|
1 // Copyright (c) 2012 The Chromium Authors. All rights reserved. |
|
2 // Use of this source code is governed by a BSD-style license that can be |
|
3 // found in the LICENSE file. |
|
4 |
|
5 #ifndef BASE_MOVE_H_ |
|
6 #define BASE_MOVE_H_ |
|
7 |
|
8 // Macro with the boilerplate that makes a type move-only in C++03. |
|
9 // |
|
10 // USAGE |
|
11 // |
|
12 // This macro should be used instead of DISALLOW_COPY_AND_ASSIGN to create |
|
13 // a "move-only" type. Unlike DISALLOW_COPY_AND_ASSIGN, this macro should be |
|
14 // the first line in a class declaration. |
|
15 // |
|
16 // A class using this macro must call .Pass() (or somehow be an r-value already) |
|
17 // before it can be: |
|
18 // |
|
19 // * Passed as a function argument |
|
20 // * Used as the right-hand side of an assignment |
|
21 // * Returned from a function |
|
22 // |
|
23 // Each class will still need to define their own "move constructor" and "move |
|
24 // operator=" to make this useful. Here's an example of the macro, the move |
|
25 // constructor, and the move operator= from the scoped_ptr class: |
|
26 // |
|
27 // template <typename T> |
|
28 // class scoped_ptr { |
|
29 // MOVE_ONLY_TYPE_FOR_CPP_03(scoped_ptr, RValue) |
|
30 // public: |
|
31 // scoped_ptr(RValue& other) : ptr_(other.release()) { } |
|
32 // scoped_ptr& operator=(RValue& other) { |
|
33 // swap(other); |
|
34 // return *this; |
|
35 // } |
|
36 // }; |
|
37 // |
|
38 // Note that the constructor must NOT be marked explicit. |
|
39 // |
|
40 // For consistency, the second parameter to the macro should always be RValue |
|
41 // unless you have a strong reason to do otherwise. It is only exposed as a |
|
42 // macro parameter so that the move constructor and move operator= don't look |
|
43 // like they're using a phantom type. |
|
44 // |
|
45 // |
|
46 // HOW THIS WORKS |
|
47 // |
|
48 // For a thorough explanation of this technique, see: |
|
49 // |
|
50 // http://en.wikibooks.org/wiki/More_C%2B%2B_Idioms/Move_Constructor |
|
51 // |
|
52 // The summary is that we take advantage of 2 properties: |
|
53 // |
|
54 // 1) non-const references will not bind to r-values. |
|
55 // 2) C++ can apply one user-defined conversion when initializing a |
|
56 // variable. |
|
57 // |
|
58 // The first lets us disable the copy constructor and assignment operator |
|
59 // by declaring private version of them with a non-const reference parameter. |
|
60 // |
|
61 // For l-values, direct initialization still fails like in |
|
62 // DISALLOW_COPY_AND_ASSIGN because the copy constructor and assignment |
|
63 // operators are private. |
|
64 // |
|
65 // For r-values, the situation is different. The copy constructor and |
|
66 // assignment operator are not viable due to (1), so we are trying to call |
|
67 // a non-existent constructor and non-existing operator= rather than a private |
|
68 // one. Since we have not committed an error quite yet, we can provide an |
|
69 // alternate conversion sequence and a constructor. We add |
|
70 // |
|
71 // * a private struct named "RValue" |
|
72 // * a user-defined conversion "operator RValue()" |
|
73 // * a "move constructor" and "move operator=" that take the RValue& as |
|
74 // their sole parameter. |
|
75 // |
|
76 // Only r-values will trigger this sequence and execute our "move constructor" |
|
77 // or "move operator=." L-values will match the private copy constructor and |
|
78 // operator= first giving a "private in this context" error. This combination |
|
79 // gives us a move-only type. |
|
80 // |
|
81 // For signaling a destructive transfer of data from an l-value, we provide a |
|
82 // method named Pass() which creates an r-value for the current instance |
|
83 // triggering the move constructor or move operator=. |
|
84 // |
|
85 // Other ways to get r-values is to use the result of an expression like a |
|
86 // function call. |
|
87 // |
|
88 // Here's an example with comments explaining what gets triggered where: |
|
89 // |
|
90 // class Foo { |
|
91 // MOVE_ONLY_TYPE_FOR_CPP_03(Foo, RValue); |
|
92 // |
|
93 // public: |
|
94 // ... API ... |
|
95 // Foo(RValue other); // Move constructor. |
|
96 // Foo& operator=(RValue rhs); // Move operator= |
|
97 // }; |
|
98 // |
|
99 // Foo MakeFoo(); // Function that returns a Foo. |
|
100 // |
|
101 // Foo f; |
|
102 // Foo f_copy(f); // ERROR: Foo(Foo&) is private in this context. |
|
103 // Foo f_assign; |
|
104 // f_assign = f; // ERROR: operator=(Foo&) is private in this context. |
|
105 // |
|
106 // |
|
107 // Foo f(MakeFoo()); // R-value so alternate conversion executed. |
|
108 // Foo f_copy(f.Pass()); // R-value so alternate conversion executed. |
|
109 // f = f_copy.Pass(); // R-value so alternate conversion executed. |
|
