gfx/skia/trunk/src/pathops/SkPathOpsQuad.cpp

Wed, 31 Dec 2014 06:09:35 +0100

author
Michael Schloh von Bennewitz <michael@schloh.com>
date
Wed, 31 Dec 2014 06:09:35 +0100
changeset 0
6474c204b198
permissions
-rw-r--r--

Cloned upstream origin tor-browser at tor-browser-31.3.0esr-4.5-1-build1
revision ID fc1c9ff7c1b2defdbc039f12214767608f46423f for hacking purpose.

     1 /*
     2  * Copyright 2012 Google Inc.
     3  *
     4  * Use of this source code is governed by a BSD-style license that can be
     5  * found in the LICENSE file.
     6  */
     7 #include "SkIntersections.h"
     8 #include "SkLineParameters.h"
     9 #include "SkPathOpsCubic.h"
    10 #include "SkPathOpsQuad.h"
    11 #include "SkPathOpsTriangle.h"
    13 // from http://blog.gludion.com/2009/08/distance-to-quadratic-bezier-curve.html
    14 // (currently only used by testing)
    15 double SkDQuad::nearestT(const SkDPoint& pt) const {
    16     SkDVector pos = fPts[0] - pt;
    17     // search points P of bezier curve with PM.(dP / dt) = 0
    18     // a calculus leads to a 3d degree equation :
    19     SkDVector A = fPts[1] - fPts[0];
    20     SkDVector B = fPts[2] - fPts[1];
    21     B -= A;
    22     double a = B.dot(B);
    23     double b = 3 * A.dot(B);
    24     double c = 2 * A.dot(A) + pos.dot(B);
    25     double d = pos.dot(A);
    26     double ts[3];
    27     int roots = SkDCubic::RootsValidT(a, b, c, d, ts);
    28     double d0 = pt.distanceSquared(fPts[0]);
    29     double d2 = pt.distanceSquared(fPts[2]);
    30     double distMin = SkTMin(d0, d2);
    31     int bestIndex = -1;
    32     for (int index = 0; index < roots; ++index) {
    33         SkDPoint onQuad = ptAtT(ts[index]);
    34         double dist = pt.distanceSquared(onQuad);
    35         if (distMin > dist) {
    36             distMin = dist;
    37             bestIndex = index;
    38         }
    39     }
    40     if (bestIndex >= 0) {
    41         return ts[bestIndex];
    42     }
    43     return d0 < d2 ? 0 : 1;
    44 }
    46 bool SkDQuad::pointInHull(const SkDPoint& pt) const {
    47     return ((const SkDTriangle&) fPts).contains(pt);
    48 }
    50 SkDPoint SkDQuad::top(double startT, double endT) const {
    51     SkDQuad sub = subDivide(startT, endT);
    52     SkDPoint topPt = sub[0];
    53     if (topPt.fY > sub[2].fY || (topPt.fY == sub[2].fY && topPt.fX > sub[2].fX)) {
    54         topPt = sub[2];
    55     }
    56     if (!between(sub[0].fY, sub[1].fY, sub[2].fY)) {
    57         double extremeT;
    58         if (FindExtrema(sub[0].fY, sub[1].fY, sub[2].fY, &extremeT)) {
    59             extremeT = startT + (endT - startT) * extremeT;
    60             SkDPoint test = ptAtT(extremeT);
    61             if (topPt.fY > test.fY || (topPt.fY == test.fY && topPt.fX > test.fX)) {
    62                 topPt = test;
    63             }
    64         }
    65     }
    66     return topPt;
    67 }
    69 int SkDQuad::AddValidTs(double s[], int realRoots, double* t) {
    70     int foundRoots = 0;
    71     for (int index = 0; index < realRoots; ++index) {
    72         double tValue = s[index];
    73         if (approximately_zero_or_more(tValue) && approximately_one_or_less(tValue)) {
    74             if (approximately_less_than_zero(tValue)) {
    75                 tValue = 0;
    76             } else if (approximately_greater_than_one(tValue)) {
