security/sandbox/chromium/base/move.h

Wed, 31 Dec 2014 06:09:35 +0100

author
Michael Schloh von Bennewitz <michael@schloh.com>
date
Wed, 31 Dec 2014 06:09:35 +0100
changeset 0
6474c204b198
permissions
-rw-r--r--

Cloned upstream origin tor-browser at tor-browser-31.3.0esr-4.5-1-build1
revision ID fc1c9ff7c1b2defdbc039f12214767608f46423f for hacking purpose.

     1 // Copyright (c) 2012 The Chromium Authors. All rights reserved.
     2 // Use of this source code is governed by a BSD-style license that can be
     3 // found in the LICENSE file.
     5 #ifndef BASE_MOVE_H_
     6 #define BASE_MOVE_H_
     8 // Macro with the boilerplate that makes a type move-only in C++03.
     9 //
    10 // USAGE
    11 //
    12 // This macro should be used instead of DISALLOW_COPY_AND_ASSIGN to create
    13 // a "move-only" type.  Unlike DISALLOW_COPY_AND_ASSIGN, this macro should be
    14 // the first line in a class declaration.
    15 //
    16 // A class using this macro must call .Pass() (or somehow be an r-value already)
    17 // before it can be:
    18 //
    19 //   * Passed as a function argument
    20 //   * Used as the right-hand side of an assignment
    21 //   * Returned from a function
    22 //
    23 // Each class will still need to define their own "move constructor" and "move
    24 // operator=" to make this useful.  Here's an example of the macro, the move
    25 // constructor, and the move operator= from the scoped_ptr class:
    26 //
    27 //  template <typename T>
    28 //  class scoped_ptr {
    29 //     MOVE_ONLY_TYPE_FOR_CPP_03(scoped_ptr, RValue)
    30 //   public:
    31 //    scoped_ptr(RValue& other) : ptr_(other.release()) { }
    32 //    scoped_ptr& operator=(RValue& other) {
    33 //      swap(other);
    34 //      return *this;
    35 //    }
    36 //  };
    37 //
    38 // Note that the constructor must NOT be marked explicit.
    39 //
    40 // For consistency, the second parameter to the macro should always be RValue
    41 // unless you have a strong reason to do otherwise.  It is only exposed as a
    42 // macro parameter so that the move constructor and move operator= don't look
    43 // like they're using a phantom type.
    44 //
    45 //
    46 // HOW THIS WORKS
    47 //
    48 // For a thorough explanation of this technique, see:
    49 //
    50 //   http://en.wikibooks.org/wiki/More_C%2B%2B_Idioms/Move_Constructor
    51 //
    52 // The summary is that we take advantage of 2 properties:
    53 //
    54 //   1) non-const references will not bind to r-values.
    55 //   2) C++ can apply one user-defined conversion when initializing a
    56 //      variable.
    57 //
    58 // The first lets us disable the copy constructor and assignment operator
    59 // by declaring private version of them with a non-const reference parameter.
    60 //
    61 // For l-values, direct initialization still fails like in
    62 // DISALLOW_COPY_AND_ASSIGN because the copy constructor and assignment
    63 // operators are private.
    64 //
    65 // For r-values, the situation is different. The copy constructor and
    66 // assignment operator are not viable due to (1), so we are trying to call
    67 // a non-existent constructor and non-existing operator= rather than a private
    68 // one.  Since we have not committed an error quite yet, we can provide an
    69 // alternate conversion sequence and a constructor.  We add
    70 //
    71 //   * a private struct named "RValue"
    72 //   * a user-defined conversion "operator RValue()"
    73 //   * a "move constructor" and "move operator=" that take the RValue& as
    74 //     their sole parameter.
    75 //
    76 // Only r-values will trigger this sequence and execute our "move constructor"
    77 // or "move operator=."  L-values will match the private copy constructor and
    78 // operator= first giving a "private in this context" error.  This combination
    79 // gives us a move-only type.
    80 //
    81 // For signaling a destructive transfer of data from an l-value, we provide a
    82 // method named Pass() which creates an r-value for the current instance
    83 // triggering the move constructor or move operator=.
    84 //
    85 // Other ways to get r-values is to use the result of an expression like a
    86 // function call.
    87 //
    88 // Here's an example with comments explaining what gets triggered where:
    89 //
    90 //    class Foo {
    91 //      MOVE_ONLY_TYPE_FOR_CPP_03(Foo, RValue);
    92 //
    93 //     public:
    94 //       ... API ...
    95 //       Foo(RValue other);           // Move constructor.
    96 //       Foo& operator=(RValue rhs);  // Move operator=
    97 //    };
    98 //
    99 //    Foo MakeFoo();  // Function that returns a Foo.
   100 //
   101 //    Foo f;
   102 //    Foo f_copy(f);  // ERROR: Foo(Foo&) is private in this context.
   103 //    Foo f_assign;
   104 //    f_assign = f;   // ERROR: operator=(Foo&) is private in this context.
