1.1 --- /dev/null Thu Jan 01 00:00:00 1970 +0000 1.2 +++ b/gfx/skia/trunk/src/pathops/SkPathOpsQuad.cpp Wed Dec 31 06:09:35 2014 +0100 1.3 @@ -0,0 +1,355 @@ 1.4 +/* 1.5 + * Copyright 2012 Google Inc. 1.6 + * 1.7 + * Use of this source code is governed by a BSD-style license that can be 1.8 + * found in the LICENSE file. 1.9 + */ 1.10 +#include "SkIntersections.h" 1.11 +#include "SkLineParameters.h" 1.12 +#include "SkPathOpsCubic.h" 1.13 +#include "SkPathOpsQuad.h" 1.14 +#include "SkPathOpsTriangle.h" 1.15 + 1.16 +// from http://blog.gludion.com/2009/08/distance-to-quadratic-bezier-curve.html 1.17 +// (currently only used by testing) 1.18 +double SkDQuad::nearestT(const SkDPoint& pt) const { 1.19 + SkDVector pos = fPts[0] - pt; 1.20 + // search points P of bezier curve with PM.(dP / dt) = 0 1.21 + // a calculus leads to a 3d degree equation : 1.22 + SkDVector A = fPts[1] - fPts[0]; 1.23 + SkDVector B = fPts[2] - fPts[1]; 1.24 + B -= A; 1.25 + double a = B.dot(B); 1.26 + double b = 3 * A.dot(B); 1.27 + double c = 2 * A.dot(A) + pos.dot(B); 1.28 + double d = pos.dot(A); 1.29 + double ts[3]; 1.30 + int roots = SkDCubic::RootsValidT(a, b, c, d, ts); 1.31 + double d0 = pt.distanceSquared(fPts[0]); 1.32 + double d2 = pt.distanceSquared(fPts[2]); 1.33 + double distMin = SkTMin(d0, d2); 1.34 + int bestIndex = -1; 1.35 + for (int index = 0; index < roots; ++index) { 1.36 + SkDPoint onQuad = ptAtT(ts[index]); 1.37 + double dist = pt.distanceSquared(onQuad); 1.38 + if (distMin > dist) { 1.39 + distMin = dist; 1.40 + bestIndex = index; 1.41 + } 1.42 + } 1.43 + if (bestIndex >= 0) { 1.44 + return ts[bestIndex]; 1.45 + } 1.46 + return d0 < d2 ? 0 : 1; 1.47 +} 1.48 + 1.49 +bool SkDQuad::pointInHull(const SkDPoint& pt) const { 1.50 + return ((const SkDTriangle&) fPts).contains(pt); 1.51 +} 1.52 + 1.53 +SkDPoint SkDQuad::top(double startT, double endT) const { 1.54 + SkDQuad sub = subDivide(startT, endT); 1.55 + SkDPoint topPt = sub[0]; 1.56 + if (topPt.fY > sub[2].fY || (topPt.fY == sub[2].fY && topPt.fX > sub[2].fX)) { 1.57 + topPt = sub[2]; 1.58 + } 1.59 + if (!between(sub[0].fY, sub[1].fY, sub[2].fY)) { 1.60 + double extremeT; 1.61 + if (FindExtrema(sub[0].fY, sub[1].fY, sub[2].fY, &extremeT)) { 1.62 + extremeT = startT + (endT - startT) * extremeT; 1.63 + SkDPoint test = ptAtT(extremeT); 1.64 + if (topPt.fY > test.fY || (topPt.fY == test.fY && topPt.fX > test.fX)) { 1.65 + topPt = test; 1.66 + } 1.67 + } 1.68 + } 1.69 + return topPt; 1.70 +} 1.71 + 1.72 +int SkDQuad::AddValidTs(double s[], int realRoots, double* t) { 1.73 + int foundRoots = 0; 1.74 + for (int index = 0; index < realRoots; ++index) { 1.75 + double tValue = s[index]; 1.76 + if (approximately_zero_or_more(tValue) && approximately_one_or_less(tValue)) { 1.77 + if (approximately_less_than_zero(tValue)) { 1.78 + tValue = 0; 1.79 + } else if (approximately_greater_than_one(tValue)) { 1.80 + tValue = 1; 1.81 + } 1.82 + for (int idx2 = 0; idx2 < foundRoots; ++idx2) { 1.83 + if (approximately_equal(t[idx2], tValue)) { 1.84 + goto nextRoot; 1.85 + } 1.86 + } 1.87 + t[foundRoots++] = tValue; 1.88 + } 1.89 +nextRoot: 1.90 + {} 1.91 + } 1.92 + return foundRoots; 1.93 +} 1.94 + 1.95 +// note: caller expects multiple results to be sorted smaller first 1.96 +// note: http://en.wikipedia.org/wiki/Loss_of_significance has an interesting 1.97 +// analysis of the quadratic equation, suggesting why the following looks at 1.98 +// the sign of B -- and further suggesting that the greatest loss of precision 1.99 +// is in b squared less two a c 1.100 +int SkDQuad::RootsValidT(double A, double B, double C, double t[2]) { 1.101 + double s[2]; 1.102 + int realRoots = RootsReal(A, B, C, s); 1.103 + int foundRoots = AddValidTs(s, realRoots, t); 1.104 + return foundRoots; 1.105 +} 1.106 + 1.107 +/* 1.108 +Numeric Solutions (5.6) suggests to solve the quadratic by computing 1.109 + Q = -1/2(B + sgn(B)Sqrt(B^2 - 4 A C)) 1.110 +and using the roots 1.111 + t1 = Q / A 1.112 + t2 = C / Q 1.113 +*/ 1.114 +// this does not discard real roots <= 0 or >= 1 1.115 +int SkDQuad::RootsReal(const double A, const double B, const double C, double s[2]) { 1.116 + const double p = B / (2 * A); 1.117 + const double q = C / A; 1.118 + if (approximately_zero(A) && (approximately_zero_inverse(p) || approximately_zero_inverse(q))) { 1.119 + if (approximately_zero(B)) { 1.120 + s[0] = 0; 1.121 + return C == 0; 1.122 + } 1.123 + s[0] = -C / B; 1.124 + return 1; 1.125 + } 1.126 + /* normal form: x^2 + px + q = 0 */ 1.127 + const double p2 = p * p; 1.128 + if (!AlmostDequalUlps(p2, q) && p2 < q) { 1.129 + return 0; 1.130 + } 1.131 + double sqrt_D = 0; 1.132 + if (p2 > q) { 1.133 + sqrt_D = sqrt(p2 - q); 1.134 + } 1.135 + s[0] = sqrt_D - p; 1.136 + s[1] = -sqrt_D - p; 1.137 + return 1 + !AlmostDequalUlps(s[0], s[1]); 1.138 +} 1.139 + 1.140 +bool SkDQuad::isLinear(int startIndex, int endIndex) const { 1.141 + SkLineParameters lineParameters; 1.142 + lineParameters.quadEndPoints(*this, startIndex, endIndex); 1.143 + // FIXME: maybe it's possible to avoid this and compare non-normalized 1.144 + lineParameters.normalize(); 1.145 + double distance = lineParameters.controlPtDistance(*this); 1.146 + return approximately_zero(distance); 1.147 +} 1.148 + 1.149 +SkDCubic SkDQuad::toCubic() const { 1.150 + SkDCubic cubic; 1.151 + cubic[0] = fPts[0]; 1.152 + cubic[2] = fPts[1]; 1.153 + cubic[3] = fPts[2]; 1.154 + cubic[1].fX = (cubic[0].fX + cubic[2].fX * 2) / 3; 1.155 + cubic[1].fY = (cubic[0].fY + cubic[2].fY * 2) / 3; 1.156 + cubic[2].fX = (cubic[3].fX + cubic[2].fX * 2) / 3; 1.157 + cubic[2].fY = (cubic[3].fY + cubic[2].fY * 2) / 3; 1.158 + return cubic; 1.159 +} 1.160 + 1.161 +SkDVector SkDQuad::dxdyAtT(double t) const { 1.162 + double a = t - 1; 1.163 + double b = 1 - 2 * t; 1.164 + double c = t; 1.165 + SkDVector result = { a * fPts[0].fX + b * fPts[1].fX + c * fPts[2].fX, 1.166 + a * fPts[0].fY + b * fPts[1].fY + c * fPts[2].fY }; 1.167 + return result; 1.168 +} 1.169 + 1.170 +// OPTIMIZE: assert if caller passes in t == 0 / t == 1 ? 