security/sandbox/chromium/base/move.h

Wed, 31 Dec 2014 06:09:35 +0100

author
Michael Schloh von Bennewitz <michael@schloh.com>
date
Wed, 31 Dec 2014 06:09:35 +0100
changeset 0
6474c204b198
permissions
-rw-r--r--

Cloned upstream origin tor-browser at tor-browser-31.3.0esr-4.5-1-build1
revision ID fc1c9ff7c1b2defdbc039f12214767608f46423f for hacking purpose.

michael@0 1 // Copyright (c) 2012 The Chromium Authors. All rights reserved.
michael@0 2 // Use of this source code is governed by a BSD-style license that can be
michael@0 3 // found in the LICENSE file.
michael@0 4
michael@0 5 #ifndef BASE_MOVE_H_
michael@0 6 #define BASE_MOVE_H_
michael@0 7
michael@0 8 // Macro with the boilerplate that makes a type move-only in C++03.
michael@0 9 //
michael@0 10 // USAGE
michael@0 11 //
michael@0 12 // This macro should be used instead of DISALLOW_COPY_AND_ASSIGN to create
michael@0 13 // a "move-only" type. Unlike DISALLOW_COPY_AND_ASSIGN, this macro should be
michael@0 14 // the first line in a class declaration.
michael@0 15 //
michael@0 16 // A class using this macro must call .Pass() (or somehow be an r-value already)
michael@0 17 // before it can be:
michael@0 18 //
michael@0 19 // * Passed as a function argument
michael@0 20 // * Used as the right-hand side of an assignment
michael@0 21 // * Returned from a function
michael@0 22 //
michael@0 23 // Each class will still need to define their own "move constructor" and "move
michael@0 24 // operator=" to make this useful. Here's an example of the macro, the move
michael@0 25 // constructor, and the move operator= from the scoped_ptr class:
michael@0 26 //
michael@0 27 // template <typename T>
michael@0 28 // class scoped_ptr {
michael@0 29 // MOVE_ONLY_TYPE_FOR_CPP_03(scoped_ptr, RValue)
michael@0 30 // public:
michael@0 31 // scoped_ptr(RValue& other) : ptr_(other.release()) { }
michael@0 32 // scoped_ptr& operator=(RValue& other) {
michael@0 33 // swap(other);
michael@0 34 // return *this;
michael@0 35 // }
michael@0 36 // };
michael@0 37 //
michael@0 38 // Note that the constructor must NOT be marked explicit.
michael@0 39 //
michael@0 40 // For consistency, the second parameter to the macro should always be RValue
michael@0 41 // unless you have a strong reason to do otherwise. It is only exposed as a
michael@0 42 // macro parameter so that the move constructor and move operator= don't look
michael@0 43 // like they're using a phantom type.
michael@0 44 //
michael@0 45 //
michael@0 46 // HOW THIS WORKS
michael@0 47 //
michael@0 48 // For a thorough explanation of this technique, see:
michael@0 49 //
michael@0 50 // http://en.wikibooks.org/wiki/More_C%2B%2B_Idioms/Move_Constructor
michael@0 51 //
michael@0 52 // The summary is that we take advantage of 2 properties:
michael@0 53 //
michael@0 54 // 1) non-const references will not bind to r-values.
michael@0 55 // 2) C++ can apply one user-defined conversion when initializing a
michael@0 56 // variable.
michael@0 57 //
michael@0 58 // The first lets us disable the copy constructor and assignment operator
michael@0 59 // by declaring private version of them with a non-const reference parameter.
michael@0 60 //
michael@0 61 // For l-values, direct initialization still fails like in
michael@0 62 // DISALLOW_COPY_AND_ASSIGN because the copy constructor and assignment
michael@0 63 // operators are private.
michael@0 64 //
michael@0 65 // For r-values, the situation is different. The copy constructor and
michael@0 66 // assignment operator are not viable due to (1), so we are trying to call
michael@0 67 // a non-existent constructor and non-existing operator= rather than a private
michael@0 68 // one. Since we have not committed an error quite yet, we can provide an