    77                 tValue = 1;
    78             }
    79             for (int idx2 = 0; idx2 < foundRoots; ++idx2) {
    80                 if (approximately_equal(t[idx2], tValue)) {
    81                     goto nextRoot;
    82                 }
    83             }
    84             t[foundRoots++] = tValue;
    85         }
    86 nextRoot:
    87         {}
    88     }
    89     return foundRoots;
    90 }
    92 // note: caller expects multiple results to be sorted smaller first
    93 // note: http://en.wikipedia.org/wiki/Loss_of_significance has an interesting
    94 //  analysis of the quadratic equation, suggesting why the following looks at
    95 //  the sign of B -- and further suggesting that the greatest loss of precision
    96 //  is in b squared less two a c
    97 int SkDQuad::RootsValidT(double A, double B, double C, double t[2]) {
    98     double s[2];
    99     int realRoots = RootsReal(A, B, C, s);
   100     int foundRoots = AddValidTs(s, realRoots, t);
   101     return foundRoots;
   102 }
   104 /*
   105 Numeric Solutions (5.6) suggests to solve the quadratic by computing
   106        Q = -1/2(B + sgn(B)Sqrt(B^2 - 4 A C))
   107 and using the roots
   108       t1 = Q / A
   109       t2 = C / Q
   110 */
   111 // this does not discard real roots <= 0 or >= 1
   112 int SkDQuad::RootsReal(const double A, const double B, const double C, double s[2]) {
   113     const double p = B / (2 * A);
   114     const double q = C / A;
   115     if (approximately_zero(A) && (approximately_zero_inverse(p) || approximately_zero_inverse(q))) {
   116         if (approximately_zero(B)) {
   117             s[0] = 0;
   118             return C == 0;
   119         }
   120         s[0] = -C / B;
   121         return 1;
   122     }
   123     /* normal form: x^2 + px + q = 0 */
   124     const double p2 = p * p;
   125     if (!AlmostDequalUlps(p2, q) && p2 < q) {
   126         return 0;
   127     }
   128     double sqrt_D = 0;
   129     if (p2 > q) {
   130         sqrt_D = sqrt(p2 - q);
   131     }
   132     s[0] = sqrt_D - p;
   133     s[1] = -sqrt_D - p;
   134     return 1 + !AlmostDequalUlps(s[0], s[1]);
   135 }
   137 bool SkDQuad::isLinear(int startIndex, int endIndex) const {
   138     SkLineParameters lineParameters;
   139     lineParameters.quadEndPoints(*this, startIndex, endIndex);
   140     // FIXME: maybe it's possible to avoid this and compare non-normalized
   141     lineParameters.normalize();
   142     double distance = lineParameters.controlPtDistance(*this);
   143     return approximately_zero(distance);
   144 }
   146 SkDCubic SkDQuad::toCubic() const {
   147     SkDCubic cubic;
   148     cubic[0] = fPts[0];
   149     cubic[2] = fPts[1];
   150     cubic[3] = fPts[2];
   151     cubic[1].fX = (cubic[0].fX + cubic[2].fX * 2) / 3;
   152     cubic[1].fY = (cubic[0].fY + cubic[2].fY * 2) / 3;
   153     cubic[2].fX = (cubic[3].fX + cubic[2].fX * 2) / 3;
   154     cubic[2].fY = (cubic[3].fY + cubic[2].fY * 2) / 3;
   155     return cubic;
   156 }
   158 SkDVector SkDQuad::dxdyAtT(double t) const {
   159     double a = t - 1;
   160     double b = 1 - 2 * t;
   161     double c = t;
   162     SkDVector result = { a * fPts[0].fX + b * fPts[1].fX + c * fPts[2].fX,
   163             a * fPts[0].fY + b * fPts[1].fY + c * fPts[2].fY };
   164     return result;
   165 }
   167 // OPTIMIZE: assert if caller passes in t == 0 / t == 1 ?