   105 //
   106 //
   107 //    Foo f(MakeFoo());      // R-value so alternate conversion executed.
   108 //    Foo f_copy(f.Pass());  // R-value so alternate conversion executed.
   109 //    f = f_copy.Pass();     // R-value so alternate conversion executed.
   110 //
   111 //
   112 // IMPLEMENTATION SUBTLETIES WITH RValue
   113 //
   114 // The RValue struct is just a container for a pointer back to the original
   115 // object. It should only ever be created as a temporary, and no external
   116 // class should ever declare it or use it in a parameter.
   117 //
   118 // It is tempting to want to use the RValue type in function parameters, but
   119 // excluding the limited usage here for the move constructor and move
   120 // operator=, doing so would mean that the function could take both r-values
   121 // and l-values equially which is unexpected.  See COMPARED To Boost.Move for
   122 // more details.
   123 //
   124 // An alternate, and incorrect, implementation of the RValue class used by
   125 // Boost.Move makes RValue a fieldless child of the move-only type. RValue&
   126 // is then used in place of RValue in the various operators.  The RValue& is
   127 // "created" by doing *reinterpret_cast<RValue*>(this).  This has the appeal
   128 // of never creating a temporary RValue struct even with optimizations
   129 // disabled.  Also, by virtue of inheritance you can treat the RValue
   130 // reference as if it were the move-only type itself.  Unfortunately,
   131 // using the result of this reinterpret_cast<> is actually undefined behavior
   132 // due to C++98 5.2.10.7. In certain compilers (e.g., NaCl) the optimizer
   133 // will generate non-working code.
   134 //
   135 // In optimized builds, both implementations generate the same assembly so we
   136 // choose the one that adheres to the standard.
   137 //
   138 //
   139 // COMPARED TO C++11
   140 //
   141 // In C++11, you would implement this functionality using an r-value reference
   142 // and our .Pass() method would be replaced with a call to std::move().
   143 //
   144 // This emulation also has a deficiency where it uses up the single
   145 // user-defined conversion allowed by C++ during initialization.  This can
   146 // cause problems in some API edge cases.  For instance, in scoped_ptr, it is
   147 // impossible to make a function "void Foo(scoped_ptr<Parent> p)" accept a
   148 // value of type scoped_ptr<Child> even if you add a constructor to
   149 // scoped_ptr<> that would make it look like it should work.  C++11 does not
   150 // have this deficiency.
   151 //
   152 //
   153 // COMPARED TO Boost.Move
   154 //
   155 // Our implementation similar to Boost.Move, but we keep the RValue struct
   156 // private to the move-only type, and we don't use the reinterpret_cast<> hack.
   157 //
   158 // In Boost.Move, RValue is the boost::rv<> template.  This type can be used
   159 // when writing APIs like:
   160 //
   161 //   void MyFunc(boost::rv<Foo>& f)
   162 //
   163 // that can take advantage of rv<> to avoid extra copies of a type.  However you
   164 // would still be able to call this version of MyFunc with an l-value:
   165 //
   166 //   Foo f;
   167 //   MyFunc(f);  // Uh oh, we probably just destroyed |f| w/o calling Pass().
   168 //
   169 // unless someone is very careful to also declare a parallel override like:
   170 //
   171 //   void MyFunc(const Foo& f)
   172 //
   173 // that would catch the l-values first.  This was declared unsafe in C++11 and
   174 // a C++11 compiler will explicitly fail MyFunc(f).  Unfortunately, we cannot
   175 // ensure this in C++03.
   176 //
   177 // Since we have no need for writing such APIs yet, our implementation keeps
   178 // RValue private and uses a .Pass() method to do the conversion instead of
   179 // trying to write a version of "std::move()." Writing an API like std::move()
   180 // would require the RValue struct to be public.
   181 //
   182 //
   183 // CAVEATS
   184 //
   185 // If you include a move-only type as a field inside a class that does not
   186 // explicitly declare a copy constructor, the containing class's implicit
   187 // copy constructor will change from Containing(const Containing&) to
   188 // Containing(Containing&).  This can cause some unexpected errors.
   189 //
   190 //   http://llvm.org/bugs/show_bug.cgi?id=11528
   191 //
   192 // The workaround is to explicitly declare your copy constructor.
   193 //
   194 #define MOVE_ONLY_TYPE_FOR_CPP_03(type, rvalue_type) \
   195  private: \
   196   struct rvalue_type { \
   197     explicit rvalue_type(type* object) : object(object) {} \
   198     type* object; \
   199   }; \
   200   type(type&); \
   201   void operator=(type&); \
   202  public: \
   203   operator rvalue_type() { return rvalue_type(this); } \
   204   type Pass() { return type(rvalue_type(this)); } \
   205  private:
   207 #endif  // BASE_MOVE_H_

mercurial