110 // |
|
111 // |
|
112 // IMPLEMENTATION SUBTLETIES WITH RValue |
|
113 // |
|
114 // The RValue struct is just a container for a pointer back to the original |
|
115 // object. It should only ever be created as a temporary, and no external |
|
116 // class should ever declare it or use it in a parameter. |
|
117 // |
|
118 // It is tempting to want to use the RValue type in function parameters, but |
|
119 // excluding the limited usage here for the move constructor and move |
|
120 // operator=, doing so would mean that the function could take both r-values |
|
121 // and l-values equially which is unexpected. See COMPARED To Boost.Move for |
|
122 // more details. |
|
123 // |
|
124 // An alternate, and incorrect, implementation of the RValue class used by |
|
125 // Boost.Move makes RValue a fieldless child of the move-only type. RValue& |
|
126 // is then used in place of RValue in the various operators. The RValue& is |
|
127 // "created" by doing *reinterpret_cast<RValue*>(this). This has the appeal |
|
128 // of never creating a temporary RValue struct even with optimizations |
|
129 // disabled. Also, by virtue of inheritance you can treat the RValue |
|
130 // reference as if it were the move-only type itself. Unfortunately, |
|
131 // using the result of this reinterpret_cast<> is actually undefined behavior |
|
132 // due to C++98 5.2.10.7. In certain compilers (e.g., NaCl) the optimizer |
|
133 // will generate non-working code. |
|
134 // |
|
135 // In optimized builds, both implementations generate the same assembly so we |
|
136 // choose the one that adheres to the standard. |
|
137 // |
|
138 // |
|
139 // COMPARED TO C++11 |
|
140 // |
|
141 // In C++11, you would implement this functionality using an r-value reference |
|
142 // and our .Pass() method would be replaced with a call to std::move(). |
|
143 // |
|
144 // This emulation also has a deficiency where it uses up the single |
|
145 // user-defined conversion allowed by C++ during initialization. This can |
|
146 // cause problems in some API edge cases. For instance, in scoped_ptr, it is |
|
147 // impossible to make a function "void Foo(scoped_ptr<Parent> p)" accept a |
|
148 // value of type scoped_ptr<Child> even if you add a constructor to |
|
149 // scoped_ptr<> that would make it look like it should work. C++11 does not |
|
150 // have this deficiency. |
|
151 // |
|
152 // |
|
153 // COMPARED TO Boost.Move |
|
154 // |
|
155 // Our implementation similar to Boost.Move, but we keep the RValue struct |
|
156 // private to the move-only type, and we don't use the reinterpret_cast<> hack. |
|
157 // |
|
158 // In Boost.Move, RValue is the boost::rv<> template. This type can be used |
|
159 // when writing APIs like: |
|
160 // |
|
161 // void MyFunc(boost::rv<Foo>& f) |
|
162 // |
|
163 // that can take advantage of rv<> to avoid extra copies of a type. However you |
|
164 // would still be able to call this version of MyFunc with an l-value: |
|
165 // |
|
166 // Foo f; |
|
167 // MyFunc(f); // Uh oh, we probably just destroyed |f| w/o calling Pass(). |
|
168 // |
|
169 // unless someone is very careful to also declare a parallel override like: |
|
170 // |
|
171 // void MyFunc(const Foo& f) |
|
172 // |
|
173 // that would catch the l-values first. This was declared unsafe in C++11 and |
|
174 // a C++11 compiler will explicitly fail MyFunc(f). Unfortunately, we cannot |
|
175 // ensure this in C++03. |
|
176 // |
|
177 // Since we have no need for writing such APIs yet, our implementation keeps |
|
178 // RValue private and uses a .Pass() method to do the conversion instead of |
|
179 // trying to write a version of "std::move()." Writing an API like std::move() |
|
180 // would require the RValue struct to be public. |
|
181 // |
|
182 // |
|
183 // CAVEATS |
|
184 // |
|
185 // If you include a move-only type as a field inside a class that does not |
|
186 // explicitly declare a copy constructor, the containing class's implicit |
|
187 // copy constructor will change from Containing(const Containing&) to |
|
188 // Containing(Containing&). This can cause some unexpected errors. |
|
189 // |
|
190 // http://llvm.org/bugs/show_bug.cgi?id=11528 |
|
191 // |
|
192 // The workaround is to explicitly declare your copy constructor. |
|
193 // |
|
194 #define MOVE_ONLY_TYPE_FOR_CPP_03(type, rvalue_type) \ |
|
195 private: \ |
|
196 struct rvalue_type { \ |
|
197 explicit rvalue_type(type* object) : object(object) {} \ |
|
198 type* object; \ |
|
199 }; \ |
|
200 type(type&); \ |
|
201 void operator=(type&); \ |
|
202 public: \ |
|
203 operator rvalue_type() { return rvalue_type(this); } \ |
|
204 type Pass() { return type(rvalue_type(this)); } \ |
|
205 private: |
|
206 |
|
207 #endif // BASE_MOVE_H_ |