1.171 +SkDPoint SkDQuad::ptAtT(double t) const { 1.172 + if (0 == t) { 1.173 + return fPts[0]; 1.174 + } 1.175 + if (1 == t) { 1.176 + return fPts[2]; 1.177 + } 1.178 + double one_t = 1 - t; 1.179 + double a = one_t * one_t; 1.180 + double b = 2 * one_t * t; 1.181 + double c = t * t; 1.182 + SkDPoint result = { a * fPts[0].fX + b * fPts[1].fX + c * fPts[2].fX, 1.183 + a * fPts[0].fY + b * fPts[1].fY + c * fPts[2].fY }; 1.184 + return result; 1.185 +} 1.186 + 1.187 +/* 1.188 +Given a quadratic q, t1, and t2, find a small quadratic segment. 1.189 + 1.190 +The new quadratic is defined by A, B, and C, where 1.191 + A = c[0]*(1 - t1)*(1 - t1) + 2*c[1]*t1*(1 - t1) + c[2]*t1*t1 1.192 + C = c[3]*(1 - t1)*(1 - t1) + 2*c[2]*t1*(1 - t1) + c[1]*t1*t1 1.193 + 1.194 +To find B, compute the point halfway between t1 and t2: 1.195 + 1.196 +q(at (t1 + t2)/2) == D 1.197 + 1.198 +Next, compute where D must be if we know the value of B: 1.199 + 1.200 +_12 = A/2 + B/2 1.201 +12_ = B/2 + C/2 1.202 +123 = A/4 + B/2 + C/4 1.203 + = D 1.204 + 1.205 +Group the known values on one side: 1.206 + 1.207 +B = D*2 - A/2 - C/2 1.208 +*/ 1.209 + 1.210 +static double interp_quad_coords(const double* src, double t) { 1.211 + double ab = SkDInterp(src[0], src[2], t); 1.212 + double bc = SkDInterp(src[2], src[4], t); 1.213 + double abc = SkDInterp(ab, bc, t); 1.214 + return abc; 1.215 +} 1.216 + 1.217 +bool SkDQuad::monotonicInY() const { 1.218 + return between(fPts[0].fY, fPts[1].fY, fPts[2].fY); 1.219 +} 1.220 + 1.221 +SkDQuad SkDQuad::subDivide(double t1, double t2) const { 1.222 + SkDQuad dst; 1.223 + double ax = dst[0].fX = interp_quad_coords(&fPts[0].fX, t1); 1.224 + double ay = dst[0].fY = interp_quad_coords(&fPts[0].fY, t1); 1.225 + double dx = interp_quad_coords(&fPts[0].fX, (t1 + t2) / 2); 1.226 + double dy = interp_quad_coords(&fPts[0].fY, (t1 + t2) / 2); 1.227 + double cx = dst[2].fX = interp_quad_coords(&fPts[0].fX, t2); 1.228 + double cy = dst[2].fY = interp_quad_coords(&fPts[0].fY, t2); 1.229 + /* bx = */ dst[1].fX = 2*dx - (ax + cx)/2; 1.230 + /* by = */ dst[1].fY = 2*dy - (ay + cy)/2; 1.231 + return dst; 1.232 +} 1.233 + 1.234 +void SkDQuad::align(int endIndex, SkDPoint* dstPt) const { 1.235 + if (fPts[endIndex].fX == fPts[1].fX) { 1.236 + dstPt->fX = fPts[endIndex].fX; 1.237 + } 1.238 + if (fPts[endIndex].fY == fPts[1].fY) { 1.239 + dstPt->fY = fPts[endIndex].fY; 1.240 + } 1.241 +} 1.242 + 1.243 +SkDPoint SkDQuad::subDivide(const SkDPoint& a, const SkDPoint& c, double t1, double t2) const { 1.244 + SkASSERT(t1 != t2); 1.245 + SkDPoint b; 1.246 +#if 0 1.247 + // this approach assumes that the control point computed directly is accurate enough 1.248 + double dx = interp_quad_coords(&fPts[0].fX, (t1 + t2) / 2); 1.249 + double dy = interp_quad_coords(&fPts[0].fY, (t1 + t2) / 2); 1.250 + b.fX = 2 * dx - (a.fX + c.fX) / 2; 1.251 + b.fY = 2 * dy - (a.fY + c.fY) / 2; 1.252 +#else 1.253 + SkDQuad sub = subDivide(t1, t2); 