   294 {
   295 	mp_err res = MP_OKAY;
   297 	MP_CHECKOK(mp_mul(a, b, r));
   298 	MP_CHECKOK(ec_GFp_nistp224_mod(r, r, meth));
   299   CLEANUP:
   300 	return res;
   301 }
   303 /* Divides two field elements. If a is NULL, then returns the inverse of
   304  * b. */
   305 static mp_err
   306 ec_GFp_nistp224_div(const mp_int *a, const mp_int *b, mp_int *r,
   307 		   const GFMethod *meth)
   308 {
   309 	mp_err res = MP_OKAY;
   310 	mp_int t;
   312 	/* If a is NULL, then return the inverse of b, otherwise return a/b. */
   313 	if (a == NULL) {
   314 		return  mp_invmod(b, &meth->irr, r);
   315 	} else {
   316 		/* MPI doesn't support divmod, so we implement it using invmod and 
   317 		 * mulmod. */
   318 		MP_CHECKOK(mp_init(&t));
   319 		MP_CHECKOK(mp_invmod(b, &meth->irr, &t));
   320 		MP_CHECKOK(mp_mul(a, &t, r));
   321 		MP_CHECKOK(ec_GFp_nistp224_mod(r, r, meth));
   322 	  CLEANUP:
   323 		mp_clear(&t);
   324 		return res;
   325 	}
   326 }
   328 /* Wire in fast field arithmetic and precomputation of base point for
   329  * named curves. */
   330 mp_err
   331 ec_group_set_gfp224(ECGroup *group, ECCurveName name)
   332 {
   333 	if (name == ECCurve_NIST_P224) {
   334 		group->meth->field_mod = &ec_GFp_nistp224_mod;
   335 		group->meth->field_mul = &ec_GFp_nistp224_mul;
   336 		group->meth->field_sqr = &ec_GFp_nistp224_sqr;
   337 		group->meth->field_div = &ec_GFp_nistp224_div;
   338 	}
   339 	return MP_OKAY;
   340 }

mercurial