michael@0 69 // alternate conversion sequence and a constructor. We add
michael@0 70 //
michael@0 71 // * a private struct named "RValue"
michael@0 72 // * a user-defined conversion "operator RValue()"
michael@0 73 // * a "move constructor" and "move operator=" that take the RValue& as
michael@0 74 // their sole parameter.
michael@0 75 //
michael@0 76 // Only r-values will trigger this sequence and execute our "move constructor"
michael@0 77 // or "move operator=." L-values will match the private copy constructor and
michael@0 78 // operator= first giving a "private in this context" error. This combination
michael@0 79 // gives us a move-only type.
michael@0 80 //
michael@0 81 // For signaling a destructive transfer of data from an l-value, we provide a
michael@0 82 // method named Pass() which creates an r-value for the current instance
michael@0 83 // triggering the move constructor or move operator=.
michael@0 84 //
michael@0 85 // Other ways to get r-values is to use the result of an expression like a
michael@0 86 // function call.
michael@0 87 //
michael@0 88 // Here's an example with comments explaining what gets triggered where:
michael@0 89 //
michael@0 90 // class Foo {
michael@0 91 // MOVE_ONLY_TYPE_FOR_CPP_03(Foo, RValue);
michael@0 92 //
michael@0 93 // public:
michael@0 94 // ... API ...
michael@0 95 // Foo(RValue other); // Move constructor.
michael@0 96 // Foo& operator=(RValue rhs); // Move operator=
michael@0 97 // };
michael@0 98 //
michael@0 99 // Foo MakeFoo(); // Function that returns a Foo.
michael@0 100 //
michael@0 101 // Foo f;
michael@0 102 // Foo f_copy(f); // ERROR: Foo(Foo&) is private in this context.
michael@0 103 // Foo f_assign;
michael@0 104 // f_assign = f; // ERROR: operator=(Foo&) is private in this context.
michael@0 105 //
michael@0 106 //
michael@0 107 // Foo f(MakeFoo()); // R-value so alternate conversion executed.
michael@0 108 // Foo f_copy(f.Pass()); // R-value so alternate conversion executed.
michael@0 109 // f = f_copy.Pass(); // R-value so alternate conversion executed.
michael@0 110 //
michael@0 111 //
michael@0 112 // IMPLEMENTATION SUBTLETIES WITH RValue
michael@0 113 //
michael@0 114 // The RValue struct is just a container for a pointer back to the original
michael@0 115 // object. It should only ever be created as a temporary, and no external
michael@0 116 // class should ever declare it or use it in a parameter.
michael@0 117 //
michael@0 118 // It is tempting to want to use the RValue type in function parameters, but
michael@0 119 // excluding the limited usage here for the move constructor and move
michael@0 120 // operator=, doing so would mean that the function could take both r-values
michael@0 121 // and l-values equially which is unexpected. See COMPARED To Boost.Move for
michael@0 122 // more details.
michael@0 123 //
michael@0 124 // An alternate, and incorrect, implementation of the RValue class used by
michael@0 125 // Boost.Move makes RValue a fieldless child of the move-only type. RValue&
michael@0 126 // is then used in place of RValue in the various operators. The RValue& is
michael@0 127 // "created" by doing *reinterpret_cast<RValue*>(this). This has the appeal
michael@0 128 // of never creating a temporary RValue struct even with optimizations
michael@0 129 // disabled. Also, by virtue of inheritance you can treat the RValue
michael@0 130 // reference as if it were the move-only type itself. Unfortunately,
michael@0 131 // using the result of this reinterpret_cast<> is actually undefined behavior
michael@0 132 // due to C++98 5.2.10.7. In certain compilers (e.g., NaCl) the optimizer
michael@0 133 // will generate non-working code.
michael@0 134 //