   168 SkDPoint SkDQuad::ptAtT(double t) const {
   169     if (0 == t) {
   170         return fPts[0];
   171     }
   172     if (1 == t) {
   173         return fPts[2];
   174     }
   175     double one_t = 1 - t;
   176     double a = one_t * one_t;
   177     double b = 2 * one_t * t;
   178     double c = t * t;
   179     SkDPoint result = { a * fPts[0].fX + b * fPts[1].fX + c * fPts[2].fX,
   180             a * fPts[0].fY + b * fPts[1].fY + c * fPts[2].fY };
   181     return result;
   182 }
   184 /*
   185 Given a quadratic q, t1, and t2, find a small quadratic segment.
   187 The new quadratic is defined by A, B, and C, where
   188  A = c[0]*(1 - t1)*(1 - t1) + 2*c[1]*t1*(1 - t1) + c[2]*t1*t1
   189  C = c[3]*(1 - t1)*(1 - t1) + 2*c[2]*t1*(1 - t1) + c[1]*t1*t1
   191 To find B, compute the point halfway between t1 and t2:
   193 q(at (t1 + t2)/2) == D
   195 Next, compute where D must be if we know the value of B:
   197 _12 = A/2 + B/2
   198 12_ = B/2 + C/2
   199 123 = A/4 + B/2 + C/4
   200     = D
   202 Group the known values on one side:
   204 B   = D*2 - A/2 - C/2
   205 */
   207 static double interp_quad_coords(const double* src, double t) {
   208     double ab = SkDInterp(src[0], src[2], t);
   209     double bc = SkDInterp(src[2], src[4], t);
   210     double abc = SkDInterp(ab, bc, t);
   211     return abc;
   212 }
   214 bool SkDQuad::monotonicInY() const {
   215     return between(fPts[0].fY, fPts[1].fY, fPts[2].fY);
   216 }
   218 SkDQuad SkDQuad::subDivide(double t1, double t2) const {
   219     SkDQuad dst;
   220     double ax = dst[0].fX = interp_quad_coords(&fPts[0].fX, t1);
   221     double ay = dst[0].fY = interp_quad_coords(&fPts[0].fY, t1);
   222     double dx = interp_quad_coords(&fPts[0].fX, (t1 + t2) / 2);
   223     double dy = interp_quad_coords(&fPts[0].fY, (t1 + t2) / 2);
   224     double cx = dst[2].fX = interp_quad_coords(&fPts[0].fX, t2);
   225     double cy = dst[2].fY = interp_quad_coords(&fPts[0].fY, t2);
   226     /* bx = */ dst[1].fX = 2*dx - (ax + cx)/2;
   227     /* by = */ dst[1].fY = 2*dy - (ay + cy)/2;
   228     return dst;
   229 }
   231 void SkDQuad::align(int endIndex, SkDPoint* dstPt) const {
   232     if (fPts[endIndex].fX == fPts[1].fX) {
   233         dstPt->fX = fPts[endIndex].fX;
   234     }
   235     if (fPts[endIndex].fY == fPts[1].fY) {
   236         dstPt->fY = fPts[endIndex].fY;
   237     }
   238 }
   240 SkDPoint SkDQuad::subDivide(const SkDPoint& a, const SkDPoint& c, double t1, double t2) const {
   241     SkASSERT(t1 != t2);
   242     SkDPoint b;
   243 #if 0
   244     // this approach assumes that the control point computed directly is accurate enough
   245     double dx = interp_quad_coords(&fPts[0].fX, (t1 + t2) / 2);
   246     double dy = interp_quad_coords(&fPts[0].fY, (t1 + t2) / 2);
   247     b.fX = 2 * dx - (a.fX + c.fX) / 2;
   248     b.fY = 2 * dy - (a.fY + c.fY) / 2;
   249 #else
   250     SkDQuad sub = subDivide(t1, t2);
   251     SkDLine b0 = {{a, sub[1] + (a - sub[0])}};
   252     SkDLine b1 = {{c, sub[1] + (c - sub[2])}};
   253     SkIntersections i;
   254     i.intersectRay(b0, b1);