1.254 + SkDLine b0 = {{a, sub[1] + (a - sub[0])}}; 1.255 + SkDLine b1 = {{c, sub[1] + (c - sub[2])}}; 1.256 + SkIntersections i; 1.257 + i.intersectRay(b0, b1); 1.258 + if (i.used() == 1) { 1.259 + b = i.pt(0); 1.260 + } else { 1.261 + SkASSERT(i.used() == 2 || i.used() == 0); 1.262 + b = SkDPoint::Mid(b0[1], b1[1]); 1.263 + } 1.264 +#endif 1.265 + if (t1 == 0 || t2 == 0) { 1.266 + align(0, &b); 1.267 + } 1.268 + if (t1 == 1 || t2 == 1) { 1.269 + align(2, &b); 1.270 + } 1.271 + if (precisely_subdivide_equal(b.fX, a.fX)) { 1.272 + b.fX = a.fX; 1.273 + } else if (precisely_subdivide_equal(b.fX, c.fX)) { 1.274 + b.fX = c.fX; 1.275 + } 1.276 + if (precisely_subdivide_equal(b.fY, a.fY)) { 1.277 + b.fY = a.fY; 1.278 + } else if (precisely_subdivide_equal(b.fY, c.fY)) { 1.279 + b.fY = c.fY; 1.280 + } 1.281 + return b; 1.282 +} 1.283 + 1.284 +/* classic one t subdivision */ 1.285 +static void interp_quad_coords(const double* src, double* dst, double t) { 1.286 + double ab = SkDInterp(src[0], src[2], t); 1.287 + double bc = SkDInterp(src[2], src[4], t); 1.288 + dst[0] = src[0]; 1.289 + dst[2] = ab; 1.290 + dst[4] = SkDInterp(ab, bc, t); 1.291 + dst[6] = bc; 1.292 + dst[8] = src[4]; 1.293 +} 1.294 + 1.295 +SkDQuadPair SkDQuad::chopAt(double t) const 1.296 +{ 1.297 + SkDQuadPair dst; 1.298 + interp_quad_coords(&fPts[0].fX, &dst.pts[0].fX, t); 1.299 + interp_quad_coords(&fPts[0].fY, &dst.pts[0].fY, t); 1.300 + return dst; 1.301 +} 1.302 + 1.303 +static int valid_unit_divide(double numer, double denom, double* ratio) 1.304 +{ 1.305 + if (numer < 0) { 1.306 + numer = -numer; 1.307 + denom = -denom; 1.308 + } 1.309 + if (denom == 0 || numer == 0 || numer >= denom) { 1.310 + return 0; 1.311 + } 1.312 + double r = numer / denom; 1.313 + if (r == 0) { // catch underflow if numer <<<< denom 1.314 + return 0; 1.315 + } 1.316 + *ratio = r; 1.317 + return 1; 1.318 +} 1.319 + 1.320 +/** Quad'(t) = At + B, where 1.321 + A = 2(a - 2b + c) 1.322 + B = 2(b - a) 1.323 + Solve for t, only if it fits between 0 < t < 1 1.324 +*/ 1.325 +int SkDQuad::FindExtrema(double a, double b, double c, double tValue[1]) { 1.326 + /* At + B == 0 1.327 + t = -B / A 1.328 + */ 1.329 + return valid_unit_divide(a - b, a - b - b + c, tValue); 1.330 +} 1.331 + 1.332 +/* Parameterization form, given A*t*t + 2*B*t*(1-t) + C*(1-t)*(1-t) 1.333 + * 1.334 + * a = A - 2*B + C 1.335 + * b = 2*B - 2*C 1.336 + * c = C 1.337 + */ 1.338 +void SkDQuad::SetABC(const double* quad, double* a, double* b, double* c) { 1.339 + *a = quad[0]; // a = A 1.340 + *b = 2 * quad[2]; // b = 2*B 1.341 + *c = quad[4]; // c = C 1.342 + *b -= *c; // b = 2*B - C 1.343 + *a -= *b; // a = A - 2*B + C 1.344 + *b -= *c; // b = 2*B - 2*C 1.345 +} 1.346 + 1.347 +#ifdef SK_DEBUG 1.348 +void SkDQuad::dump() { 1.349 + SkDebugf("{{"); 1.350 + int index = 0; 1.351 + do { 1.352 + fPts[index].dump(); 1.353 + SkDebugf(", "); 1.354 + } while (++index < 2); 1.355 + fPts[index].dump(); 1.356 + SkDebugf("}}\n"); 1.357 +} 1.358 +#endif