michael@0 135 // In optimized builds, both implementations generate the same assembly so we
michael@0 136 // choose the one that adheres to the standard.
michael@0 137 //
michael@0 138 //
michael@0 139 // COMPARED TO C++11
michael@0 140 //
michael@0 141 // In C++11, you would implement this functionality using an r-value reference
michael@0 142 // and our .Pass() method would be replaced with a call to std::move().
michael@0 143 //
michael@0 144 // This emulation also has a deficiency where it uses up the single
michael@0 145 // user-defined conversion allowed by C++ during initialization. This can
michael@0 146 // cause problems in some API edge cases. For instance, in scoped_ptr, it is
michael@0 147 // impossible to make a function "void Foo(scoped_ptr<Parent> p)" accept a
michael@0 148 // value of type scoped_ptr<Child> even if you add a constructor to
michael@0 149 // scoped_ptr<> that would make it look like it should work. C++11 does not
michael@0 150 // have this deficiency.
michael@0 151 //
michael@0 152 //
michael@0 153 // COMPARED TO Boost.Move
michael@0 154 //
michael@0 155 // Our implementation similar to Boost.Move, but we keep the RValue struct
michael@0 156 // private to the move-only type, and we don't use the reinterpret_cast<> hack.
michael@0 157 //
michael@0 158 // In Boost.Move, RValue is the boost::rv<> template. This type can be used
michael@0 159 // when writing APIs like:
michael@0 160 //
michael@0 161 // void MyFunc(boost::rv<Foo>& f)
michael@0 162 //
michael@0 163 // that can take advantage of rv<> to avoid extra copies of a type. However you
michael@0 164 // would still be able to call this version of MyFunc with an l-value:
michael@0 165 //
michael@0 166 // Foo f;
michael@0 167 // MyFunc(f); // Uh oh, we probably just destroyed |f| w/o calling Pass().
michael@0 168 //
michael@0 169 // unless someone is very careful to also declare a parallel override like:
michael@0 170 //
michael@0 171 // void MyFunc(const Foo& f)
michael@0 172 //
michael@0 173 // that would catch the l-values first. This was declared unsafe in C++11 and
michael@0 174 // a C++11 compiler will explicitly fail MyFunc(f). Unfortunately, we cannot
michael@0 175 // ensure this in C++03.
michael@0 176 //
michael@0 177 // Since we have no need for writing such APIs yet, our implementation keeps
michael@0 178 // RValue private and uses a .Pass() method to do the conversion instead of
michael@0 179 // trying to write a version of "std::move()." Writing an API like std::move()
michael@0 180 // would require the RValue struct to be public.
michael@0 181 //
michael@0 182 //
michael@0 183 // CAVEATS
michael@0 184 //
michael@0 185 // If you include a move-only type as a field inside a class that does not
michael@0 186 // explicitly declare a copy constructor, the containing class's implicit
michael@0 187 // copy constructor will change from Containing(const Containing&) to
michael@0 188 // Containing(Containing&). This can cause some unexpected errors.
michael@0 189 //
michael@0 190 // http://llvm.org/bugs/show_bug.cgi?id=11528
michael@0 191 //
michael@0 192 // The workaround is to explicitly declare your copy constructor.
michael@0 193 //
michael@0 194 #define MOVE_ONLY_TYPE_FOR_CPP_03(type, rvalue_type) \
michael@0 195 private: \
michael@0 196 struct rvalue_type { \
michael@0 197 explicit rvalue_type(type* object) : object(object) {} \
michael@0 198 type* object; \
michael@0 199 }; \
michael@0 200 type(type&); \
michael@0 201 void operator=(type&); \
michael@0 202 public: \
michael@0 203 operator rvalue_type() { return rvalue_type(this); } \
michael@0 204 type Pass() { return type(rvalue_type(this)); } \
michael@0 205 private:
michael@0 206
michael@0 207 #endif // BASE_MOVE_H_

mercurial