   255     if (i.used() == 1) {
   256         b = i.pt(0);
   257     } else {
   258         SkASSERT(i.used() == 2 || i.used() == 0);
   259         b = SkDPoint::Mid(b0[1], b1[1]);
   260     }
   261 #endif
   262     if (t1 == 0 || t2 == 0) {
   263         align(0, &b);
   264     }
   265     if (t1 == 1 || t2 == 1) {
   266         align(2, &b);
   267     }
   268     if (precisely_subdivide_equal(b.fX, a.fX)) {
   269         b.fX = a.fX;
   270     } else if (precisely_subdivide_equal(b.fX, c.fX)) {
   271         b.fX = c.fX;
   272     }
   273     if (precisely_subdivide_equal(b.fY, a.fY)) {
   274         b.fY = a.fY;
   275     } else if (precisely_subdivide_equal(b.fY, c.fY)) {
   276         b.fY = c.fY;
   277     }
   278     return b;
   279 }
   281 /* classic one t subdivision */
   282 static void interp_quad_coords(const double* src, double* dst, double t) {
   283     double ab = SkDInterp(src[0], src[2], t);
   284     double bc = SkDInterp(src[2], src[4], t);
   285     dst[0] = src[0];
   286     dst[2] = ab;
   287     dst[4] = SkDInterp(ab, bc, t);
   288     dst[6] = bc;
   289     dst[8] = src[4];
   290 }
   292 SkDQuadPair SkDQuad::chopAt(double t) const
   293 {
   294     SkDQuadPair dst;
   295     interp_quad_coords(&fPts[0].fX, &dst.pts[0].fX, t);
   296     interp_quad_coords(&fPts[0].fY, &dst.pts[0].fY, t);
   297     return dst;
   298 }
   300 static int valid_unit_divide(double numer, double denom, double* ratio)
   301 {
   302     if (numer < 0) {
   303         numer = -numer;
   304         denom = -denom;
   305     }
   306     if (denom == 0 || numer == 0 || numer >= denom) {
   307         return 0;
   308     }
   309     double r = numer / denom;
   310     if (r == 0) {  // catch underflow if numer <<<< denom
   311         return 0;
   312     }
   313     *ratio = r;
   314     return 1;
   315 }
   317 /** Quad'(t) = At + B, where
   318     A = 2(a - 2b + c)
   319     B = 2(b - a)
   320     Solve for t, only if it fits between 0 < t < 1
   321 */
   322 int SkDQuad::FindExtrema(double a, double b, double c, double tValue[1]) {
   323     /*  At + B == 0
   324         t = -B / A
   325     */
   326     return valid_unit_divide(a - b, a - b - b + c, tValue);
   327 }
   329 /* Parameterization form, given A*t*t + 2*B*t*(1-t) + C*(1-t)*(1-t)
   330  *
   331  * a = A - 2*B +   C
   332  * b =     2*B - 2*C
   333  * c =             C
   334  */
   335 void SkDQuad::SetABC(const double* quad, double* a, double* b, double* c) {
   336     *a = quad[0];      // a = A
   337     *b = 2 * quad[2];  // b =     2*B
   338     *c = quad[4];      // c =             C
   339     *b -= *c;          // b =     2*B -   C
   340     *a -= *b;          // a = A - 2*B +   C
   341     *b -= *c;          // b =     2*B - 2*C
   342 }
   344 #ifdef SK_DEBUG
   345 void SkDQuad::dump() {
   346     SkDebugf("{{");
   347     int index = 0;
   348     do {
   349         fPts[index].dump();
   350         SkDebugf(", ");
   351     } while (++index < 2);
   352     fPts[index].dump();
   353     SkDebugf("}}\n");
   354 }
   355 #endif

mercurial